Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 5;67(Pt 12):m1662. doi: 10.1107/S1600536811043789

cis-Dichloridobis[diphen­yl(4-vinyl­phenyl)phosphane-κP]platinum(II)

Hezron Ogutu a, Reinout Meijboom a,*
PMCID: PMC3238596  PMID: 22199487

Abstract

The title compound, [PtCl2(C20H17P)2], forms a monomeric cis-square-planar geometry. The Pt—P bond lengths are 2.2489 (9) and 2.2627 (9) Å, whereas the Pt—Cl bond lengths are 2.3566 (9) and 2.3336 (9) Å.

Related literature

For a review of related compounds, see: Spessard & Miessler (1996). For the structure of trans-dichloridobis[diphen­yl(4-vinyl­phen­yl)phos­phane]palladium(II), see: Meijboom (2011). For the synthesis of the starting materials, see: Drew & Doyle (1990).graphic file with name e-67-m1662-scheme1.jpg

Experimental

Crystal data

  • [PtCl2(C20H17P)2]

  • M r = 842.6

  • Triclinic, Inline graphic

  • a = 10.0670 (5) Å

  • b = 12.7080 (7) Å

  • c = 14.4200 (7) Å

  • α = 100.179 (3)°

  • β = 97.519 (3)°

  • γ = 108.465 (3)°

  • V = 1687.42 (15) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 10.34 mm−1

  • T = 173 K

  • 0.09 × 0.05 × 0.05 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker; 2004) T min = 0.565, T max = 0.596

  • 33523 measured reflections

  • 5650 independent reflections

  • 5076 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.065

  • S = 1.08

  • 5650 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043789/kp2359sup1.cif

e-67-m1662-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043789/kp2359Isup2.hkl

e-67-m1662-Isup2.hkl (271KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg, TESP and SASOL is gratefully acknowledged. Mr S. Enus is acknowledged for the synthesis of this compound.

supplementary crystallographic information

Comment

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans/cis-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = group 15 donor ligand), the crystals of the title compound, were obtained.

[PtCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PtCl2(COD)]. The title compound, cis-[PtCl2{P(4—H2C=CHC6H4) Ph2}2], crystallizes in the triclinic spacegroup P1, with the Pt atom on a center of symmetry and each pair of equivalent ligands in a cis orientation. The geometry is a slightly distorted square planar and the Pt atom is slightly elevated out of the coordinating atom plane. The two P atoms are closer to each other but away from the two chloride atoms with angles of P1—Pt—P2 = 96.1 (4)° and Cl1—Pt—Cl2 = 87.7 (4)° whereas the P1—Pt—Cl1 is = 175.1 (4)° and that of P1—Pt—Cl2 being 89.6 (4)°

The title compound compares well with other closely related PtII complexes from the literature containing two chloro and two tertiary phosphine ligands in a cis geometry. The title compound, containing Pt—Cl bond lengths of 2.3566 (9) and 2.3336 (9) Å and Pt—P bond distances of 2.2489 (9) and 2.2627 (9) Å, fits well into the typical range for complexes of this kind. Notably the title compound did not crystallise as a solvated complex; these type of PtII complexes have a tendency to crystallise as solvates (Meijboom & Omondi, 2011).

Large thermal vibrations on the periphery of the molecule results in a badly defined C═C bond length. Disordered modelling resulted in an unstable refinement.

Experimental

Diphenylphosphinostyrene (0.05 g, 0.35 mmol) was dissolved in acetone (5 ml). A solution of [Pt(COD)Cl2] (0.05 g, 0.17 mmol) in acetone (5 ml) was added to the phosphine solution. The mixture was stirred for 5 min, after which the solution was left to crystallise. Yellow crystals of the title compound were obtained.

Refinement

The aromatic H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 50% probability displacement ellipsoids. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Some labels have been omitted for clarity, all rings have been numbered in the same, systematic manner. H atoms are depicted by arbitrary size spheres. Hashed atoms are generated by symmetry (-x, -y, 1 - z).

Crystal data

[PtCl2(C20H17P)2] Z = 2
Mr = 842.6 F(000) = 832
Triclinic, P1 Dx = 1.658 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 10.0670 (5) Å Cell parameters from 9915 reflections
b = 12.7080 (7) Å θ = 3.2–65.5°
c = 14.4200 (7) Å µ = 10.34 mm1
α = 100.179 (3)° T = 173 K
β = 97.519 (3)° Rectagular, colourless
γ = 108.465 (3)° 0.09 × 0.05 × 0.05 mm
V = 1687.42 (15) Å3

Data collection

Bruker APEXII CCD diffractometer 5076 reflections with I > 2σ(I)
graphite Rint = 0.066
φ and ω scans θmax = 66.0°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker; 2004) h = −11→9
Tmin = 0.565, Tmax = 0.596 k = −14→15
33523 measured reflections l = −16→16
5650 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0347P)2] where P = (Fo2 + 2Fc2)/3
5650 reflections (Δ/σ)max = 0.001
406 parameters Δρmax = 1.20 e Å3
0 restraints Δρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.479071 (15) 0.400360 (13) 0.732175 (11) 0.01954 (7)
Cl2 0.42103 (10) 0.54124 (8) 0.82770 (7) 0.0267 (2)
P1 0.70052 (10) 0.46884 (8) 0.82343 (7) 0.0208 (2)
Cl1 0.25050 (9) 0.34413 (8) 0.63416 (7) 0.0264 (2)
P2 0.50511 (10) 0.24668 (8) 0.64094 (7) 0.0206 (2)
C20 0.7955 (4) 0.5146 (3) 0.6588 (3) 0.0260 (9)
H20 0.6989 0.4949 0.633 0.031*
C19 0.8965 (4) 0.5507 (3) 0.6033 (3) 0.0299 (10)
H19 0.8677 0.558 0.5415 0.036*
C8 0.6325 (5) 0.0769 (4) 1.1108 (4) 0.0475 (13)
H8A 0.5405 0.0761 1.0908 0.057*
H8B 0.6483 0.0306 1.151 0.057*
C26 0.2685 (4) 0.0511 (3) 0.5411 (3) 0.0249 (9)
H26 0.3027 0.0614 0.4853 0.03*
C38 0.5641 (4) 0.2698 (4) 0.3332 (3) 0.0308 (10)
H38 0.5772 0.2752 0.2714 0.037*
C5 0.8494 (4) 0.2706 (3) 0.9791 (3) 0.0290 (9)
H5 0.932 0.2536 0.9934 0.035*
C1 0.7243 (4) 0.3699 (3) 0.8967 (3) 0.0232 (9)
C3 0.6105 (4) 0.2494 (3) 0.9965 (3) 0.0285 (9)
H3 0.5316 0.219 1.0231 0.034*
C2 0.6046 (4) 0.3212 (3) 0.9359 (3) 0.0270 (9)
H2 0.5216 0.3375 0.9209 0.032*
C31 0.7325 (5) 0.0723 (4) 0.7643 (3) 0.0349 (10)
H31 0.7139 0.0134 0.7963 0.042*
C29 0.6489 (4) 0.1963 (3) 0.6840 (3) 0.0213 (8)
C9 0.7452 (4) 0.6041 (3) 0.9114 (3) 0.0232 (9)
C16 0.9833 (4) 0.5385 (3) 0.7908 (3) 0.0300 (10)
H16 1.0135 0.5378 0.8544 0.036*
C21 0.3435 (4) 0.1247 (3) 0.6294 (3) 0.0212 (8)
C4 0.7321 (4) 0.2213 (4) 1.0186 (3) 0.0292 (9)
C18 1.0386 (5) 0.5756 (4) 0.6399 (3) 0.0357 (11)
H18 1.1058 0.5962 0.6017 0.043*
C11 0.7848 (4) 0.7147 (4) 1.0721 (3) 0.0321 (10)
H11 0.7909 0.7191 1.1376 0.039*
C35 0.5259 (4) 0.2551 (3) 0.5190 (3) 0.0232 (8)
C40 0.4941 (4) 0.3385 (3) 0.4785 (3) 0.0241 (9)
H40 0.4598 0.3895 0.5135 0.029*
C6 0.8463 (4) 0.3438 (3) 0.9193 (3) 0.0264 (9)
H6 0.9263 0.3756 0.8943 0.032*
C25 0.1439 (4) −0.0369 (3) 0.5366 (3) 0.0255 (9)
H25 0.0948 −0.085 0.4772 0.031*
C17 1.0824 (4) 0.5701 (4) 0.7338 (3) 0.0356 (11)
H17 1.179 0.5877 0.7584 0.043*
C15 0.8377 (4) 0.5078 (3) 0.7529 (3) 0.0244 (9)
C24 0.0888 (4) −0.0562 (3) 0.6182 (3) 0.0258 (9)
C34 0.7866 (4) 0.2447 (3) 0.6668 (3) 0.0252 (9)
H34 0.8051 0.302 0.6331 0.03*
C23 0.1657 (4) 0.0167 (3) 0.7063 (3) 0.0246 (9)
H23 0.1329 0.0048 0.7623 0.029*
C33 0.8950 (4) 0.2073 (4) 0.6999 (3) 0.0299 (10)
H33 0.9866 0.2405 0.6893 0.036*
C13 0.7992 (5) 0.8069 (4) 0.9414 (3) 0.0368 (11)
H13 0.8147 0.873 0.9187 0.044*
C39 0.5136 (4) 0.3451 (4) 0.3863 (3) 0.0302 (10)
H39 0.4926 0.4009 0.3597 0.036*
C30 0.6241 (4) 0.1105 (3) 0.7333 (3) 0.0261 (9)
H30 0.5335 0.078 0.7457 0.031*
C32 0.8679 (4) 0.1212 (4) 0.7482 (3) 0.0317 (10)
H32 0.9408 0.096 0.77 0.038*
C7 0.7408 (5) 0.1439 (4) 1.0819 (3) 0.0397 (11)
H7 0.8309 0.1419 1.1037 0.048*
C14 0.7678 (4) 0.7031 (4) 0.8781 (3) 0.0315 (10)
H14 0.7618 0.6996 0.8127 0.038*
C37 0.5949 (4) 0.1867 (4) 0.3722 (3) 0.0316 (10)
H37 0.628 0.1355 0.3364 0.038*
C22 0.2897 (4) 0.1063 (3) 0.7116 (3) 0.0232 (8)
H22 0.3381 0.155 0.771 0.028*
C10 0.7534 (4) 0.6105 (4) 1.0099 (3) 0.0277 (9)
H10 0.7377 0.5448 1.0333 0.033*
C28 −0.1179 (5) −0.1685 (4) 0.6776 (4) 0.0447 (12)
H28A −0.0816 −0.1236 0.7397 0.054*
H28B −0.2045 −0.2289 0.664 0.054*
C12 0.8073 (4) 0.8125 (4) 1.0382 (3) 0.0343 (10)
H12 0.8281 0.8823 1.0809 0.041*
C36 0.5768 (4) 0.1795 (3) 0.4645 (3) 0.0273 (9)
H36 0.5987 0.1238 0.4907 0.033*
C27 −0.0474 (4) −0.1469 (4) 0.6092 (3) 0.0343 (10)
H27 −0.0884 −0.1944 0.5483 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.01963 (9) 0.02256 (10) 0.01699 (10) 0.00948 (7) 0.00360 (7) 0.00210 (7)
Cl2 0.0297 (5) 0.0311 (5) 0.0222 (5) 0.0169 (4) 0.0065 (4) 0.0010 (4)
P1 0.0201 (4) 0.0247 (5) 0.0165 (5) 0.0091 (4) 0.0020 (4) 0.0015 (4)
Cl1 0.0208 (4) 0.0294 (5) 0.0276 (5) 0.0102 (4) 0.0007 (4) 0.0031 (4)
P2 0.0225 (5) 0.0211 (5) 0.0181 (5) 0.0093 (4) 0.0037 (4) 0.0011 (4)
C20 0.0250 (19) 0.023 (2) 0.027 (2) 0.0070 (17) 0.0048 (18) 0.0009 (18)
C19 0.036 (2) 0.026 (2) 0.025 (2) 0.0087 (19) 0.0090 (19) 0.0021 (19)
C8 0.050 (3) 0.052 (3) 0.050 (3) 0.021 (2) 0.010 (3) 0.029 (3)
C26 0.027 (2) 0.028 (2) 0.022 (2) 0.0146 (18) 0.0067 (18) 0.0024 (18)
C38 0.034 (2) 0.039 (3) 0.016 (2) 0.008 (2) 0.0080 (18) 0.006 (2)
C5 0.029 (2) 0.033 (2) 0.025 (2) 0.0157 (19) −0.0003 (18) 0.003 (2)
C1 0.026 (2) 0.024 (2) 0.016 (2) 0.0093 (17) 0.0018 (16) −0.0026 (17)
C3 0.032 (2) 0.032 (2) 0.021 (2) 0.0113 (19) 0.0079 (18) 0.0022 (19)
C2 0.025 (2) 0.030 (2) 0.024 (2) 0.0123 (18) 0.0006 (17) 0.0016 (19)
C31 0.040 (2) 0.027 (2) 0.036 (3) 0.014 (2) −0.001 (2) 0.006 (2)
C29 0.0272 (19) 0.018 (2) 0.016 (2) 0.0106 (16) 0.0004 (16) −0.0040 (17)
C9 0.0195 (18) 0.029 (2) 0.018 (2) 0.0095 (16) −0.0017 (16) −0.0015 (18)
C16 0.027 (2) 0.032 (2) 0.028 (2) 0.0097 (18) 0.0002 (18) 0.003 (2)
C21 0.0203 (18) 0.023 (2) 0.022 (2) 0.0113 (16) 0.0028 (17) 0.0042 (18)
C4 0.036 (2) 0.029 (2) 0.022 (2) 0.0126 (19) 0.0046 (19) 0.0049 (19)
C18 0.033 (2) 0.034 (3) 0.040 (3) 0.009 (2) 0.019 (2) 0.005 (2)
C11 0.027 (2) 0.043 (3) 0.024 (2) 0.0144 (19) 0.0074 (18) −0.002 (2)
C35 0.0212 (18) 0.026 (2) 0.021 (2) 0.0077 (16) 0.0035 (16) 0.0033 (18)
C40 0.0248 (19) 0.022 (2) 0.023 (2) 0.0076 (17) 0.0057 (17) −0.0002 (18)
C6 0.025 (2) 0.029 (2) 0.022 (2) 0.0092 (17) 0.0030 (17) −0.0005 (19)
C25 0.030 (2) 0.024 (2) 0.020 (2) 0.0118 (18) 0.0016 (17) −0.0018 (18)
C17 0.024 (2) 0.038 (3) 0.046 (3) 0.0110 (19) 0.010 (2) 0.009 (2)
C15 0.027 (2) 0.023 (2) 0.023 (2) 0.0104 (17) 0.0060 (17) 0.0011 (18)
C24 0.030 (2) 0.021 (2) 0.028 (2) 0.0126 (17) 0.0046 (18) 0.0049 (19)
C34 0.029 (2) 0.026 (2) 0.020 (2) 0.0124 (17) 0.0042 (17) −0.0017 (18)
C23 0.027 (2) 0.026 (2) 0.022 (2) 0.0110 (17) 0.0058 (17) 0.0049 (18)
C33 0.0217 (19) 0.037 (3) 0.025 (2) 0.0105 (18) 0.0030 (18) −0.008 (2)
C13 0.044 (3) 0.028 (2) 0.037 (3) 0.015 (2) 0.004 (2) 0.002 (2)
C39 0.032 (2) 0.030 (2) 0.031 (2) 0.0119 (19) 0.0059 (19) 0.009 (2)
C30 0.025 (2) 0.026 (2) 0.025 (2) 0.0103 (17) 0.0037 (18) 0.0012 (19)
C32 0.029 (2) 0.032 (2) 0.033 (2) 0.0168 (19) −0.0010 (19) −0.002 (2)
C7 0.039 (2) 0.044 (3) 0.038 (3) 0.017 (2) 0.003 (2) 0.013 (2)
C14 0.037 (2) 0.032 (2) 0.023 (2) 0.0128 (19) 0.0046 (19) 0.002 (2)
C37 0.033 (2) 0.036 (3) 0.024 (2) 0.0118 (19) 0.0082 (19) 0.001 (2)
C22 0.029 (2) 0.023 (2) 0.017 (2) 0.0108 (17) 0.0021 (17) 0.0009 (17)
C10 0.0238 (19) 0.032 (2) 0.025 (2) 0.0108 (18) 0.0047 (18) 0.0007 (19)
C28 0.043 (3) 0.037 (3) 0.043 (3) −0.001 (2) 0.009 (2) 0.008 (2)
C12 0.033 (2) 0.033 (3) 0.029 (3) 0.0117 (19) 0.003 (2) −0.010 (2)
C36 0.027 (2) 0.029 (2) 0.025 (2) 0.0104 (18) 0.0046 (18) 0.0011 (19)
C27 0.035 (2) 0.029 (2) 0.029 (2) 0.0055 (19) −0.001 (2) 0.001 (2)

Geometric parameters (Å, °)

Pt1—P1 2.2489 (9) C16—H16 0.93
Pt1—P2 2.2627 (9) C21—C22 1.392 (5)
Pt1—Cl2 2.3336 (9) C4—C7 1.470 (6)
Pt1—Cl1 2.3566 (9) C18—C17 1.389 (6)
P1—C15 1.817 (4) C18—H18 0.93
P1—C1 1.829 (4) C11—C12 1.378 (6)
P1—C9 1.832 (4) C11—C10 1.378 (6)
P2—C35 1.815 (4) C11—H11 0.93
P2—C21 1.822 (4) C35—C40 1.397 (6)
P2—C29 1.840 (4) C35—C36 1.398 (5)
C20—C19 1.390 (5) C40—C39 1.383 (5)
C20—C15 1.394 (6) C40—H40 0.93
C20—H20 0.93 C6—H6 0.93
C19—C18 1.372 (6) C25—C24 1.392 (5)
C19—H19 0.93 C25—H25 0.93
C8—C7 1.320 (6) C17—H17 0.93
C8—H8A 0.93 C24—C23 1.394 (6)
C8—H8B 0.93 C24—C27 1.457 (6)
C26—C25 1.376 (5) C34—C33 1.385 (6)
C26—C21 1.396 (5) C34—H34 0.93
C26—H26 0.93 C23—C22 1.380 (5)
C38—C37 1.378 (6) C23—H23 0.93
C38—C39 1.382 (6) C33—C32 1.373 (6)
C38—H38 0.93 C33—H33 0.93
C5—C6 1.380 (6) C13—C12 1.375 (6)
C5—C4 1.394 (6) C13—C14 1.382 (6)
C5—H5 0.93 C13—H13 0.93
C1—C6 1.385 (5) C39—H39 0.93
C1—C2 1.409 (5) C30—H30 0.93
C3—C2 1.380 (6) C32—H32 0.93
C3—C4 1.394 (6) C7—H7 0.93
C3—H3 0.93 C14—H14 0.93
C2—H2 0.93 C37—C36 1.381 (6)
C31—C32 1.376 (6) C37—H37 0.93
C31—C30 1.382 (6) C22—H22 0.93
C31—H31 0.93 C10—H10 0.93
C29—C30 1.380 (5) C28—C27 1.307 (6)
C29—C34 1.402 (5) C28—H28A 0.93
C9—C14 1.388 (6) C28—H28B 0.93
C9—C10 1.399 (5) C12—H12 0.93
C16—C17 1.382 (6) C36—H36 0.93
C16—C15 1.397 (5) C27—H27 0.93
P1—Pt1—P2 96.14 (3) C40—C35—C36 118.7 (4)
P1—Pt1—Cl2 89.61 (3) C40—C35—P2 120.7 (3)
P2—Pt1—Cl2 171.93 (3) C36—C35—P2 120.5 (3)
P1—Pt1—Cl1 175.16 (3) C39—C40—C35 119.9 (4)
P2—Pt1—Cl1 86.92 (3) C39—C40—H40 120.1
Cl2—Pt1—Cl1 87.72 (3) C35—C40—H40 120.1
C15—P1—C1 113.60 (18) C5—C6—C1 120.1 (4)
C15—P1—C9 100.60 (18) C5—C6—H6 119.9
C1—P1—C9 103.91 (18) C1—C6—H6 119.9
C15—P1—Pt1 112.17 (13) C26—C25—C24 122.1 (4)
C1—P1—Pt1 110.37 (13) C26—C25—H25 118.9
C9—P1—Pt1 115.71 (12) C24—C25—H25 118.9
C35—P2—C21 105.89 (17) C16—C17—C18 120.4 (4)
C35—P2—C29 103.14 (17) C16—C17—H17 119.8
C21—P2—C29 103.27 (17) C18—C17—H17 119.8
C35—P2—Pt1 115.90 (13) C20—C15—C16 118.9 (4)
C21—P2—Pt1 107.66 (12) C20—C15—P1 118.0 (3)
C29—P2—Pt1 119.57 (12) C16—C15—P1 122.9 (3)
C19—C20—C15 120.6 (4) C25—C24—C23 117.5 (4)
C19—C20—H20 119.7 C25—C24—C27 120.0 (4)
C15—C20—H20 119.7 C23—C24—C27 122.4 (4)
C18—C19—C20 119.8 (4) C33—C34—C29 120.1 (4)
C18—C19—H19 120.1 C33—C34—H34 119.9
C20—C19—H19 120.1 C29—C34—H34 119.9
C7—C8—H8A 120 C22—C23—C24 121.0 (4)
C7—C8—H8B 120 C22—C23—H23 119.5
H8A—C8—H8B 120 C24—C23—H23 119.5
C25—C26—C21 119.9 (4) C32—C33—C34 120.3 (4)
C25—C26—H26 120.1 C32—C33—H33 119.8
C21—C26—H26 120.1 C34—C33—H33 119.8
C37—C38—C39 119.9 (4) C12—C13—C14 119.9 (4)
C37—C38—H38 120.1 C12—C13—H13 120
C39—C38—H38 120.1 C14—C13—H13 120
C6—C5—C4 121.8 (4) C38—C39—C40 120.8 (4)
C6—C5—H5 119.1 C38—C39—H39 119.6
C4—C5—H5 119.1 C40—C39—H39 119.6
C6—C1—C2 119.0 (4) C29—C30—C31 120.7 (4)
C6—C1—P1 127.0 (3) C29—C30—H30 119.7
C2—C1—P1 113.9 (3) C31—C30—H30 119.7
C2—C3—C4 121.4 (4) C33—C32—C31 119.9 (4)
C2—C3—H3 119.3 C33—C32—H32 120.1
C4—C3—H3 119.3 C31—C32—H32 120.1
C3—C2—C1 120.0 (4) C8—C7—C4 126.0 (4)
C3—C2—H2 120 C8—C7—H7 117
C1—C2—H2 120 C4—C7—H7 117
C32—C31—C30 120.3 (4) C13—C14—C9 120.5 (4)
C32—C31—H31 119.8 C13—C14—H14 119.7
C30—C31—H31 119.8 C9—C14—H14 119.7
C30—C29—C34 118.7 (4) C38—C37—C36 120.0 (4)
C30—C29—P2 121.1 (3) C38—C37—H37 120
C34—C29—P2 120.2 (3) C36—C37—H37 120
C14—C9—C10 119.2 (4) C23—C22—C21 120.9 (4)
C14—C9—P1 118.4 (3) C23—C22—H22 119.5
C10—C9—P1 122.4 (3) C21—C22—H22 119.5
C17—C16—C15 120.0 (4) C11—C10—C9 119.6 (4)
C17—C16—H16 120 C11—C10—H10 120.2
C15—C16—H16 120 C9—C10—H10 120.2
C22—C21—C26 118.6 (3) C27—C28—H28A 120
C22—C21—P2 118.7 (3) C27—C28—H28B 120
C26—C21—P2 122.7 (3) H28A—C28—H28B 120
C5—C4—C3 117.7 (4) C13—C12—C11 120.1 (4)
C5—C4—C7 119.8 (4) C13—C12—H12 120
C3—C4—C7 122.6 (4) C11—C12—H12 120
C19—C18—C17 120.2 (4) C37—C36—C35 120.8 (4)
C19—C18—H18 119.9 C37—C36—H36 119.6
C17—C18—H18 119.9 C35—C36—H36 119.6
C12—C11—C10 120.8 (4) C28—C27—C24 126.9 (4)
C12—C11—H11 119.6 C28—C27—H27 116.6
C10—C11—H11 119.6 C24—C27—H27 116.6
P2—Pt1—P1—C15 62.46 (14) Pt1—P2—C35—C36 164.4 (3)
Cl2—Pt1—P1—C15 −123.21 (14) C36—C35—C40—C39 −0.2 (6)
P2—Pt1—P1—C1 −65.31 (13) P2—C35—C40—C39 178.6 (3)
Cl2—Pt1—P1—C1 109.02 (13) C4—C5—C6—C1 −0.3 (6)
P2—Pt1—P1—C9 177.08 (15) C2—C1—C6—C5 0.3 (6)
Cl2—Pt1—P1—C9 −8.59 (15) P1—C1—C6—C5 177.3 (3)
P1—Pt1—P2—C35 −105.47 (14) C21—C26—C25—C24 −0.3 (6)
Cl1—Pt1—P2—C35 70.77 (14) C15—C16—C17—C18 2.5 (6)
P1—Pt1—P2—C21 136.24 (13) C19—C18—C17—C16 0.6 (7)
Cl1—Pt1—P2—C21 −47.53 (13) C19—C20—C15—C16 0.4 (6)
P1—Pt1—P2—C29 19.01 (15) C19—C20—C15—P1 176.1 (3)
Cl1—Pt1—P2—C29 −164.76 (15) C17—C16—C15—C20 −3.0 (6)
C15—C20—C19—C18 2.6 (6) C17—C16—C15—P1 −178.3 (3)
C15—P1—C1—C6 15.3 (4) C1—P1—C15—C20 139.0 (3)
C9—P1—C1—C6 −93.1 (4) C9—P1—C15—C20 −110.6 (3)
Pt1—P1—C1—C6 142.2 (3) Pt1—P1—C15—C20 13.0 (3)
C15—P1—C1—C2 −167.6 (3) C1—P1—C15—C16 −45.6 (4)
C9—P1—C1—C2 84.0 (3) C9—P1—C15—C16 64.8 (4)
Pt1—P1—C1—C2 −40.7 (3) Pt1—P1—C15—C16 −171.6 (3)
C4—C3—C2—C1 −1.5 (6) C26—C25—C24—C23 −0.7 (6)
C6—C1—C2—C3 0.5 (6) C26—C25—C24—C27 176.9 (4)
P1—C1—C2—C3 −176.8 (3) C30—C29—C34—C33 −0.8 (6)
C35—P2—C29—C30 −134.8 (3) P2—C29—C34—C33 179.5 (3)
C21—P2—C29—C30 −24.7 (3) C25—C24—C23—C22 1.7 (6)
Pt1—P2—C29—C30 94.8 (3) C27—C24—C23—C22 −175.9 (4)
C35—P2—C29—C34 44.9 (3) C29—C34—C33—C32 1.2 (6)
C21—P2—C29—C34 155.0 (3) C37—C38—C39—C40 0.2 (6)
Pt1—P2—C29—C34 −85.5 (3) C35—C40—C39—C38 0.2 (6)
C15—P1—C9—C14 48.5 (3) C34—C29—C30—C31 −0.5 (6)
C1—P1—C9—C14 166.3 (3) P2—C29—C30—C31 179.2 (3)
Pt1—P1—C9—C14 −72.6 (3) C32—C31—C30—C29 1.3 (6)
C15—P1—C9—C10 −133.3 (3) C34—C33—C32—C31 −0.3 (6)
C1—P1—C9—C10 −15.5 (4) C30—C31—C32—C33 −0.9 (6)
Pt1—P1—C9—C10 105.7 (3) C5—C4—C7—C8 −167.7 (5)
C25—C26—C21—C22 0.4 (6) C3—C4—C7—C8 13.0 (7)
C25—C26—C21—P2 −177.3 (3) C12—C13—C14—C9 −0.4 (6)
C35—P2—C21—C22 −171.5 (3) C10—C9—C14—C13 0.5 (6)
C29—P2—C21—C22 80.5 (3) P1—C9—C14—C13 178.8 (3)
Pt1—P2—C21—C22 −46.9 (3) C39—C38—C37—C36 −0.6 (6)
C35—P2—C21—C26 6.2 (4) C24—C23—C22—C21 −1.6 (6)
C29—P2—C21—C26 −101.8 (3) C26—C21—C22—C23 0.6 (5)
Pt1—P2—C21—C26 130.8 (3) P2—C21—C22—C23 178.4 (3)
C6—C5—C4—C3 −0.6 (6) C12—C11—C10—C9 0.4 (6)
C6—C5—C4—C7 −179.9 (4) C14—C9—C10—C11 −0.5 (6)
C2—C3—C4—C5 1.5 (6) P1—C9—C10—C11 −178.8 (3)
C2—C3—C4—C7 −179.2 (4) C14—C13—C12—C11 0.2 (6)
C20—C19—C18—C17 −3.1 (6) C10—C11—C12—C13 −0.3 (6)
C21—P2—C35—C40 104.9 (3) C38—C37—C36—C35 0.6 (6)
C29—P2—C35—C40 −147.0 (3) C40—C35—C36—C37 −0.2 (6)
Pt1—P2—C35—C40 −14.4 (4) P2—C35—C36—C37 −179.0 (3)
C21—P2—C35—C36 −76.4 (3) C25—C24—C27—C28 −173.6 (5)
C29—P2—C35—C36 31.8 (4) C23—C24—C27—C28 3.9 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2359).

References

  1. Bruker (2004). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.
  4. Meijboom, R. (2011). Acta Cryst E67, m1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. Upper Saddle River, New Jersey: Prentice Hall.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811043789/kp2359sup1.cif

e-67-m1662-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811043789/kp2359Isup2.hkl

e-67-m1662-Isup2.hkl (271KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES