Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 2;67(Pt 12):m1650. doi: 10.1107/S1600536811044667

(2,9-Dimethyl-1,10-phenanthroline-κ2 N,N′)diiodidocadmium

Ismail Warad a,, Ahmed Boshaala a, Saud I Al-Resayes a, Salem S Al-Deyab b, Mohamed Rzaigui c,*
PMCID: PMC3238587  PMID: 22199478

Abstract

In the title compound, [CdI2(C14H12N2)], the mol­ecule sits on a crystallographic twofold axis. The coordination sphere of the CdII atom is built of two symmetry-equivalent N atoms of one 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand and two symmetry-equivalent I atoms, thus forming a distorted tetra­hedral geometry. Inversion-related mol­ecules inter­act along the c-axis direction by π–π stacking inter­actions between the phenanthroline ring systems, with centroid–centroid distances of 3.707 (9) and 3.597 (10) Å.

Related literature

For coordination chemistry of phenanthroline derivatives and their applications, see: Miller et al. (1999); Bodoki et al. (2009); Kane-Maguire & Wheeler (2001); Shahabadi et al. (2009). For related structures involving 2,9-dimethyl-1,10-phenanthroline, see: Alizadeh et al. (2009); Preston & Kennard (1969); Wang & Zhong (2009). For background information on π–π stacking inter­actions, see: Janiak (2000).graphic file with name e-67-m1650-scheme1.jpg

Experimental

Crystal data

  • [CdI2(C14H12N2)]

  • M r = 574.46

  • Monoclinic, Inline graphic

  • a = 15.690 (3) Å

  • b = 11.580 (2) Å

  • c = 9.836 (5) Å

  • β = 114.65 (4)°

  • V = 1624.3 (9) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 2.72 mm−1

  • T = 293 K

  • 0.35 × 0.23 × 0.19 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.563, T max = 0.605

  • 6126 measured reflections

  • 3986 independent reflections

  • 2306 reflections with I > 2σ(I)

  • R int = 0.020

  • 2 standard reflections every 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.127

  • S = 1.02

  • 3986 reflections

  • 88 parameters

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −1.30 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811044667/pk2353sup1.cif

e-67-m1650-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044667/pk2353Isup2.hkl

e-67-m1650-Isup2.hkl (191.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research project No. RGP-VPP-008.

supplementary crystallographic information

Comment

Metal complexes using 1,10-phenanthroline (phen) and their modified derivative ligands are particularly attractive species for design and developing novel diagnostic and therapeutic agents that can recognize and selectively cleave DNA (Miller et al., 1999; Bodoki et al., 2009). The ligands or the metal in these complexes can be varied in an easily controlled manner to facilitate an individual application, thus providing an easy access for the understanding of details involved in DNA-binding and cleavage (Kane-Maguire & Wheeler, 2001; Shahabadi et al., 2009). We report herein the synthesis and crystal structure of a new CdII complex, [CdI2(dmphen)] (I) where dmphen = (2,9-dimethyl-1,10-phenanthroline).

The molecular structure of (I) is shown in Fig. 1. The CdII cation is located on a special position (1/2, y, 1/4) in a tetrahedral environment built up from two nitrogen atoms (N1, N1i) of one dmphen bidentate ligand and two iodide ions (I1, I1i), [(i): 1 - x, y, 1/2 - z].

Geometrical analysis of the bond lengths and angles around the cadmium atom, Cd–N = 2.305 (3) Å, Cd–I = 2.691 (1)Å and I–Cd–Ii = 129.82 (4)°, N–Cd–Ni = 73.O5(16)°, N–Cd–I = 112.40 (8)° and N—Cd—Ii = 107.48 (8)°, [(i): 1 - x, y, 1/2 - z], shows that the CdI2N2 is distorted. The shortest Cd···Cd distance is 6.650 (2) Å. Similar coordination geometry around the central atom has been observed in other transition metal complexes such as [HgBr2(dmphen)], (Alizadeh et al., 2009), [ZnCl2(dmphen)], (Preston & Kennard, 1969), [CuCl2(dmphen)] (Wang et al., 2009). The phenyl and pyridyl rings of dmphen ligand are planar with a mean atomic deviation of 0.011 Å and 0.013 Å respectively. The C–C bonds of the two methyl groups are positioned close to the benzene ring plane since the C7–C1–N1–C5 and C7–C1–C2–C3 torsion angles are -179.3 (4)° and -179.5 (5)° respectively.

In the crystal packing the complex molecules are linked together by intermolecular π–π stacking interactions between the pyridyl N1C5C4C3C2C1 (of centroid Cg1) and phenyl C5C4C6C6iC4iC5i [symmetry code: (i) 1 - x, y, 1/2 - z] (of centroid Cg2) rings. The centroid–centroid distances between Cg1···Cg2ii and Cg2···Cg2ii [symmetry code: (ii) 1 - x, -y, 1 - z] are 3.707 (9) and 3.597 (10)Å respectively, which is less than the 3.8 Å maximum value regarded as relevant for π–π interactions (Janiak, 2000).

Experimental

A mixture of 2,9-Dimethyl-1,10-phenanthroline (50.0 mg, 0.24 mmol) in dichloromethane (5 ml) and CdI2 (87.9 mg, 0.24 mmol) in methanol (10 ml) was placed in a round bottom flask and stirred for 4 h at room temperature. The solution was concentrated to about 1 ml under reduced pressure. Addition of 40 ml of n-hexane caused the precipitation of white powder, which was filtered and then dried under vacuum to 108 mg (yield 94% based on Cd). The crystal was grown by slow diffusion of diethyl ether into a solution of the complex in dichloromethane.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å and 0.96 Å and with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

An ORTEP (Burnett & Johnson, 1996) view of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry codes: (i) -x, y, 1/2 - z]

Fig. 2.

Fig. 2.

A view of the crystal packing of (I) showing the intermolecular π–π stacking interactions.

Crystal data

[CdI2(C14H12N2)] F(000) = 1056
Mr = 574.46 Dx = 2.349 Mg m3
Monoclinic, C2/c Ag Kα radiation, λ = 0.56087 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 15.690 (3) Å θ = 9–11°
b = 11.580 (2) Å µ = 2.72 mm1
c = 9.836 (5) Å T = 293 K
β = 114.65 (4)° Prism, colorless
V = 1624.3 (9) Å3 0.35 × 0.23 × 0.19 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2306 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.020
graphite θmax = 28.0°, θmin = 2.2°
non–profiled ω scans h = −26→25
Absorption correction: multi-scan (SORTAV; Blessing, 1995) k = −2→19
Tmin = 0.563, Tmax = 0.605 l = −3→16
6126 measured reflections 2 standard reflections every 120 min
3986 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.056P)2 + 2.6748P] where P = (Fo2 + 2Fc2)/3
3986 reflections (Δ/σ)max = 0.001
88 parameters Δρmax = 1.65 e Å3
0 restraints Δρmin = −1.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.5000 0.30673 (3) 0.2500 0.04219 (11)
I1 0.63145 (2) 0.40526 (3) 0.49576 (4) 0.06297 (13)
N1 0.4331 (2) 0.1468 (3) 0.3059 (3) 0.0385 (6)
C1 0.3676 (3) 0.1493 (4) 0.3594 (4) 0.0456 (8)
C2 0.3328 (3) 0.0468 (5) 0.3921 (5) 0.0547 (10)
H2 0.2873 0.0495 0.4293 0.066*
C3 0.3655 (3) −0.0567 (4) 0.3697 (5) 0.0546 (11)
H3 0.3436 −0.1246 0.3943 0.066*
C4 0.4325 (3) −0.0616 (3) 0.3093 (4) 0.0470 (9)
C5 0.4652 (2) 0.0441 (3) 0.2803 (4) 0.0375 (7)
C6 0.4684 (4) −0.1672 (4) 0.2796 (5) 0.0571 (11)
H6 0.4478 −0.2370 0.3017 0.069*
C7 0.3344 (3) 0.2640 (5) 0.3834 (6) 0.0615 (12)
H7A 0.3819 0.2997 0.4698 0.092*
H7B 0.2782 0.2548 0.3988 0.092*
H7C 0.3215 0.3116 0.2972 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0423 (2) 0.03666 (19) 0.0490 (2) 0.000 0.02046 (17) 0.000
I1 0.0659 (2) 0.0604 (2) 0.0597 (2) −0.02133 (15) 0.02329 (16) −0.01232 (14)
N1 0.0341 (13) 0.0426 (16) 0.0372 (15) −0.0004 (11) 0.0133 (11) 0.0038 (12)
C1 0.0387 (16) 0.057 (2) 0.0416 (19) −0.0006 (16) 0.0175 (15) 0.0072 (17)
C2 0.0426 (19) 0.073 (3) 0.045 (2) −0.010 (2) 0.0150 (17) 0.011 (2)
C3 0.054 (2) 0.058 (2) 0.041 (2) −0.0205 (19) 0.0087 (17) 0.0072 (18)
C4 0.053 (2) 0.0424 (19) 0.0335 (17) −0.0112 (16) 0.0067 (16) 0.0012 (15)
C5 0.0385 (15) 0.0361 (16) 0.0292 (15) −0.0038 (13) 0.0053 (12) 0.0004 (13)
C6 0.081 (3) 0.0360 (18) 0.044 (2) −0.0105 (19) 0.016 (2) 0.0021 (16)
C7 0.059 (2) 0.070 (3) 0.068 (3) 0.015 (2) 0.039 (2) 0.009 (2)

Geometric parameters (Å, °)

Cd1—N1i 2.305 (3) C3—C4 1.407 (7)
Cd1—N1 2.305 (3) C3—H3 0.9300
Cd1—I1 2.6907 (14) C4—C5 1.401 (5)
Cd1—I1i 2.6907 (14) C4—C6 1.427 (6)
N1—C1 1.337 (5) C5—C5i 1.447 (8)
N1—C5 1.355 (5) C6—C6i 1.343 (11)
C1—C2 1.399 (6) C6—H6 0.9300
C1—C7 1.481 (6) C7—H7A 0.9600
C2—C3 1.357 (7) C7—H7B 0.9600
C2—H2 0.9300 C7—H7C 0.9600
N1i—Cd1—N1 73.05 (16) C4—C3—H3 119.9
N1i—Cd1—I1 107.48 (8) C5—C4—C3 116.9 (4)
N1—Cd1—I1 112.40 (8) C5—C4—C6 119.8 (4)
N1i—Cd1—I1i 112.40 (8) C3—C4—C6 123.3 (4)
N1—Cd1—I1i 107.48 (8) N1—C5—C4 122.2 (4)
I1—Cd1—I1i 129.82 (4) N1—C5—C5i 118.6 (2)
C1—N1—C5 119.9 (3) C4—C5—C5i 119.2 (2)
C1—N1—Cd1 125.3 (3) C6i—C6—C4 121.0 (3)
C5—N1—Cd1 114.9 (2) C6i—C6—H6 119.5
N1—C1—C2 120.6 (4) C4—C6—H6 119.5
N1—C1—C7 117.5 (4) C1—C7—H7A 109.5
C2—C1—C7 121.8 (4) C1—C7—H7B 109.5
C3—C2—C1 120.1 (4) H7A—C7—H7B 109.5
C3—C2—H2 119.9 C1—C7—H7C 109.5
C1—C2—H2 119.9 H7A—C7—H7C 109.5
C2—C3—C4 120.2 (4) H7B—C7—H7C 109.5
C2—C3—H3 119.9
N1i—Cd1—N1—C1 −179.5 (4) C2—C3—C4—C5 2.4 (6)
I1—Cd1—N1—C1 78.1 (3) C2—C3—C4—C6 −178.6 (4)
I1i—Cd1—N1—C1 −70.8 (3) C1—N1—C5—C4 −0.6 (5)
N1i—Cd1—N1—C5 0.37 (17) Cd1—N1—C5—C4 179.5 (3)
I1—Cd1—N1—C5 −102.0 (2) C1—N1—C5—C5i 178.9 (4)
I1i—Cd1—N1—C5 109.1 (2) Cd1—N1—C5—C5i −1.0 (5)
C5—N1—C1—C2 1.3 (6) C3—C4—C5—N1 −1.2 (5)
Cd1—N1—C1—C2 −178.8 (3) C6—C4—C5—N1 179.8 (4)
C5—N1—C1—C7 −179.3 (4) C3—C4—C5—C5i 179.3 (4)
Cd1—N1—C1—C7 0.6 (5) C6—C4—C5—C5i 0.3 (6)
N1—C1—C2—C3 0.0 (6) C5—C4—C6—C6i −1.8 (8)
C7—C1—C2—C3 −179.5 (5) C3—C4—C6—C6i 179.3 (5)
C1—C2—C3—C4 −1.9 (6)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2353).

References

  1. Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484. [DOI] [PMC free article] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  4. Bodoki, A., Hangan, A., Oprean, L., Alzuet, G., Castineiras, A. & Borras, J. (2009). Polyhedron, 28, 2537–2544.
  5. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  7. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  10. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  11. Kane-Maguire, N. A. P. & Wheeler, J. F. (2001). Coord. Chem. Rev. 211, 145–162.
  12. Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292–4293.
  13. Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1956–1961.
  14. Shahabadi, N., Kashanian, S. & Purfoulad, M. (2009). Spectrochim. Acta Part A, 72, 757–761. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811044667/pk2353sup1.cif

e-67-m1650-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811044667/pk2353Isup2.hkl

e-67-m1650-Isup2.hkl (191.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES