Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 5;67(Pt 12):m1683. doi: 10.1107/S1600536811045673

Poly[diaqua­bis­(μ3-1H-imidazole-4,5-dicarboxyl­ato)(μ2-sulfato)­diytterbium(III)]

Li-Cai Zhu a,*
PMCID: PMC3238610  PMID: 22199501

Abstract

In the title compound, [Yb2(C5H2N2O4)2(SO4)(H2O)2]n, the YbIII ion is eight-coordinated by four O atoms and one N atom from three imidazole-4,5-dicarboxyl­ate ligands, two O atoms from one SO4 2− anion (site symmetry 2), as well as one O atom of a water mol­ecule, giving a bicapped trigonal–prismatic coordination geometry. The metal coordination units are connected by bridging imidazole-4,5-dicarboxyl­ate and sulfate ligands, generating a heterometallic layer. The layers are stacked along the a axis via N—H⋯O, O—H⋯O, and C—H⋯O hydrogen-bonding inter­actions, generating a three-dimensional framework.

Related literature

For the application of multifunctional organic ligands containing O- and N-donors in the design of metal-organic frameworks, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).graphic file with name e-67-m1683-scheme1.jpg

Experimental

Crystal data

  • [Yb2(C5H2N2O4)2(SO4)(H2O)2]

  • M r = 786.35

  • Monoclinic, Inline graphic

  • a = 21.1089 (14) Å

  • b = 6.5584 (4) Å

  • c = 12.8766 (9) Å

  • β = 105.874 (1)°

  • V = 1714.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.05 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.126, T max = 0.191

  • 4239 measured reflections

  • 1534 independent reflections

  • 1392 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.047

  • S = 1.09

  • 1534 reflections

  • 150 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.99 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811045673/pv2472sup1.cif

e-67-m1683-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045673/pv2472Isup2.hkl

e-67-m1683-Isup2.hkl (75.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O6i 0.87 (5) 2.09 (3) 2.925 (6) 161 (5)
O1W—H2W⋯O2ii 0.82 (2) 1.94 (3) 2.693 (5) 151 (5)
O1W—H1W⋯O3iii 0.82 (6) 2.24 (4) 2.896 (5) 138 (5)
O1W—H1W⋯O4iii 0.82 (6) 2.51 (6) 3.308 (5) 167 (5)
C5—H5⋯O5iv 0.93 2.52 3.347 (6) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

In the past few years, the application of multifunctional organic ligands containing O– and N–donors to design metal-organic frameworks are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new metal-organic framework, has been determined which is presented in this artcle.

The asymmetric unite of the title compound (Fig. 1), contains a YbIII ion, an imidazole-4,5-dicarboxylate ligand, a half SO42- anion, and a coordinated water molecule. The YbIII ion is eight-coordinated by four O atoms and a N atom from three imidazole-4,5-dicarboxylate ligands, two O atoms from a SO42- anion as well as a coordinated water molecule, giving a bicapped trigonal prismatic coordination geometry. The metal coordination units are connected by bridging imidazole-4,5-dicarboxylate and sulfate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along a axis via N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions to generate the three-dimensional framework (Table 1 and Fig. 2).

Experimental

A mixture of Yb2O3 (0.099 g, 0.25 mmol), imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and H2O (7 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals suitable for X-ray analysis were obtained.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms water molecules were found from difference Fourier maps and refined isotropically with a restraint of N—H = 0.87 Å, O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(N, O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title comples showing atomic-numbering scheme and displacement ellipsoids drawn at 30% probability level. Symmetry codes: A = 1 - x, y, 1.5 - z; B = x, 1 - y, -1/2 + z; C = x, -y, -1/2 + z.

Fig. 2.

Fig. 2.

A view of the three-dimensional structure of the title compound, the hydrogen bonding interactions have been drawn as broken lines.

Crystal data

[Yb2(C5H2N2O4)2(SO4)(H2O)2] F(000) = 1456
Mr = 786.35 Dx = 3.046 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2574 reflections
a = 21.1089 (14) Å θ = 3.3–28.0°
b = 6.5584 (4) Å µ = 11.05 mm1
c = 12.8766 (9) Å T = 296 K
β = 105.874 (1)° Block, colorless
V = 1714.7 (2) Å3 0.20 × 0.18 × 0.15 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 1534 independent reflections
Radiation source: fine-focus sealed tube 1392 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scan θmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −25→22
Tmin = 0.126, Tmax = 0.191 k = −7→7
4239 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0216P)2 + 5.6648P] where P = (Fo2 + 2Fc2)/3
1534 reflections (Δ/σ)max = 0.001
150 parameters Δρmax = 0.66 e Å3
4 restraints Δρmin = −0.99 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Yb1 0.355312 (10) 0.07841 (3) 0.714967 (16) 0.01086 (9)
S1 0.5000 0.0299 (3) 0.7500 0.0182 (4)
C1 0.3390 (2) 0.0272 (7) 0.9554 (4) 0.0134 (10)
C2 0.3697 (2) 0.2318 (7) 0.9654 (4) 0.0148 (10)
C3 0.3764 (2) 0.3838 (7) 1.0402 (4) 0.0145 (10)
C4 0.3492 (2) 0.4128 (7) 1.1340 (4) 0.0128 (10)
C5 0.4168 (2) 0.4805 (8) 0.9077 (4) 0.0179 (11)
H5 0.4371 0.5603 0.8664 0.022*
N1 0.3942 (2) 0.2930 (6) 0.8817 (3) 0.0165 (9)
N2 0.4065 (2) 0.5391 (6) 1.0009 (3) 0.0183 (10)
H1 0.420 (3) 0.648 (6) 1.039 (4) 0.027*
O1 0.32418 (19) −0.0583 (5) 1.0318 (3) 0.0220 (9)
O2 0.32955 (18) −0.0546 (5) 0.8633 (3) 0.0192 (8)
O3 0.33204 (18) 0.2591 (5) 1.1767 (3) 0.0219 (8)
O4 0.34067 (19) 0.5917 (5) 1.1620 (3) 0.0219 (8)
O5 0.45816 (18) −0.0925 (5) 0.7997 (3) 0.0304 (10)
O6 0.45308 (19) 0.1572 (6) 0.6710 (3) 0.0349 (10)
O1W 0.24374 (18) 0.1038 (6) 0.6799 (3) 0.0250 (9)
H2W 0.224 (2) 0.201 (6) 0.646 (4) 0.037*
H1W 0.221 (3) 0.075 (8) 0.720 (4) 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Yb1 0.01712 (13) 0.00743 (13) 0.00944 (13) 0.00016 (8) 0.00604 (9) 0.00022 (8)
S1 0.0156 (9) 0.0145 (9) 0.0250 (10) 0.000 0.0063 (8) 0.000
C1 0.017 (2) 0.010 (2) 0.012 (3) 0.0000 (19) 0.001 (2) 0.001 (2)
C2 0.021 (2) 0.012 (3) 0.011 (2) −0.003 (2) 0.0040 (19) 0.000 (2)
C3 0.021 (3) 0.013 (2) 0.011 (2) 0.002 (2) 0.006 (2) 0.001 (2)
C4 0.017 (2) 0.010 (3) 0.010 (2) −0.0018 (19) 0.002 (2) −0.0017 (19)
C5 0.025 (3) 0.015 (3) 0.015 (3) −0.005 (2) 0.008 (2) 0.003 (2)
N1 0.024 (2) 0.012 (2) 0.016 (2) −0.0023 (17) 0.0082 (18) −0.0010 (17)
N2 0.027 (2) 0.014 (2) 0.016 (2) −0.0064 (19) 0.0084 (19) −0.0018 (18)
O1 0.042 (2) 0.0151 (19) 0.0107 (19) −0.0090 (16) 0.0095 (17) −0.0001 (15)
O2 0.033 (2) 0.0155 (19) 0.0110 (18) −0.0084 (15) 0.0090 (15) −0.0058 (15)
O3 0.037 (2) 0.0144 (19) 0.0182 (18) 0.0042 (16) 0.0134 (16) 0.0061 (16)
O4 0.039 (2) 0.0103 (19) 0.018 (2) 0.0028 (16) 0.0105 (17) −0.0009 (14)
O5 0.021 (2) 0.030 (2) 0.041 (3) 0.0019 (16) 0.0104 (18) 0.0155 (19)
O6 0.023 (2) 0.044 (2) 0.041 (3) 0.0071 (19) 0.0135 (19) 0.027 (2)
O1W 0.024 (2) 0.023 (2) 0.031 (2) 0.0066 (17) 0.0129 (18) 0.0083 (17)

Geometric parameters (Å, °)

Yb1—O4i 2.264 (3) C1—C2 1.481 (6)
Yb1—O1ii 2.272 (3) C2—C3 1.367 (7)
Yb1—O1W 2.280 (4) C2—N1 1.377 (6)
Yb1—O3ii 2.291 (3) C3—N2 1.369 (6)
Yb1—O2 2.297 (3) C3—C4 1.485 (7)
Yb1—O6 2.342 (4) C4—O3 1.249 (6)
Yb1—O5 2.421 (4) C4—O4 1.255 (5)
Yb1—N1 2.510 (4) C5—N1 1.328 (6)
Yb1—S1 2.9798 (3) C5—N2 1.334 (7)
S1—O5iii 1.464 (4) C5—H5 0.9300
S1—O5 1.464 (4) N2—H1 0.87 (5)
S1—O6iii 1.470 (4) O1—Yb1iv 2.272 (3)
S1—O6 1.470 (4) O3—Yb1iv 2.291 (3)
S1—Yb1iii 2.9798 (3) O4—Yb1v 2.264 (3)
C1—O1 1.244 (6) O1W—H2W 0.82 (2)
C1—O2 1.266 (6) O1W—H1W 0.82 (6)
O4i—Yb1—O1ii 76.46 (12) O6iii—S1—O6 110.8 (4)
O4i—Yb1—O1W 79.74 (14) O5iii—S1—Yb1 135.09 (15)
O1ii—Yb1—O1W 78.99 (15) O5—S1—Yb1 53.75 (14)
O4i—Yb1—O3ii 148.74 (13) O6iii—S1—Yb1 120.86 (16)
O1ii—Yb1—O3ii 74.75 (12) O6—S1—Yb1 50.65 (15)
O1W—Yb1—O3ii 83.05 (14) O5iii—S1—Yb1iii 53.75 (14)
O4i—Yb1—O2 124.73 (12) O5—S1—Yb1iii 135.09 (15)
O1ii—Yb1—O2 140.73 (13) O6iii—S1—Yb1iii 50.65 (15)
O1W—Yb1—O2 74.07 (14) O6—S1—Yb1iii 120.86 (16)
O3ii—Yb1—O2 74.10 (12) Yb1—S1—Yb1iii 167.75 (7)
O4i—Yb1—O6 76.89 (14) O1—C1—O2 122.7 (4)
O1ii—Yb1—O6 77.64 (14) O1—C1—C2 122.6 (4)
O1W—Yb1—O6 150.11 (14) O2—C1—C2 114.7 (4)
O3ii—Yb1—O6 108.21 (14) C3—C2—N1 110.6 (4)
O2—Yb1—O6 135.20 (13) C3—C2—C1 132.9 (5)
O4i—Yb1—O5 127.57 (13) N1—C2—C1 116.5 (4)
O1ii—Yb1—O5 114.21 (14) C2—C3—N2 104.5 (4)
O1W—Yb1—O5 150.85 (13) C2—C3—C4 132.8 (4)
O3ii—Yb1—O5 76.28 (13) N2—C3—C4 121.8 (4)
O2—Yb1—O5 80.58 (13) O3—C4—O4 123.2 (5)
O6—Yb1—O5 58.02 (13) O3—C4—C3 118.5 (4)
O4i—Yb1—N1 72.99 (13) O4—C4—C3 118.1 (4)
O1ii—Yb1—N1 148.68 (12) N1—C5—N2 111.0 (4)
O1W—Yb1—N1 101.95 (14) N1—C5—H5 124.5
O3ii—Yb1—N1 136.57 (13) N2—C5—H5 124.5
O2—Yb1—N1 66.31 (12) C5—N1—C2 105.0 (4)
O6—Yb1—N1 88.79 (15) C5—N1—Yb1 138.2 (3)
O5—Yb1—N1 80.25 (14) C2—N1—Yb1 113.6 (3)
O4i—Yb1—S1 101.39 (10) C5—N2—C3 109.0 (4)
O1ii—Yb1—S1 98.30 (10) C5—N2—H1 130 (4)
O1W—Yb1—S1 176.78 (11) C3—N2—H1 121 (4)
O3ii—Yb1—S1 94.59 (10) C1—O1—Yb1iv 141.5 (3)
O2—Yb1—S1 107.44 (9) C1—O2—Yb1 127.3 (3)
O6—Yb1—S1 29.03 (9) C4—O3—Yb1iv 143.5 (3)
O5—Yb1—S1 29.18 (9) C4—O4—Yb1v 164.1 (3)
N1—Yb1—S1 81.27 (10) S1—O5—Yb1 97.06 (18)
O5iii—S1—O5 113.5 (3) S1—O6—Yb1 100.32 (19)
O5iii—S1—O6iii 103.9 (2) Yb1—O1W—H2W 121 (4)
O5—S1—O6iii 112.4 (2) Yb1—O1W—H1W 128 (4)
O5iii—S1—O6 112.4 (2) H2W—O1W—H1W 102 (3)
O5—S1—O6 103.9 (2)

Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y, z−1/2; (iii) −x+1, y, −z+3/2; (iv) x, −y, z+1/2; (v) x, −y+1, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1···O6v 0.87 (5) 2.09 (3) 2.925 (6) 161 (5)
O1W—H2W···O2vi 0.82 (2) 1.94 (3) 2.693 (5) 151 (5)
O1W—H1W···O3vii 0.82 (6) 2.24 (4) 2.896 (5) 138 (5)
O1W—H1W···O4vii 0.82 (6) 2.51 (6) 3.308 (5) 167 (5)
C5—H5···O5viii 0.93 2.52 3.347 (6) 149.

Symmetry codes: (v) x, −y+1, z+1/2; (vi) −x+1/2, y+1/2, −z+3/2; (vii) −x+1/2, −y+1/2, −z+2; (viii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2472).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.
  3. Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702. [DOI] [PubMed]
  7. Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299–1303.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811045673/pv2472sup1.cif

e-67-m1683-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045673/pv2472Isup2.hkl

e-67-m1683-Isup2.hkl (75.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES