Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jul;83(13):4937–4941. doi: 10.1073/pnas.83.13.4937

N2-Succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa

Alfred Jann *, Victor Stalon , Corinne Vander Wauven , Thomas Leisinger *, Dieter Haas *,§
PMCID: PMC323859  PMID: 16593724

Abstract

Arginine-nonutilizing (aru) mutants of Pseudomonas aeruginosa strain PAO converted L-arginine to N2-succinylarginine or N-succinylglutamate, which were identified by high-voltage electrophoresis and HPLC. Addition of aminooxyacetate, an inhibitor of pyridoxal phosphate-dependent enzymes, to resting cells of the wild-type PAO1 in arginine medium led to the accumulation of N2-succinylornithine. Enzyme assays with crude P. aeruginosa extracts established the following pathway: L-arginine + succinyl-CoA → N2-succinylarginine → N2-succinylornithine → N_succinylglutamate 5-semialdehyde → N-succinylglutamate → succinate + glutamate. Succinyl-CoA may be regenerated from glutamate via 2-ketoglutarate. L-Arginine induced the enzymes of the pathway, and succinate caused catabolite repression. Purified N2-acetylornithine 5-aminotransferase (N2-acetyl-L-ornithine: 2-oxoglutarate aminotransferase, EC 2.6.1.11), an arginine biosynthetic enzyme, efficiently transaminated N2-succinylornithine; this explains the enzyme's dual role in arginine biosynthesis and catabolism. The succinylarginine pathway enables P. aeruginosa to utilize arginine efficiently as a carbon source under aerobic conditions, whereas the other three arginine catabolic pathways previously established in P. aeruginosa fulfill different functions.

Keywords: aru mutants, N2-succinylarginine, N2-succinylornithine, metabolic versatility

Full text

PDF
4937

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUBERT J. P., MILLET J., PINEAU E., MILHAUD G. [N-Succinyl-L-glutamic acid in Bacillus megaterium during sporulation]. Biochim Biophys Acta. 1961 Aug 19;51:529–537. doi: 10.1016/0006-3002(61)90610-2. [DOI] [PubMed] [Google Scholar]
  2. Früh H., Leisinger T. Properties and localization of N-acetylglutamate deacetylase from Pseudomonas aeruginosa. J Gen Microbiol. 1981 Jul;125(1):1–10. doi: 10.1099/00221287-125-1-1. [DOI] [PubMed] [Google Scholar]
  3. Früh R., Haas D., Leisinger T. Altered control of glutamate dehydrogenases in ornithine utilization mutants of Pseudomonas aeruginosa. Arch Microbiol. 1985 Mar;141(2):170–176. doi: 10.1007/BF00423280. [DOI] [PubMed] [Google Scholar]
  4. Haas D. Genetic aspects of biodegradation by pseudomonads. Experientia. 1983 Nov 15;39(11):1199–1213. doi: 10.1007/BF01990357. [DOI] [PubMed] [Google Scholar]
  5. Haas D., Matsumoto H., Moretti P., Stalon V., Mercenier A. Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Mol Gen Genet. 1984;193(3):437–444. doi: 10.1007/BF00382081. [DOI] [PubMed] [Google Scholar]
  6. Holloway B. W. Genetics of Pseudomonas. Bacteriol Rev. 1969 Sep;33(3):419–443. doi: 10.1128/br.33.3.419-443.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mercenier A., Simon J. P., Haas D., Stalon V. Catabolism of L-arginine by Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):381–389. doi: 10.1099/00221287-116-2-381. [DOI] [PubMed] [Google Scholar]
  8. Mercenier A., Simon J. P., Vander Wauven C., Haas D., Stalon V. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. J Bacteriol. 1980 Oct;144(1):159–163. doi: 10.1128/jb.144.1.159-163.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mitchell C. G., Dawes E. A. The role of oxygen in the regulation of glucose metabolism, transport and the tricarboxylic acid cycle in Pseudomonas aeruginosa. J Gen Microbiol. 1982 Jan;128(1):49–59. doi: 10.1099/00221287-128-1-49. [DOI] [PubMed] [Google Scholar]
  10. Rahman M., Laverack P. D., Clarke P. H. The catabolism of arginine by Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):371–380. doi: 10.1099/00221287-116-2-371. [DOI] [PubMed] [Google Scholar]
  11. Stalon V., Mercenier A. L-arginine utilization by Pseudomonas species. J Gen Microbiol. 1984 Jan;130(1):69–76. doi: 10.1099/00221287-130-1-69. [DOI] [PubMed] [Google Scholar]
  12. Vander Wauven C., Piérard A., Kley-Raymann M., Haas D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol. 1984 Dec;160(3):928–934. doi: 10.1128/jb.160.3.928-934.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vander Wauven C., Stalon V. Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J Bacteriol. 1985 Nov;164(2):882–886. doi: 10.1128/jb.164.2.882-886.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vanderbilt A. S., Gaby N. S., Rodwell V. W. Intermediates and enzymes between alpha-ketoarginine and gamma-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida. J Biol Chem. 1975 Jul 25;250(14):5322–5329. [PubMed] [Google Scholar]
  15. Voellmy R., Leisinger T. Dual role for N-2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J Bacteriol. 1975 Jun;122(3):799–809. doi: 10.1128/jb.122.3.799-809.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Voellym R., Leisinger T. Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J Bacteriol. 1976 Dec;128(3):722–729. doi: 10.1128/jb.128.3.722-729.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wilson O. H., Holden J. T. Arginine transport and metabolism in osmotically shocked and unshocked cells of Escherichia coli W. J Biol Chem. 1969 May 25;244(10):2737–2742. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES