Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jul;83(13):4764–4768. doi: 10.1073/pnas.83.13.4764

Lowering extracellular Na+ concentration releases autocrine growth factors from renal epithelial cells.

M M Walsh-Reitz, S L Gluck, S Waack, F G Toback
PMCID: PMC323822  PMID: 3460070

Abstract

Sodium influx is an important early signal during the onset of mitogenesis in many types of cells. From this observation, one would predict that a decrease in extracellular Na+ concentration might retard cell proliferation. We tested this prediction by exposing sets of cultures of monkey kidney epithelial cells (BSC-1 line) to medium with progressively reduced concentrations of Na+, and we measured the effect on cell multiplication. Unexpectedly, a reduction of the Na+ concentration from 155 mM (control) to 130 mM stimulated proliferation of epithelial cells but not of fibroblasts. Exposure of BSC-1 cells to low Na+ medium for 5 min was sufficient to commit them to accelerated growth. Further study revealed that the cells released two growth factors during this period: anionic proteins with apparent molecular weights of 6200 and 9000 whose properties differ from those of other known growth factors. Thus, a reduction in extracellular Na+ concentration apparently signaled the rapid release of autocrine growth factors that stimulate renal epithelial cell multiplication.

Full text

PDF
4764

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chua C. C., Geiman D., Ladda R. L. Transforming growth factors released from Kirsten sarcoma virus transformed cells do not compete for epidermal growth factor membrane receptors. J Cell Physiol. 1983 Oct;117(1):116–122. doi: 10.1002/jcp.1041170116. [DOI] [PubMed] [Google Scholar]
  2. Cone C. D., Jr, Tongier M., Jr Contact inhibition of division: involvement of the electrical transmembrane potential. J Cell Physiol. 1973 Dec;82(3):373–386. doi: 10.1002/jcp.1040820307. [DOI] [PubMed] [Google Scholar]
  3. HOPPS H. E., BERNHEIM B. C., NISALAK A., TJIO J. H., SMADEL J. E. BIOLOGIC CHARACTERISTICS OF A CONTINUOUS KIDNEY CELL LINE DERIVED FROM THE AFRICAN GREEN MONKEY. J Immunol. 1963 Sep;91:416–424. [PubMed] [Google Scholar]
  4. Halper J., Moses H. L. Epithelial tissue-derived growth factor-like polypeptides. Cancer Res. 1983 May;43(5):1972–1979. [PubMed] [Google Scholar]
  5. Holley R. W., Armour R., Baldwin J. H., Brown K. D., Yeh Y. C. Density-dependent regulation of growth of BSC-1 cells in cell culture: control of growth by serum factors. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5046–5050. doi: 10.1073/pnas.74.11.5046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holley R. W., Armour R., Baldwin J. H. Density-dependent regulation of growth of BSC-1 cells in cell culture: control of growth by low molecular weight nutrients. Proc Natl Acad Sci U S A. 1978 Jan;75(1):339–341. doi: 10.1073/pnas.75.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holley R. W., Armour R., Baldwin J. H. Density-dependent regulation of growth of BSC-1 cells in cell culture: growth inhibitors formed by the cells. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1864–1866. doi: 10.1073/pnas.75.4.1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holley R. W., Böhlen P., Fava R., Baldwin J. H., Kleeman G., Armour R. Purification of kidney epithelial cell growth inhibitors. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5989–5992. doi: 10.1073/pnas.77.10.5989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson J. D., Epel D. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature. 1976 Aug 19;262(5570):661–664. doi: 10.1038/262661a0. [DOI] [PubMed] [Google Scholar]
  10. Kaplan P. L., Anderson M., Ozanne B. Transforming growth factor(s) production enables cells to grow in the absence of serum: an autocrine system. Proc Natl Acad Sci U S A. 1982 Jan;79(2):485–489. doi: 10.1073/pnas.79.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koch K. S., Leffert H. L. Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Cell. 1979 Sep;18(1):153–163. doi: 10.1016/0092-8674(79)90364-7. [DOI] [PubMed] [Google Scholar]
  12. Lichtor T., Getz G. S. Cytoplasmic inheritance of rutamycin resistance in mouse fibroblasts. Proc Natl Acad Sci U S A. 1978 Jan;75(1):324–328. doi: 10.1073/pnas.75.1.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McKeehan W. L., McKeehan K. A., Calkins D. Extracellular regulation of fibroblast multiplication. Quantitative differences in nutrient and serum factor requirements for multiplication of normal and SV40 virus-transformed human lung cells. J Biol Chem. 1981 Mar 25;256(6):2973–2981. [PubMed] [Google Scholar]
  14. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  15. Moolenaar W. H., Mummery C. L., van der Saag P. T., de Laat S. W. Rapid ionic events and the initiation of growth in serum-stimulated neuroblastoma cells. Cell. 1981 Mar;23(3):789–798. doi: 10.1016/0092-8674(81)90443-8. [DOI] [PubMed] [Google Scholar]
  16. Mordan L. J., Toback F. G. Growth of kidney epithelial cells in culture: evidence for autocrine control. Am J Physiol. 1984 Mar;246(3 Pt 1):C351–C354. doi: 10.1152/ajpcell.1984.246.3.C351. [DOI] [PubMed] [Google Scholar]
  17. Pardee A. B., Dubrow R., Hamlin J. L., Kletzien R. F. Animal cell cycle. Annu Rev Biochem. 1978;47:715–750. doi: 10.1146/annurev.bi.47.070178.003435. [DOI] [PubMed] [Google Scholar]
  18. Roberts A. B., Anzano M. A., Lamb L. C., Smith J. M., Sporn M. B. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5339–5343. doi: 10.1073/pnas.78.9.5339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Roberts A. B., Frolik C. A., Anzano M. A., Sporn M. B. Transforming growth factors from neoplastic and nonneoplastic tissues. Fed Proc. 1983 Jun;42(9):2621–2626. [PubMed] [Google Scholar]
  20. Rozengurt E., Heppel L. A. Serum rapidly stimulates ouabain-sensitive 86-RB+ influx in quiescent 3T3 cells. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4492–4495. doi: 10.1073/pnas.72.11.4492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith J. B., Rozengurt E. Serum stimulates the Na+,K+ pump in quiescent fibroblasts by increasing Na+ entry. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5560–5564. doi: 10.1073/pnas.75.11.5560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sporn M. B., Todaro G. J. Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980 Oct 9;303(15):878–880. doi: 10.1056/NEJM198010093031511. [DOI] [PubMed] [Google Scholar]
  23. Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
  24. Tam J. P., Marquardt H., Rosberger D. F., Wong T. W., Todaro G. J. Synthesis of biologically active rat transforming growth factor I. Nature. 1984 May 24;309(5966):376–378. doi: 10.1038/309376a0. [DOI] [PubMed] [Google Scholar]
  25. Tam J. P. Physiological effects of transforming growth factor in the newborn mouse. Science. 1985 Aug 16;229(4714):673–675. doi: 10.1126/science.3860952. [DOI] [PubMed] [Google Scholar]
  26. Toback F. G., Ekelman K. B., Ordóez N. G. Stimulation of DNA synthesis in kidney epithelial cells in culture by potassium. Am J Physiol. 1984 Jul;247(1 Pt 1):C14–C19. doi: 10.1152/ajpcell.1984.247.1.C14. [DOI] [PubMed] [Google Scholar]
  27. Toback F. G. Induction of growth in kidney epithelial cells in culture by Na+. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6654–6656. doi: 10.1073/pnas.77.11.6654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tucker R. F., Shipley G. D., Moses H. L., Holley R. W. Growth inhibitor from BSC-1 cells closely related to platelet type beta transforming growth factor. Science. 1984 Nov 9;226(4675):705–707. doi: 10.1126/science.6093254. [DOI] [PubMed] [Google Scholar]
  29. Walsh-Reitz M. M., Aithal H. N., Toback F. G. Na regulates growth of kidney epithelial cells induced by lowering extracellular K concentration. Am J Physiol. 1984 Nov;247(5 Pt 1):C321–C326. doi: 10.1152/ajpcell.1984.247.5.C321. [DOI] [PubMed] [Google Scholar]
  30. Walsh-Reitz M. M., Toback F. G., Holley R. W. Cell growth and net Na+ flux are inhibited by a protein produced by kidney epithelial cells in culture. Proc Natl Acad Sci U S A. 1984 Feb;81(3):793–796. doi: 10.1073/pnas.81.3.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Walsh-Reitz M. M., Toback F. G. Kidney epithelial cell growth is stimulated by lowering extracellular potassium concentration. Am J Physiol. 1983 May;244(5):C429–C432. doi: 10.1152/ajpcell.1983.244.5.C429. [DOI] [PubMed] [Google Scholar]
  32. Walsh-Reitz M. M., Toback F. G. Vasopressin stimulates growth of renal epithelial cells in culture. Am J Physiol. 1983 Nov;245(5 Pt 1):C365–C370. doi: 10.1152/ajpcell.1983.245.5.C365. [DOI] [PubMed] [Google Scholar]
  33. Weber M. J., Evans P. K., Johnson M. A., McNair T. F., Nakamura K. D., Salter D. W. Transport of potassium, amino acids, and glucose in cells transformed by Rous sarcoma virus. Fed Proc. 1984 Jan;43(1):107–112. [PubMed] [Google Scholar]
  34. de Larco J. E., Todaro G. J. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4001–4005. doi: 10.1073/pnas.75.8.4001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES