Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 5;67(Pt 12):m1656–m1657. doi: 10.1107/S1600536811045144

Bis[tris­(1H-pyrazol-1-yl-κN 2)methane]­nickel(II) bis­{[tris­(1H-pyrazol-1-yl-κN 2)methane]­tris­(thio­cyanato-κN)nickelate(II)} methanol disolvate

Ganna Lyubartseva a,*, Sean Parkin b, Uma Prasad Mallik a
PMCID: PMC3238592  PMID: 22199483

Abstract

Attempts to prepare the mononuclear [(tpm)NiII L 3]−1 [tpm = tris­(1H-pyrazol-1-yl)methane and L = thio­cyanate] anion yielded the methanol-solvated salt, [(tpm)2NiII][(tpm)NiII(NCS)3]2·2CH3OH or [Ni(C10H10N6)2][Ni(NCS)3(C10H10N6)]2·2CH3OH. The asymmetric unit consists of half a centrosymmetric bis­[tris­(1H-pyrazol-1-yl)methane]­nickel(II) cation and an octa­hedral nickelate(II) anion bound to one tpm and three L ligands, and a methanol solvent mol­ecule. One of the L ligands is disordered over two positions with occupancy factors of 0.650 (3) and 0.350 (3). There are O—H⋯S inter­actions between the methanol and the disordered thio­cyanate anion, and a weak C—H⋯O hydrogen bond between the cation and the methanol O atom.

Related literature

For the ligand synthesis, see: Reger et al. (2000). For structural, spectroscopic and angular overlap studies of tris­(1H-pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For background information on the modelling of metallo-enzyme sites by small mol­ecules, see: Kitajima et al. (1992); Trofimenko et al. (1992); Looney et al. (1992); Looney & Parkin (1994). A previous attempt to make similar building blocks with nickel(II) and a cyanide ligand is given in Lyubartseva & Parkin (2009). graphic file with name e-67-m1656-scheme1.jpg

Experimental

Crystal data

  • [Ni(C10H10N6)2][Ni(NCS)3(C10H10N6)]2·2CH4O

  • M r = 1445.65

  • Monoclinic, Inline graphic

  • a = 33.4463 (8) Å

  • b = 7.3287 (2) Å

  • c = 27.2689 (7) Å

  • β = 112.590 (1)°

  • V = 6171.3 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.52 mm−1

  • T = 90 K

  • 0.20 × 0.06 × 0.02 mm

Data collection

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS in APEX2; Bruker, 2006) T min = 0.740, T max = 0.933

  • 41685 measured reflections

  • 5605 independent reflections

  • 4932 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.128

  • S = 1.11

  • 5605 reflections

  • 418 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811045144/ng5255sup1.cif

e-67-m1656-sup1.cif (39.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045144/ng5255Isup2.hkl

e-67-m1656-Isup2.hkl (274.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯S3i 0.84 2.43 3.267 (4) 175
O1S—H1S⋯S3′i 0.84 2.88 3.459 (6) 128
C23—H23⋯O1S 1.00 2.15 3.118 (4) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

GL gratefully acknowledges Southern Arkansas University for the financial support.

supplementary crystallographic information

Comment

Tripodal ligands with three pyrazolyl groups are increasingly being used in small-molecule modeling of the active sites of metallo-enzymes in which the metal is coordinated to two or three imidazole groups from histidine (Kitajima et al. 1992, Trofimenko et al. 1992, Looney et al. 1992, Looney & Parkin 1994). One of the goals of this research is to explore the chemistry of the neutral ligand tris(pyrazol-1-yl)methane compared to the more extensively studied isoelectronic but anionic ligand tris(pyrazol-1-yl)borate. In attempts to prepare mononuclear [(tpm)NiIIL3]-1 , where tpm is tris(pyrazol-1-yl)methane, a symmetrical tripodal neutral nitrogen donor ligand, and L is NCS-, a uninegative N-donor pseudohalide anion, we obtained [(tpm)2NiII][(tpm)NiII(NCS)3]2.2CH3OH as blue monoclinic crystals in 57% isolated yield. The structure consists of centrosymmetric [bis[tris(1-pyrazolyl)methane-κ3]-nickel(II) cations, with NiII—N distances ranging from 2.077 (2) to 2.082 (2) Å. The intraligand N—Ni—N angles in the cation range from 85.81 (10) to 95.27 (10)°, which introduces a slight trigonal distortion from perfect octahedral geometry. The anion consists of nickellate (II) atom surrounded octahedrally by one tripodal tris(pyrazol-1-yl)methane ligand and three isothiocyanate ligands. The tpm ligand N—Ni distances range from 2.080 (3) to 2.119 (3) Å, and the isothiocyanate N—Ni distances range from 2.046 (3) to 2.070 (3) Å.

Experimental

The tris(pyrazolyl)methane ligand was synthesized according to the previously published procedure by Reger et al. (2000). Tetrabutylammonium thiocyanate was purchased from Aldrich and used as received. NiCl2.6H20 (475 mg, 2 mmol) was dissolved in 15 ml methanol. Tris(pyrazolyl) methane (428 mg, 2 mmol) was dissolved in 15 ml methanol. The ligand solution was added dropwise to metal solution and with moderate stirring. Once the addition was complete, tetrabutylammonium thiocyanate (1.81 g, 6 mmol) was added. The solution was filtered and methanol was evaporated slowly. Blue crystals were obtained after 3 days (549 mg, 57% yield). Elemental analysis, calculated for Ni3C48H48N30S6O2 : C 39.88, H 3.35, N 29.07; found C 39.21, H 2.99, N 29.27%. IR (cm-1): 3361, 3133, 2977, 2071, 1516, 1440, 1400, 1284, 1247, 1220, 1088, 1050, 980, 905, 858, 788, 766, 660, 608, 475.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 1.00 Å (R3CH), 0.95 Å (Csp2H), 0.84 Å (O—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

To ensure satisfactory refinement of disordered parts of the structure, a combination of constraints and restraints were used. The SHELXL97 constraints EXYZ and EADP were used to make the geometry and displacement parameters of closely proximate disordered atoms equal. The SHELXL97 restraint command DELU was also used to ensure similar displacement parameters for closely proximate, chemically similar groups.

The final weighting scheme (SHELXL-97 command "WGHT"), which is optimized to give a flat analysis of variance, had a somewhat larger than usual value for the second parameter. This is generally attributed to some form of bias, such as could be caused by unrecognized twinning or some other kind of incomplete model. We observed no obvious cause for the unusual weighting scheme, but the available sample was far from perfect. Indeed, the crystals were covered in a blue powder, which was likely caused by partial drying of the crystal. Some of this blue powder was easy to remove, but some was stuck to the crystal surface and could not be removed without damaging the crystals.

In the final difference map there are small residual peaks clustered around the disordered isothiocyanate sulphur. This could perhaps be due to partial occupancy/disordered solvent, but all attempts to model it as such did not improve the refinement enough to warrant retention of the extra details.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The minor isothiocynate disorder component is shown with open bonds. Unlabelled atoms are related to their labelled counterparts by inversion (0.5 - x, 1.5 - y, 1 - z).

Fig. 2.

Fig. 2.

Packing diagram of the title compound as viewed down the b axis. The hydrogen atoms are omitted to enhance clarity.

Crystal data

[Ni(C10H10N6)2][Ni(NCS)3(C10H10N6)]2·2CH4O F(000) = 2968
Mr = 1445.65 Dx = 1.556 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2yc Cell parameters from 9957 reflections
a = 33.4463 (8) Å θ = 2.9–67.8°
b = 7.3287 (2) Å µ = 3.52 mm1
c = 27.2689 (7) Å T = 90 K
β = 112.590 (1)° Rod, blue
V = 6171.3 (3) Å3 0.20 × 0.06 × 0.02 mm
Z = 4

Data collection

Bruker X8 Proteum diffractometer 5605 independent reflections
Radiation source: fine-focus rotating anode 4932 reflections with I > 2σ(I)
graded multilayer optics Rint = 0.061
Detector resolution: 5.6 pixels mm-1 θmax = 68.0°, θmin = 2.9°
φ and ω scans h = −39→39
Absorption correction: multi-scan (SADABS in APEX2; Bruker, 2006) k = −8→8
Tmin = 0.740, Tmax = 0.933 l = −32→32
41685 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0515P)2 + 28.6001P] where P = (Fo2 + 2Fc2)/3
5605 reflections (Δ/σ)max = 0.001
418 parameters Δρmax = 1.34 e Å3
6 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. The crystals were covered in a blue powder, which was likely caused by partial drying of the crystal. Some of this blue stuff was easy to remove, but some was stuck to the crystal surface and could not be removed without damaging the crystal.In the final difference map there are small residual peaks clustered around the disordered thiocyanate group. This could perhaps be due to partial occupancy/disordered solvent, but all attempts to model it as such did not improve the refinement enough to warrant retention of the extra details.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.388647 (18) 0.19922 (7) 0.82166 (2) 0.02134 (16)
C1 0.38951 (11) −0.2289 (4) 0.82452 (14) 0.0230 (7)
H1 0.3895 −0.3653 0.8251 0.028*
N1 0.33737 (9) 0.0180 (4) 0.80613 (11) 0.0212 (6)
N2 0.34542 (9) −0.1642 (4) 0.80957 (11) 0.0196 (6)
C2 0.29596 (11) 0.0339 (5) 0.79732 (13) 0.0221 (7)
H2 0.2810 0.1467 0.7933 0.027*
C3 0.27681 (11) −0.1379 (5) 0.79473 (13) 0.0236 (7)
H3 0.2474 −0.1630 0.7885 0.028*
C4 0.30942 (11) −0.2617 (5) 0.80312 (13) 0.0214 (7)
H4 0.3072 −0.3908 0.8042 0.026*
N3 0.41898 (9) 0.0209 (4) 0.88658 (12) 0.0234 (6)
N4 0.41572 (9) −0.1623 (4) 0.87707 (11) 0.0220 (6)
C5 0.44066 (11) 0.0375 (5) 0.93835 (14) 0.0253 (7)
H5 0.4477 0.1506 0.9567 0.030*
C6 0.45189 (12) −0.1344 (5) 0.96261 (15) 0.0322 (8)
H6 0.4677 −0.1592 0.9992 0.039*
C7 0.43519 (11) −0.2583 (5) 0.92251 (15) 0.0290 (8)
H7 0.4369 −0.3874 0.9258 0.035*
N5 0.41142 (9) 0.0136 (4) 0.77985 (12) 0.0241 (6)
N6 0.40755 (9) −0.1675 (4) 0.78705 (12) 0.0226 (6)
C8 0.43166 (12) 0.0246 (5) 0.74650 (15) 0.0286 (8)
H8 0.4389 0.1359 0.7340 0.034*
C9 0.44093 (12) −0.1481 (5) 0.73221 (15) 0.0322 (8)
H9 0.4551 −0.1762 0.7089 0.039*
C10 0.42528 (11) −0.2688 (5) 0.75883 (15) 0.0286 (8)
H10 0.4266 −0.3982 0.7578 0.034*
N7 0.36703 (10) 0.3584 (4) 0.86862 (12) 0.0280 (7)
C11 0.36862 (11) 0.3894 (4) 0.91106 (15) 0.0253 (8)
S1 0.37247 (3) 0.43823 (13) 0.97092 (4) 0.0346 (2)
N8 0.35651 (10) 0.3522 (4) 0.75539 (12) 0.0276 (6)
C12 0.33809 (11) 0.4581 (5) 0.72297 (13) 0.0221 (7)
S2 0.31218 (3) 0.61217 (12) 0.67928 (3) 0.0267 (2)
N9 0.44458 (11) 0.3525 (4) 0.84076 (15) 0.0371 (8) 0.650 (3)
C13 0.4780 (2) 0.3745 (8) 0.8323 (3) 0.0346 (11) 0.650 (3)
S3 0.52288 (6) 0.4092 (2) 0.82170 (10) 0.0554 (6) 0.650 (3)
N9' 0.44458 (11) 0.3525 (4) 0.84076 (15) 0.0371 (8) 0.350 (3)
C13' 0.4749 (4) 0.3881 (14) 0.8716 (5) 0.0346 (11) 0.350 (3)
S3' 0.52609 (11) 0.4382 (5) 0.91591 (17) 0.0639 (14) 0.350 (3)
Ni2 0.2500 0.7500 0.5000 0.01688 (18)
N10 0.30477 (8) 0.5976 (4) 0.54331 (10) 0.0187 (6)
N11 0.34180 (9) 0.6897 (4) 0.57058 (10) 0.0190 (6)
C14 0.31541 (11) 0.4229 (4) 0.55193 (13) 0.0219 (7)
H14 0.2959 0.3242 0.5379 0.026*
C15 0.35916 (11) 0.4038 (5) 0.58445 (14) 0.0246 (7)
H15 0.3746 0.2931 0.5964 0.030*
C16 0.37506 (11) 0.5770 (4) 0.59556 (13) 0.0220 (7)
H16 0.4040 0.6112 0.6168 0.026*
N12 0.26851 (9) 0.9206 (4) 0.56604 (11) 0.0207 (6)
N13 0.31151 (9) 0.9582 (3) 0.59102 (11) 0.0187 (6)
C17 0.31975 (12) 1.0505 (5) 0.63671 (14) 0.0256 (7)
H17 0.3473 1.0900 0.6611 0.031*
C18 0.28065 (13) 1.0760 (5) 0.64097 (15) 0.0331 (9)
H18 0.2755 1.1379 0.6686 0.040*
C19 0.24998 (12) 0.9929 (5) 0.59665 (14) 0.0262 (7)
H19 0.2198 0.9885 0.5893 0.031*
N14 0.20875 (8) 0.5902 (4) 0.52268 (11) 0.0195 (6)
N15 0.16941 (9) 0.5474 (4) 0.48424 (11) 0.0188 (6)
C20 0.20858 (11) 0.5150 (4) 0.56683 (13) 0.0220 (7)
H20 0.2319 0.5215 0.6004 0.026*
C21 0.16970 (12) 0.4255 (5) 0.55738 (14) 0.0262 (7)
H21 0.1618 0.3611 0.5826 0.031*
C22 0.14512 (11) 0.4486 (4) 0.50472 (13) 0.0217 (7)
H22 0.1166 0.4044 0.4860 0.026*
C23 0.15845 (11) 0.6126 (4) 0.43080 (13) 0.0188 (6)
H23 0.1287 0.5681 0.4084 0.023*
O1S 0.06346 (9) 0.4684 (4) 0.38493 (13) 0.0447 (7)
H1S 0.0533 0.3683 0.3705 0.067*
C1S 0.03005 (16) 0.5722 (8) 0.3923 (2) 0.0562 (13)
H1S1 0.0428 0.6501 0.4237 0.084*
H1S2 0.0090 0.4892 0.3974 0.084*
H1S3 0.0155 0.6484 0.3610 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0240 (3) 0.0130 (3) 0.0281 (3) −0.0013 (2) 0.0112 (2) 0.0001 (2)
C1 0.0249 (17) 0.0149 (16) 0.0311 (18) −0.0032 (13) 0.0129 (14) −0.0018 (13)
N1 0.0254 (15) 0.0134 (13) 0.0269 (14) 0.0003 (11) 0.0123 (12) 0.0014 (11)
N2 0.0199 (14) 0.0145 (13) 0.0261 (14) −0.0017 (10) 0.0107 (11) −0.0015 (11)
C2 0.0239 (17) 0.0188 (16) 0.0255 (17) 0.0024 (13) 0.0114 (14) 0.0016 (13)
C3 0.0216 (17) 0.0243 (17) 0.0278 (17) −0.0021 (14) 0.0126 (14) 0.0007 (14)
C4 0.0239 (17) 0.0174 (16) 0.0258 (16) −0.0037 (13) 0.0128 (14) −0.0021 (13)
N3 0.0241 (15) 0.0135 (13) 0.0336 (16) −0.0005 (11) 0.0121 (12) −0.0009 (11)
N4 0.0217 (14) 0.0152 (13) 0.0290 (15) −0.0009 (11) 0.0093 (12) −0.0010 (11)
C5 0.0193 (17) 0.0281 (18) 0.0273 (18) −0.0020 (14) 0.0075 (14) −0.0043 (14)
C6 0.0223 (18) 0.037 (2) 0.0326 (19) −0.0025 (15) 0.0053 (15) 0.0040 (16)
C7 0.0219 (17) 0.0202 (17) 0.041 (2) −0.0002 (14) 0.0079 (15) 0.0092 (15)
N5 0.0266 (15) 0.0175 (14) 0.0324 (16) −0.0019 (11) 0.0158 (13) 0.0000 (12)
N6 0.0241 (15) 0.0153 (13) 0.0343 (16) −0.0006 (11) 0.0176 (12) −0.0031 (11)
C8 0.0275 (19) 0.0284 (19) 0.0330 (19) −0.0053 (15) 0.0151 (15) 0.0003 (15)
C9 0.0298 (19) 0.036 (2) 0.037 (2) −0.0051 (16) 0.0198 (16) −0.0094 (17)
C10 0.0249 (18) 0.0234 (18) 0.040 (2) −0.0006 (14) 0.0153 (16) −0.0080 (15)
N7 0.0352 (17) 0.0172 (14) 0.0327 (17) 0.0006 (12) 0.0141 (13) −0.0011 (12)
C11 0.0242 (18) 0.0132 (16) 0.041 (2) −0.0018 (13) 0.0157 (15) −0.0005 (14)
S1 0.0471 (6) 0.0277 (5) 0.0401 (5) −0.0074 (4) 0.0290 (5) −0.0065 (4)
N8 0.0303 (16) 0.0204 (15) 0.0350 (17) −0.0018 (12) 0.0157 (13) 0.0014 (13)
C12 0.0238 (17) 0.0198 (17) 0.0264 (17) −0.0048 (14) 0.0138 (14) −0.0030 (14)
S2 0.0291 (5) 0.0257 (4) 0.0254 (4) −0.0008 (3) 0.0104 (3) 0.0054 (3)
N9 0.0317 (18) 0.0188 (16) 0.057 (2) −0.0024 (13) 0.0135 (16) 0.0059 (14)
C13 0.040 (3) 0.019 (2) 0.042 (3) −0.003 (2) 0.013 (2) 0.002 (2)
S3 0.0371 (10) 0.0350 (10) 0.0990 (16) −0.0052 (7) 0.0315 (10) 0.0063 (9)
N9' 0.0317 (18) 0.0188 (16) 0.057 (2) −0.0024 (13) 0.0135 (16) 0.0059 (14)
C13' 0.040 (3) 0.019 (2) 0.042 (3) −0.003 (2) 0.013 (2) 0.002 (2)
S3' 0.0323 (18) 0.056 (2) 0.077 (3) −0.0159 (15) −0.0082 (16) 0.0269 (19)
Ni2 0.0191 (4) 0.0123 (4) 0.0213 (4) 0.0001 (3) 0.0100 (3) 0.0002 (3)
N10 0.0208 (14) 0.0133 (13) 0.0237 (14) −0.0007 (10) 0.0105 (11) −0.0002 (10)
N11 0.0226 (14) 0.0145 (13) 0.0213 (13) −0.0015 (11) 0.0099 (11) 0.0003 (10)
C14 0.0272 (18) 0.0106 (15) 0.0311 (18) 0.0003 (13) 0.0147 (14) 0.0007 (13)
C15 0.0263 (18) 0.0159 (16) 0.0324 (18) 0.0057 (13) 0.0121 (15) 0.0019 (13)
C16 0.0200 (17) 0.0206 (17) 0.0256 (17) 0.0019 (13) 0.0089 (13) 0.0049 (13)
N12 0.0208 (14) 0.0164 (13) 0.0268 (15) −0.0007 (11) 0.0112 (12) −0.0019 (11)
N13 0.0212 (14) 0.0128 (13) 0.0237 (14) 0.0002 (10) 0.0105 (11) −0.0009 (10)
C17 0.0332 (19) 0.0195 (17) 0.0246 (17) −0.0043 (14) 0.0117 (15) −0.0058 (13)
C18 0.044 (2) 0.0280 (19) 0.035 (2) −0.0018 (16) 0.0233 (18) −0.0105 (16)
C19 0.0296 (19) 0.0216 (17) 0.0336 (19) 0.0016 (14) 0.0190 (15) −0.0036 (14)
N14 0.0184 (14) 0.0172 (13) 0.0223 (14) 0.0001 (11) 0.0071 (11) 0.0009 (11)
N15 0.0202 (14) 0.0151 (13) 0.0227 (14) −0.0019 (10) 0.0101 (11) 0.0007 (10)
C20 0.0254 (18) 0.0208 (17) 0.0228 (16) 0.0017 (13) 0.0125 (14) 0.0017 (13)
C21 0.0312 (19) 0.0238 (18) 0.0287 (18) −0.0015 (14) 0.0171 (15) 0.0044 (14)
C22 0.0242 (17) 0.0164 (16) 0.0278 (17) −0.0034 (13) 0.0134 (14) 0.0024 (13)
C23 0.0230 (16) 0.0135 (15) 0.0219 (16) 0.0000 (12) 0.0109 (13) 0.0009 (12)
O1S 0.0299 (15) 0.0500 (19) 0.0543 (19) −0.0059 (13) 0.0164 (13) −0.0060 (15)
C1S 0.049 (3) 0.067 (3) 0.061 (3) 0.001 (2) 0.031 (2) 0.005 (3)

Geometric parameters (Å, °)

Ni1—N8 2.046 (3) Ni2—N14i 2.077 (3)
Ni1—N7 2.058 (3) Ni2—N14 2.077 (3)
Ni1—N9 2.070 (3) Ni2—N12i 2.081 (3)
Ni1—N1 2.080 (3) Ni2—N12 2.081 (3)
Ni1—N5 2.097 (3) Ni2—N10i 2.082 (3)
Ni1—N3 2.119 (3) Ni2—N10 2.082 (3)
C1—N6 1.444 (4) N10—C14 1.325 (4)
C1—N4 1.447 (4) N10—N11 1.355 (4)
C1—N2 1.450 (4) N11—C16 1.342 (4)
C1—H1 1.0000 N11—C23i 1.449 (4)
N1—C2 1.317 (4) C14—C15 1.396 (5)
N1—N2 1.358 (4) C14—H14 0.9500
N2—C4 1.352 (4) C15—C16 1.365 (5)
C2—C3 1.402 (5) C15—H15 0.9500
C2—H2 0.9500 C16—H16 0.9500
C3—C4 1.369 (5) N12—C19 1.327 (4)
C3—H3 0.9500 N12—N13 1.362 (4)
C4—H4 0.9500 N13—C17 1.349 (4)
N3—C5 1.322 (5) N13—C23i 1.447 (4)
N3—N4 1.364 (4) C17—C18 1.369 (5)
N4—C7 1.355 (5) C17—H17 0.9500
C5—C6 1.405 (5) C18—C19 1.390 (5)
C5—H5 0.9500 C18—H18 0.9500
C6—C7 1.365 (6) C19—H19 0.9500
C6—H6 0.9500 N14—C20 1.326 (4)
C7—H7 0.9500 N14—N15 1.367 (4)
N5—C8 1.328 (5) N15—C22 1.358 (4)
N5—N6 1.355 (4) N15—C23 1.441 (4)
N6—C10 1.359 (4) C20—C21 1.389 (5)
C8—C9 1.394 (5) C20—H20 0.9500
C8—H8 0.9500 C21—C22 1.364 (5)
C9—C10 1.369 (5) C21—H21 0.9500
C9—H9 0.9500 C22—H22 0.9500
C10—H10 0.9500 C23—N13i 1.447 (4)
N7—C11 1.160 (5) C23—N11i 1.449 (4)
C11—S1 1.627 (4) C23—H23 1.0000
N8—C12 1.160 (5) O1S—C1S 1.429 (6)
C12—S2 1.629 (4) O1S—H1S 0.8400
N9—C13 1.237 (7) C1S—H1S1 0.9800
C13—S3 1.652 (7) C1S—H1S2 0.9800
C13'—S3' 1.713 (12) C1S—H1S3 0.9800
N8—Ni1—N7 92.74 (12) N14i—Ni2—N12i 95.27 (10)
N8—Ni1—N9 92.42 (13) N14—Ni2—N12i 84.73 (10)
N7—Ni1—N9 92.02 (14) N14i—Ni2—N12 84.73 (10)
N8—Ni1—N1 93.31 (12) N14—Ni2—N12 95.27 (10)
N7—Ni1—N1 91.68 (12) N12i—Ni2—N12 179.996 (1)
N9—Ni1—N1 173.02 (12) N14i—Ni2—N10i 93.96 (10)
N8—Ni1—N5 93.02 (12) N14—Ni2—N10i 86.04 (10)
N7—Ni1—N5 173.64 (12) N12i—Ni2—N10i 85.81 (10)
N9—Ni1—N5 90.41 (13) N12—Ni2—N10i 94.19 (10)
N1—Ni1—N5 85.31 (11) N14i—Ni2—N10 86.04 (10)
N8—Ni1—N3 175.06 (12) N14—Ni2—N10 93.96 (10)
N7—Ni1—N3 89.98 (12) N12i—Ni2—N10 94.19 (10)
N9—Ni1—N3 91.61 (12) N12—Ni2—N10 85.81 (10)
N1—Ni1—N3 82.48 (11) N10i—Ni2—N10 180.00 (15)
N5—Ni1—N3 84.08 (11) C14—N10—N11 104.9 (3)
N6—C1—N4 109.7 (3) C14—N10—Ni2 137.4 (2)
N6—C1—N2 110.8 (3) N11—N10—Ni2 117.63 (19)
N4—C1—N2 109.4 (3) C16—N11—N10 112.2 (3)
N6—C1—H1 109.0 C16—N11—C23i 128.6 (3)
N4—C1—H1 109.0 N10—N11—C23i 119.3 (3)
N2—C1—H1 109.0 N10—C14—C15 110.7 (3)
C2—N1—N2 105.4 (3) N10—C14—H14 124.6
C2—N1—Ni1 135.1 (2) C15—C14—H14 124.6
N2—N1—Ni1 119.2 (2) C16—C15—C14 105.8 (3)
C4—N2—N1 111.6 (3) C16—C15—H15 127.1
C4—N2—C1 128.5 (3) C14—C15—H15 127.1
N1—N2—C1 119.6 (3) N11—C16—C15 106.4 (3)
N1—C2—C3 111.0 (3) N11—C16—H16 126.8
N1—C2—H2 124.5 C15—C16—H16 126.8
C3—C2—H2 124.5 C19—N12—N13 105.2 (3)
C4—C3—C2 105.5 (3) C19—N12—Ni2 136.8 (2)
C4—C3—H3 127.2 N13—N12—Ni2 117.43 (19)
C2—C3—H3 127.2 C17—N13—N12 111.4 (3)
N2—C4—C3 106.5 (3) C17—N13—C23i 129.2 (3)
N2—C4—H4 126.8 N12—N13—C23i 119.2 (3)
C3—C4—H4 126.8 N13—C17—C18 106.5 (3)
C5—N3—N4 105.3 (3) N13—C17—H17 126.8
C5—N3—Ni1 136.5 (2) C18—C17—H17 126.8
N4—N3—Ni1 118.1 (2) C17—C18—C19 106.0 (3)
C7—N4—N3 111.3 (3) C17—C18—H18 127.0
C7—N4—C1 128.7 (3) C19—C18—H18 127.0
N3—N4—C1 119.6 (3) N12—C19—C18 110.8 (3)
N3—C5—C6 111.0 (3) N12—C19—H19 124.6
N3—C5—H5 124.5 C18—C19—H19 124.6
C6—C5—H5 124.5 C20—N14—N15 105.2 (3)
C7—C6—C5 105.4 (3) C20—N14—Ni2 137.7 (2)
C7—C6—H6 127.3 N15—N14—Ni2 117.06 (19)
C5—C6—H6 127.3 C22—N15—N14 111.0 (3)
N4—C7—C6 107.0 (3) C22—N15—C23 129.3 (3)
N4—C7—H7 126.5 N14—N15—C23 119.7 (3)
C6—C7—H7 126.5 N14—C20—C21 111.0 (3)
C8—N5—N6 105.1 (3) N14—C20—H20 124.5
C8—N5—Ni1 136.0 (2) C21—C20—H20 124.5
N6—N5—Ni1 118.8 (2) C22—C21—C20 106.2 (3)
N5—N6—C10 111.5 (3) C22—C21—H21 126.9
N5—N6—C1 119.8 (3) C20—C21—H21 126.9
C10—N6—C1 128.5 (3) N15—C22—C21 106.6 (3)
N5—C8—C9 111.2 (3) N15—C22—H22 126.7
N5—C8—H8 124.4 C21—C22—H22 126.7
C9—C8—H8 124.4 N15—C23—N13i 110.5 (3)
C10—C9—C8 105.5 (3) N15—C23—N11i 110.8 (3)
C10—C9—H9 127.2 N13i—C23—N11i 110.3 (3)
C8—C9—H9 127.2 N15—C23—H23 108.4
N6—C10—C9 106.6 (3) N13i—C23—H23 108.4
N6—C10—H10 126.7 N11i—C23—H23 108.4
C9—C10—H10 126.7 C1S—O1S—H1S 109.5
C11—N7—Ni1 147.0 (3) O1S—C1S—H1S1 109.5
N7—C11—S1 177.7 (3) O1S—C1S—H1S2 109.5
C12—N8—Ni1 170.1 (3) H1S1—C1S—H1S2 109.5
N8—C12—S2 177.7 (3) O1S—C1S—H1S3 109.5
C13—N9—Ni1 144.9 (4) H1S1—C1S—H1S3 109.5
N9—C13—S3 178.5 (5) H1S2—C1S—H1S3 109.5
N14i—Ni2—N14 180.00 (10)
N8—Ni1—N1—C2 −54.5 (3) N8—Ni1—N7—C11 −174.3 (5)
N7—Ni1—N1—C2 38.3 (3) N9—Ni1—N7—C11 −81.8 (5)
N5—Ni1—N1—C2 −147.3 (3) N1—Ni1—N7—C11 92.3 (5)
N3—Ni1—N1—C2 128.1 (3) N3—Ni1—N7—C11 9.8 (5)
N8—Ni1—N1—N2 133.0 (2) N8—Ni1—N9—C13 −83.5 (6)
N7—Ni1—N1—N2 −134.1 (2) N7—Ni1—N9—C13 −176.4 (6)
N5—Ni1—N1—N2 40.2 (2) N5—Ni1—N9—C13 9.5 (6)
N3—Ni1—N1—N2 −44.4 (2) N3—Ni1—N9—C13 93.6 (6)
C2—N1—N2—C4 −0.2 (4) N14i—Ni2—N10—C14 −135.9 (3)
Ni1—N1—N2—C4 174.3 (2) N14—Ni2—N10—C14 44.1 (3)
C2—N1—N2—C1 −173.8 (3) N12i—Ni2—N10—C14 −40.9 (3)
Ni1—N1—N2—C1 0.7 (4) N12—Ni2—N10—C14 139.1 (3)
N6—C1—N2—C4 127.4 (3) N14i—Ni2—N10—N11 41.9 (2)
N4—C1—N2—C4 −111.5 (4) N14—Ni2—N10—N11 −138.1 (2)
N6—C1—N2—N1 −60.1 (4) N12i—Ni2—N10—N11 136.9 (2)
N4—C1—N2—N1 61.0 (4) N12—Ni2—N10—N11 −43.1 (2)
N2—N1—C2—C3 −0.3 (4) C14—N10—N11—C16 0.3 (3)
Ni1—N1—C2—C3 −173.5 (2) Ni2—N10—N11—C16 −178.1 (2)
N1—C2—C3—C4 0.6 (4) C14—N10—N11—C23i 179.5 (3)
N1—N2—C4—C3 0.5 (4) Ni2—N10—N11—C23i 1.0 (3)
C1—N2—C4—C3 173.5 (3) N11—N10—C14—C15 −0.2 (4)
C2—C3—C4—N2 −0.7 (4) Ni2—N10—C14—C15 177.8 (2)
N7—Ni1—N3—C5 −38.7 (3) N10—C14—C15—C16 0.0 (4)
N9—Ni1—N3—C5 53.3 (4) N10—N11—C16—C15 −0.3 (4)
N1—Ni1—N3—C5 −130.4 (3) C23i—N11—C16—C15 −179.4 (3)
N5—Ni1—N3—C5 143.5 (3) C14—C15—C16—N11 0.1 (4)
N7—Ni1—N3—N4 137.9 (2) N14i—Ni2—N12—C19 144.3 (4)
N9—Ni1—N3—N4 −130.0 (2) N14—Ni2—N12—C19 −35.7 (4)
N1—Ni1—N3—N4 46.2 (2) N10i—Ni2—N12—C19 50.7 (4)
N5—Ni1—N3—N4 −39.8 (2) N10—Ni2—N12—C19 −129.3 (4)
C5—N3—N4—C7 0.0 (4) N14i—Ni2—N12—N13 −45.7 (2)
Ni1—N3—N4—C7 −177.6 (2) N14—Ni2—N12—N13 134.3 (2)
C5—N3—N4—C1 173.4 (3) N10i—Ni2—N12—N13 −139.3 (2)
Ni1—N3—N4—C1 −4.3 (4) N10—Ni2—N12—N13 40.7 (2)
N6—C1—N4—C7 −124.3 (4) C19—N12—N13—C17 0.7 (4)
N2—C1—N4—C7 114.0 (4) Ni2—N12—N13—C17 −172.2 (2)
N6—C1—N4—N3 63.7 (4) C19—N12—N13—C23i 176.2 (3)
N2—C1—N4—N3 −58.1 (4) Ni2—N12—N13—C23i 3.3 (3)
N4—N3—C5—C6 0.5 (4) N12—N13—C17—C18 −1.0 (4)
Ni1—N3—C5—C6 177.4 (3) C23i—N13—C17—C18 −176.0 (3)
N3—C5—C6—C7 −0.8 (4) N13—C17—C18—C19 0.9 (4)
N3—N4—C7—C6 −0.5 (4) N13—N12—C19—C18 −0.1 (4)
C1—N4—C7—C6 −173.1 (3) Ni2—N12—C19—C18 170.7 (3)
C5—C6—C7—N4 0.8 (4) C17—C18—C19—N12 −0.5 (4)
N8—Ni1—N5—C8 50.3 (4) N12i—Ni2—N14—C20 138.3 (3)
N9—Ni1—N5—C8 −42.1 (4) N12—Ni2—N14—C20 −41.7 (3)
N1—Ni1—N5—C8 143.4 (4) N10i—Ni2—N14—C20 −135.6 (3)
N3—Ni1—N5—C8 −133.7 (4) N10—Ni2—N14—C20 44.4 (3)
N8—Ni1—N5—N6 −132.6 (3) N12i—Ni2—N14—N15 −43.9 (2)
N9—Ni1—N5—N6 135.0 (3) N12—Ni2—N14—N15 136.1 (2)
N1—Ni1—N5—N6 −39.5 (2) N10i—Ni2—N14—N15 42.2 (2)
N3—Ni1—N5—N6 43.4 (2) N10—Ni2—N14—N15 −137.8 (2)
C8—N5—N6—C10 0.3 (4) C20—N14—N15—C22 0.7 (3)
Ni1—N5—N6—C10 −177.6 (2) Ni2—N14—N15—C22 −177.7 (2)
C8—N5—N6—C1 175.6 (3) C20—N14—N15—C23 178.6 (3)
Ni1—N5—N6—C1 −2.3 (4) Ni2—N14—N15—C23 0.2 (3)
N4—C1—N6—N5 −59.9 (4) N15—N14—C20—C21 −0.3 (4)
N2—C1—N6—N5 60.9 (4) Ni2—N14—C20—C21 177.6 (3)
N4—C1—N6—C10 114.5 (4) N14—C20—C21—C22 −0.2 (4)
N2—C1—N6—C10 −124.6 (4) N14—N15—C22—C21 −0.8 (4)
N6—N5—C8—C9 −0.1 (4) C23—N15—C22—C21 −178.5 (3)
Ni1—N5—C8—C9 177.3 (3) C20—C21—C22—N15 0.6 (4)
N5—C8—C9—C10 −0.1 (4) C22—N15—C23—N13i −121.3 (3)
N5—N6—C10—C9 −0.4 (4) N14—N15—C23—N13i 61.3 (4)
C1—N6—C10—C9 −175.1 (3) C22—N15—C23—N11i 116.3 (4)
C8—C9—C10—N6 0.3 (4) N14—N15—C23—N11i −61.2 (4)

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1S—H1S···S3ii 0.84 2.43 3.267 (4) 175.
O1S—H1S···S3'ii 0.84 2.88 3.459 (6) 128.
C23—H23···O1S 1.00 2.15 3.118 (4) 162.

Symmetry codes: (ii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5255).

References

  1. Astley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509–515.
  2. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Kitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277—1291.
  4. Looney, A. & Parkin, G. (1994). Inorg. Chem. 33, 1234–1237.
  5. Looney, A., Parkin, G., Alsfasser, R., Ruf, M. & Vahrenkamp, H. (1992). Angew. Chem. Int. Ed. 31, 92–93.
  6. Lyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530. [DOI] [PMC free article] [PubMed]
  7. Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Trofimenko, S., Calabrese, J. C., Kochi, J. K., Wolowiec, S., Hulsbergen, F. B. & Reedijk, J. (1992). Inorg. Chem. 31, 3943–3950.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811045144/ng5255sup1.cif

e-67-m1656-sup1.cif (39.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045144/ng5255Isup2.hkl

e-67-m1656-Isup2.hkl (274.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES