Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jul;83(13):4749–4753. doi: 10.1073/pnas.83.13.4749

Metabolic breakdown of [3H]thymidine and the inability to measure human lymphocyte proliferation by incorporation of radioactivity.

J Bodycote, S Wolff
PMCID: PMC323819  PMID: 3460068

Abstract

Quantitative measurement of the incorporation of tritiated thymidine into cultures of phytohemagglutinin-stimulated lymphocytes is routinely used as an indication of the immunocompetence of the cells and of their proliferation. The present experiments show that several components of human blood catabolize nucleosides, including thymidine, extensively. Most of the radioactivity from tritiated thymidine, for example, is quickly rendered unincorporable as the compound is metabolized to thymine and further breakdown products. Thus, cells continue to proliferate without incorporating radioactivity from the medium. Furthermore, variability in the degree of catabolism has been found from person to person, so that neither measurement of the depletion of radioactivity from the medium nor measurement of the amount of label incorporated into the cultures can be used as a quantitative indicator of cell proliferation or immunocompetence.

Full text

PDF
4749

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnbaum G., Swick L. Human suppressor lymphocytes. II. Changes in concanavalin A inducible suppressor cells with age. J Gerontol. 1981 Jul;36(4):410–415. doi: 10.1093/geronj/36.4.410. [DOI] [PubMed] [Google Scholar]
  2. Carr M. C., Stites D. P., Fudenberg H. H. Cellular immune aspects of the human fetal-maternal relationship. I. In vitro response of cord blood lymphocytes to phytohemagglutinin. Cell Immunol. 1972 Sep;5(1):21–29. doi: 10.1016/0008-8749(72)90080-9. [DOI] [PubMed] [Google Scholar]
  3. Carrano A. V., Minkler J. L., Stetka D. G., Moore D. H., 2nd Variation in the baseline sister chromatid exchange frequency in human lymphocytes. Environ Mutagen. 1980;2(3):325–337. doi: 10.1002/em.2860020303. [DOI] [PubMed] [Google Scholar]
  4. Cohn S. M., Lieberman M. W. The distribution of DNA excision-repair sites in human diploid fibroblasts following ultraviolet irradiation. J Biol Chem. 1984 Oct 25;259(20):12463–12469. [PubMed] [Google Scholar]
  5. Desgranges C., Razaka G., Rabaud M., Bricaud H. Catabolism of thymidine in human blood platelets: purification and properties of thymidine phosphorylase. Biochim Biophys Acta. 1981 Jul 27;654(2):211–218. doi: 10.1016/0005-2787(81)90174-x. [DOI] [PubMed] [Google Scholar]
  6. FINK K., CLINE R. E., HENDERSON R. B., FINK R. M. Metabolism of thymine (methyl-C14 or -2-C14) by rat liver in vitro. J Biol Chem. 1956 Jul;221(1):425–433. [PubMed] [Google Scholar]
  7. Gallo R. C., Perry S. The enzymatic mechanisms for deoxythymidine synthesis in human leukocytes. IV. Comparisons between normal and leukemic leukocytes. J Clin Invest. 1969 Jan;48(1):105–116. doi: 10.1172/JCI105958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hallgren H. M., Buckley C. E., 3rd, Gilbertsen V. A., Yunis E. J. Lymphocyte phytohemagglutinin responsiveness, immunoglobulins and autoantibodies in aging humans. J Immunol. 1973 Oct;111(4):1101–1107. [PubMed] [Google Scholar]
  9. Heldin C. H., Wasteson A., Westermark B. Partial purification and characterization of platelet factors stimulating the multiplication of normal human glial cells. Exp Cell Res. 1977 Oct 15;109(2):429–437. doi: 10.1016/0014-4827(77)90023-4. [DOI] [PubMed] [Google Scholar]
  10. Hung C. Y., Perkins E. H., Yang W. K. Age-related refractoriness of PHA-induced lymphocyte transformation. I. Comparable sensitivity of spleen cells from young and old mice to culture conditions. Mech Ageing Dev. 1975 Jan-Feb;4(1):29–39. doi: 10.1016/0047-6374(75)90005-6. [DOI] [PubMed] [Google Scholar]
  11. Kruisbeek A. M. Age-related changes in ConA- and LPS-induced lymphocyte transformation. I. Effect of culture conditions on mitogen responses of blood and spleen lymphocytes from young and aged rats. Mech Ageing Dev. 1976 Mar-Apr;5(2):125–138. doi: 10.1016/0047-6374(76)90013-0. [DOI] [PubMed] [Google Scholar]
  12. MARSH J. C., PERRY S. THYMIDINE CATABOLISM BY NORMAL AND LEUKEMIC HUMAN LEUKOCYTES. J Clin Invest. 1964 Feb;43:267–278. doi: 10.1172/JCI104911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miller A. E., Neighbour P. A., Katzman R., Aronson M., Lipkowitz R. Immunological studies in senile dementia of the Alzheimer type: evidence for enhanced suppressor cell activity. Ann Neurol. 1981 Dec;10(6):506–510. doi: 10.1002/ana.410100603. [DOI] [PubMed] [Google Scholar]
  14. Morimoto K., Wolff S. Cell cycle kinetics in human lymphocyte cultures. Nature. 1980 Dec 11;288(5791):604–606. doi: 10.1038/288604a0. [DOI] [PubMed] [Google Scholar]
  15. Nakayama C., Wataya Y., Meyer R. B., Jr, Santi D. V., Saneyoshi M., Ueda T. Thymidine phosphorylase. Substrate specificity for 5-substituted 2'-deoxyuridines. J Med Chem. 1980 Aug;23(8):962–964. doi: 10.1021/jm00182a029. [DOI] [PubMed] [Google Scholar]
  16. OPPENHEIM J. J., WHANG J., FREI E., 3rd IMMUNOLOGIC AND CYTOGENETIC STUDIES OF CHRONIC LYMPHOCYTIC LEUKEMIC CELLS. Blood. 1965 Aug;26:121–132. [PubMed] [Google Scholar]
  17. Olivieri G., Bodycote J., Wolff S. Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science. 1984 Feb 10;223(4636):594–597. doi: 10.1126/science.6695170. [DOI] [PubMed] [Google Scholar]
  18. Oppenheim J. J. Relationship of in vitro lymphocyte transformation to delayed hypersensitivity in guinea pigs and man. Fed Proc. 1968 Jan-Feb;27(1):21–28. [PubMed] [Google Scholar]
  19. Pauly J. L., Schuller M. G., Zelcer A. A., Germain M. J. Degradation of [3H]thymidine by a pentosyltransferase (EC 2.4.2.4) in the plasma of man and different animals. Experientia. 1977 May 15;33(5):668–670. doi: 10.1007/BF01946565. [DOI] [PubMed] [Google Scholar]
  20. Pauly J. L., Schuller M. G., Zelcer A. A., Kirss T. A., Gore S. S., Germain M. J. Identification and comparative analysis of thymidine phosphorylase in the plasma of healthy subjects and cancer patients. J Natl Cancer Inst. 1977 Jun;58(6):1587–1590. doi: 10.1093/jnci/58.6.1587. [DOI] [PubMed] [Google Scholar]
  21. Pero R. W., Johnson D., Olsson A. Catabolism of exogenously supplied thymidine to thymine and dihydrothymine by platelets in human peripheral blood. Cancer Res. 1984 Nov;44(11):4955–4961. [PubMed] [Google Scholar]
  22. Rocklin R. E., Pence H., Kaplan H., Evans R. Cell-mediated immune response of ragweed-sensitive patients to ragweed antigen E. In vitro lymphocyte transformation and elaboration of lymphocyte mediators. J Clin Invest. 1974 Mar;53(3):735–744. doi: 10.1172/JCI107612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shiotani T., Weber G. Purification and properties of dihydrothymine dehydrogenase from rat liver. J Biol Chem. 1981 Jan 10;256(1):219–224. [PubMed] [Google Scholar]
  24. Smith K. A., Chess L., Mardiney M. R., Jr The relationship between rubella hemagglutination inhibition antibody (HIA) and rubella induced in vitro lymphocyte tritiated thymidine incorporation. Cell Immunol. 1973 Aug;8(2):321–327. doi: 10.1016/0008-8749(73)90121-4. [DOI] [PubMed] [Google Scholar]
  25. Stolley P. D., Soper K. A., Galloway S. M., Nichols W. W., Norman S. A., Wolman S. R. Sister-chromatid exchanges in association with occupational exposure to ethylene oxide. Mutat Res. 1984 Oct;129(1):89–102. doi: 10.1016/0027-5107(84)90127-1. [DOI] [PubMed] [Google Scholar]
  26. Taylor J H. Sister Chromatid Exchanges in Tritium-Labeled Chromosomes. Genetics. 1958 May;43(3):515–529. doi: 10.1093/genetics/43.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Taylor J. H., Woods P. S., Hughes W. L. THE ORGANIZATION AND DUPLICATION OF CHROMOSOMES AS REVEALED BY AUTORADIOGRAPHIC STUDIES USING TRITIUM-LABELED THYMIDINEE. Proc Natl Acad Sci U S A. 1957 Jan 15;43(1):122–128. doi: 10.1073/pnas.43.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tice R., Thorne P., Schneider E. L. BISACK analysis of the phytohaemagglutinin-induced proliferation of human peripheral lymphocytes. Cell Tissue Kinet. 1979 Jan;12(1):1–9. doi: 10.1111/j.1365-2184.1979.tb00108.x. [DOI] [PubMed] [Google Scholar]
  29. Usher D. C., Reiter H. Catabolism of thymidine during the lymphocyte cell cycle. Cell. 1977 Oct;12(2):365–370. doi: 10.1016/0092-8674(77)90112-x. [DOI] [PubMed] [Google Scholar]
  30. Weksler M. E., Hütteroth T. H. Impaired lymphocyte function in aged humans. J Clin Invest. 1974 Jan;53(1):99–104. doi: 10.1172/JCI107565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Woodman P. W., Sarrif A. M., Heidelberger C. Specificity of pyrimidine nucleoside phosphorylases and the phosphorolysis of 5-fluoro-2'-deoxyuridine. Cancer Res. 1980 Mar;40(3):507–511. [PubMed] [Google Scholar]
  32. de Ridder J. J., van Hal H. J. Unexpected high-performance liquid chromatographic separation of Org GC 94 and [3, 3, 4, 4-2H4] Org GC 94. J Chromatogr. 1976 Jun 9;121(1):96–99. doi: 10.1016/s0021-9673(00)82306-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES