Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 5;67(Pt 12):m1688. doi: 10.1107/S1600536811045594

Bis(piperazine-1,4-diium) hexa­chlorido­bismuthate(III) chloride monohydrate

Yu-Hua Gao a,*, Xiao-Jia Liu a, Lei Sun a, Wen-Jun Le a
PMCID: PMC3238614  PMID: 22199505

Abstract

The crystal structure of the title compound, (C4H12N2)2[BiCl6]Cl·H2O, consists of piperazinediium cations, [BiCl6]3− anions, Cl anions and uncoordinated water mol­ecules. The BiIII cation is coordinated by six Cl anions in a slightly distorted octa­hedral geometry. The diprotonated piperazine ring adopts a chair conformation. In the crystal, extensive inter­molecular N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds occur.

Related literature

For related structures, see: Wu et al. (2005); Fu et al. (2005)graphic file with name e-67-m1688-scheme1.jpg

Experimental

Crystal data

  • (C4H12N2)2[BiCl6]Cl·H2O

  • M r = 651.46

  • Monoclinic, Inline graphic

  • a = 11.085 (3) Å

  • b = 16.642 (4) Å

  • c = 11.862 (3) Å

  • β = 98.997 (3)°

  • V = 2161.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.03 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.266, T max = 0.266

  • 12000 measured reflections

  • 4108 independent reflections

  • 3341 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.061

  • S = 1.03

  • 4108 reflections

  • 197 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811045594/xu5366sup1.cif

e-67-m1688-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045594/xu5366Isup2.hkl

e-67-m1688-Isup2.hkl (201.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H9A⋯Cl2i 0.84 (4) 2.67 (6) 3.390 (7) 144 (6)
O1—H9B⋯Cl5ii 0.85 (6) 2.39 (6) 3.201 (6) 162 (5)
N1—H1A⋯Cl4iii 0.90 2.40 3.181 (5) 145
N1—H1D⋯Cl4 0.90 2.57 3.284 (5) 137
N1—H1D⋯Cl5 0.90 2.75 3.455 (5) 136
N2—H2A⋯O1 0.90 1.82 2.705 (7) 167
N2—H2D⋯Cl7iv 0.90 2.26 3.149 (5) 169
N3—H3C⋯Cl6 0.90 2.36 3.208 (5) 158
N3—H3D⋯Cl7v 0.90 2.21 3.069 (5) 159
N4—H4C⋯Cl1vi 0.90 2.37 3.228 (5) 158
N4—H4D⋯Cl4vii 0.90 2.43 3.155 (5) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This work was supported by Jiangsu University of Science and Technology, China

supplementary crystallographic information

Comment

Recently, the crystal structure of compounds closely related to the title molecule, e.g., bis(piperazinium) bis(µ2-chloro)-octachloro-di-bismuth(iii) trihydrate (Wu et al., 2005) and bis(N-Methylpiperazinium) bis((µ2-chloro)-tetrachlorobismuthate(iii))- dihydrate (Fu et al., 2005) have been synthesized..We reported here thenew member of this family compounds.

The asymmetric unit of the title compound, 2C4H12N22+.BiCl63-.Cl-.H2O(Fig.1), consists of two piperazine cation, one [BiCl6]3-one Cl-anions and one water molecule. The Bi(III) ion exhibits a slightly distorted octahedral coordination environment. The diprotonated piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by intermolecular N—H···Cl, N—H···O and O—H···Cl hydrogen bonds into a three-dimensional network viewed along the a-axis (Fig.2).

Experimental

piperazine (10 mmol, 0.86 g) BiCl3 (6.8 mmol, 2.15 g)and 35% aqueous HCl (3 ml) were mixed and dissolved in 30 ml water by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, block crystals of the title compound were formed after fifteen days.

Refinement

Water H atoms were located in a difference Fourier map and refined with O—H distance restraint of 0.85±0.01 Å, Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.97 and N—H = 0.90 Å, and refined using a riding model with Uiso(H)=1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level

Fig. 2.

Fig. 2.

The packing viewed along the a-axis. Hydrogen bonds are drawn as dashed lines

Crystal data

(C4H12N2)2[BiCl6]Cl·H2O F(000) = 1248
Mr = 651.46 Dx = 2.002 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3341 reflections
a = 11.085 (3) Å θ = 1.9–26°
b = 16.642 (4) Å µ = 9.03 mm1
c = 11.862 (3) Å T = 296 K
β = 98.997 (3)° Block, colorless
V = 2161.3 (10) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 4108 independent reflections
Radiation source: fine-focus sealed tube 3341 reflections with I > 2σ(I)
graphite Rint = 0.041
Detector resolution: 13.6612 pixels mm-1 θmax = 26.0°, θmin = 1.9°
ω scans h = −13→13
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −17→20
Tmin = 0.266, Tmax = 0.266 l = −13→14
12000 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0226P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.002
4108 reflections Δρmax = 0.66 e Å3
197 parameters Δρmin = −0.54 e Å3
3 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00472 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Bi1 0.740018 (15) 0.092026 (11) 0.807034 (15) 0.02849 (9)
Cl2 0.79302 (15) 0.11877 (12) 0.60299 (13) 0.0670 (5)
C6 0.9370 (5) 0.3286 (3) 0.6818 (4) 0.0390 (13)
H6A 0.8528 0.3112 0.6758 0.047*
H6B 0.9707 0.3059 0.6181 0.047*
Cl3 0.97693 (11) 0.09950 (7) 0.90506 (12) 0.0394 (3)
Cl4 0.68343 (11) 0.05928 (8) 1.02452 (11) 0.0376 (3)
Cl6 0.70154 (12) 0.24996 (8) 0.83713 (12) 0.0442 (3)
Cl5 0.49653 (12) 0.07440 (9) 0.74387 (13) 0.0491 (4)
C4 0.4452 (5) 0.1743 (3) 1.0987 (5) 0.0476 (15)
H4A 0.5070 0.1454 1.1500 0.057*
H4B 0.3783 0.1868 1.1397 0.057*
C3 0.4981 (5) 0.2503 (3) 1.0608 (5) 0.0459 (14)
H3A 0.5253 0.2841 1.1265 0.055*
H3B 0.5682 0.2380 1.0241 0.055*
N1 0.4004 (4) 0.1236 (3) 0.9985 (4) 0.0483 (12)
H1A 0.3673 0.0784 1.0221 0.058*
H1D 0.4638 0.1094 0.9638 0.058*
N2 0.4051 (4) 0.2935 (3) 0.9799 (4) 0.0485 (12)
H2A 0.4377 0.3391 0.9570 0.058*
H2D 0.3417 0.3069 1.0151 0.058*
C1 0.3073 (5) 0.1661 (3) 0.9150 (5) 0.0474 (15)
H1B 0.2357 0.1777 0.9497 0.057*
H1C 0.2827 0.1322 0.8489 0.057*
C2 0.3612 (5) 0.2428 (3) 0.8790 (5) 0.0474 (15)
H2B 0.4288 0.2306 0.8388 0.057*
H2C 0.3000 0.2719 0.8273 0.057*
Cl1 0.76430 (12) −0.06850 (9) 0.77947 (15) 0.0542 (4)
N4 0.9416 (4) 0.4179 (2) 0.6760 (4) 0.0348 (10)
H4C 1.0193 0.4338 0.6764 0.042*
H4D 0.8970 0.4347 0.6103 0.042*
N3 0.9625 (4) 0.3368 (3) 0.8914 (4) 0.0459 (12)
H3C 0.8856 0.3203 0.8937 0.055*
H3D 1.0096 0.3206 0.9561 0.055*
C8 0.9648 (5) 0.4261 (3) 0.8847 (5) 0.0487 (15)
H8A 1.0487 0.4443 0.8911 0.058*
H8B 0.9301 0.4487 0.9479 0.058*
C7 0.8937 (5) 0.4550 (3) 0.7740 (5) 0.0474 (14)
H7A 0.8082 0.4411 0.7706 0.057*
H7B 0.8998 0.5130 0.7695 0.057*
C5 1.0076 (5) 0.2991 (3) 0.7909 (5) 0.0439 (14)
H5A 1.0934 0.3118 0.7933 0.053*
H5B 0.9998 0.2411 0.7950 0.053*
Cl7 0.16914 (12) 0.31589 (10) 0.09392 (12) 0.0537 (4)
O1 0.5352 (5) 0.4184 (3) 0.9159 (6) 0.099 (2)
H9A 0.610 (3) 0.425 (4) 0.941 (6) 0.119*
H9B 0.519 (6) 0.452 (4) 0.862 (5) 0.119*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Bi1 0.02867 (12) 0.02880 (13) 0.02927 (13) 0.00082 (8) 0.00847 (8) 0.00086 (9)
Cl2 0.0689 (11) 0.0968 (13) 0.0406 (9) 0.0061 (9) 0.0256 (8) 0.0120 (9)
C6 0.058 (4) 0.030 (3) 0.031 (3) −0.008 (3) 0.013 (3) −0.001 (2)
Cl3 0.0340 (6) 0.0433 (8) 0.0412 (8) 0.0000 (6) 0.0062 (6) 0.0025 (6)
Cl4 0.0387 (7) 0.0423 (8) 0.0326 (7) −0.0034 (6) 0.0080 (6) 0.0011 (6)
Cl6 0.0412 (7) 0.0353 (8) 0.0590 (10) −0.0036 (6) 0.0167 (7) −0.0065 (7)
Cl5 0.0344 (7) 0.0585 (10) 0.0538 (9) 0.0017 (6) 0.0044 (6) −0.0146 (7)
C4 0.045 (3) 0.060 (4) 0.040 (4) 0.001 (3) 0.014 (3) 0.002 (3)
C3 0.041 (3) 0.054 (4) 0.043 (4) −0.009 (3) 0.008 (3) −0.011 (3)
N1 0.042 (3) 0.032 (3) 0.075 (4) −0.007 (2) 0.021 (3) −0.005 (3)
N2 0.057 (3) 0.035 (3) 0.059 (3) −0.003 (2) 0.027 (3) −0.002 (2)
C1 0.034 (3) 0.056 (4) 0.050 (4) −0.005 (3) 0.003 (3) −0.017 (3)
C2 0.045 (3) 0.055 (4) 0.044 (4) 0.006 (3) 0.013 (3) 0.007 (3)
Cl1 0.0409 (8) 0.0343 (8) 0.0903 (12) 0.0001 (6) 0.0192 (8) −0.0105 (8)
N4 0.034 (2) 0.040 (3) 0.030 (3) −0.0021 (19) 0.0023 (19) 0.008 (2)
N3 0.038 (3) 0.067 (3) 0.031 (3) −0.014 (2) 0.000 (2) 0.019 (2)
C8 0.053 (4) 0.065 (4) 0.031 (3) −0.018 (3) 0.015 (3) −0.009 (3)
C7 0.053 (4) 0.044 (4) 0.047 (4) 0.001 (3) 0.016 (3) −0.008 (3)
C5 0.044 (3) 0.040 (3) 0.049 (4) 0.000 (3) 0.012 (3) 0.012 (3)
Cl7 0.0389 (8) 0.0854 (12) 0.0366 (9) 0.0057 (7) 0.0050 (6) −0.0004 (8)
O1 0.079 (4) 0.073 (4) 0.139 (6) −0.016 (3) −0.002 (4) 0.062 (3)

Geometric parameters (Å, °)

Bi1—Cl2 2.6164 (16) N2—H2D 0.9000
Bi1—Cl6 2.6954 (14) C1—C2 1.499 (7)
Bi1—Cl5 2.7019 (14) C1—H1B 0.9700
Bi1—Cl3 2.7036 (14) C1—H1C 0.9700
Bi1—Cl1 2.7099 (15) C2—H2B 0.9700
Bi1—Cl4 2.8021 (14) C2—H2C 0.9700
C6—C5 1.488 (7) N4—C7 1.486 (6)
C6—N4 1.488 (6) N4—H4C 0.9000
C6—H6A 0.9700 N4—H4D 0.9000
C6—H6B 0.9700 N3—C8 1.488 (7)
C4—N1 1.479 (6) N3—C5 1.500 (7)
C4—C3 1.493 (7) N3—H3C 0.9000
C4—H4A 0.9700 N3—H3D 0.9000
C4—H4B 0.9700 C8—C7 1.502 (7)
C3—N2 1.480 (7) C8—H8A 0.9700
C3—H3A 0.9700 C8—H8B 0.9700
C3—H3B 0.9700 C7—H7A 0.9700
N1—C1 1.492 (7) C7—H7B 0.9700
N1—H1A 0.9000 C5—H5A 0.9700
N1—H1D 0.9000 C5—H5B 0.9700
N2—C2 1.483 (7) O1—H9A 0.844 (19)
N2—H2A 0.9000 O1—H9B 0.854 (19)
Cl2—Bi1—Cl6 91.13 (5) H2A—N2—H2D 108.1
Cl2—Bi1—Cl5 96.95 (5) N1—C1—C2 109.1 (4)
Cl6—Bi1—Cl5 88.32 (4) N1—C1—H1B 109.9
Cl2—Bi1—Cl3 92.66 (5) C2—C1—H1B 109.9
Cl6—Bi1—Cl3 93.52 (4) N1—C1—H1C 109.9
Cl5—Bi1—Cl3 170.17 (4) C2—C1—H1C 109.9
Cl2—Bi1—Cl1 90.87 (6) H1B—C1—H1C 108.3
Cl6—Bi1—Cl1 176.40 (4) N2—C2—C1 110.5 (4)
Cl5—Bi1—Cl1 88.47 (4) N2—C2—H2B 109.6
Cl3—Bi1—Cl1 89.38 (4) C1—C2—H2B 109.6
Cl2—Bi1—Cl4 178.58 (5) N2—C2—H2C 109.6
Cl6—Bi1—Cl4 90.28 (4) C1—C2—H2C 109.6
Cl5—Bi1—Cl4 82.90 (4) H2B—C2—H2C 108.1
Cl3—Bi1—Cl4 87.44 (4) C7—N4—C6 111.1 (4)
Cl1—Bi1—Cl4 87.72 (5) C7—N4—H4C 109.4
C5—C6—N4 110.7 (4) C6—N4—H4C 109.4
C5—C6—H6A 109.5 C7—N4—H4D 109.4
N4—C6—H6A 109.5 C6—N4—H4D 109.4
C5—C6—H6B 109.5 H4C—N4—H4D 108.0
N4—C6—H6B 109.5 C8—N3—C5 111.4 (4)
H6A—C6—H6B 108.1 C8—N3—H3C 109.3
N1—C4—C3 109.9 (4) C5—N3—H3C 109.3
N1—C4—H4A 109.7 C8—N3—H3D 109.3
C3—C4—H4A 109.7 C5—N3—H3D 109.3
N1—C4—H4B 109.7 H3C—N3—H3D 108.0
C3—C4—H4B 109.7 N3—C8—C7 110.8 (4)
H4A—C4—H4B 108.2 N3—C8—H8A 109.5
N2—C3—C4 109.9 (4) C7—C8—H8A 109.5
N2—C3—H3A 109.7 N3—C8—H8B 109.5
C4—C3—H3A 109.7 C7—C8—H8B 109.5
N2—C3—H3B 109.7 H8A—C8—H8B 108.1
C4—C3—H3B 109.7 N4—C7—C8 110.3 (4)
H3A—C3—H3B 108.2 N4—C7—H7A 109.6
C4—N1—C1 112.0 (4) C8—C7—H7A 109.6
C4—N1—H1A 109.2 N4—C7—H7B 109.6
C1—N1—H1A 109.2 C8—C7—H7B 109.6
C4—N1—H1D 109.2 H7A—C7—H7B 108.1
C1—N1—H1D 109.2 C6—C5—N3 110.9 (4)
H1A—N1—H1D 107.9 C6—C5—H5A 109.4
C3—N2—C2 110.7 (4) N3—C5—H5A 109.4
C3—N2—H2A 109.5 C6—C5—H5B 109.4
C2—N2—H2A 109.5 N3—C5—H5B 109.4
C3—N2—H2D 109.5 H5A—C5—H5B 108.0
C2—N2—H2D 109.5 H9A—O1—H9B 105 (3)
N1—C4—C3—N2 57.7 (6) C5—C6—N4—C7 −57.7 (5)
C3—C4—N1—C1 −57.7 (6) C5—N3—C8—C7 55.3 (6)
C4—C3—N2—C2 −58.9 (6) C6—N4—C7—C8 57.6 (6)
C4—N1—C1—C2 56.9 (6) N3—C8—C7—N4 −56.3 (6)
C3—N2—C2—C1 58.8 (6) N4—C6—C5—N3 55.9 (5)
N1—C1—C2—N2 −56.7 (6) C8—N3—C5—C6 −55.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H9A···Cl2i 0.84 (4) 2.67 (6) 3.390 (7) 144 (6)
O1—H9B···Cl5ii 0.85 (6) 2.39 (6) 3.201 (6) 162 (5)
N1—H1A···Cl4iii 0.90 2.40 3.181 (5) 145
N1—H1D···Cl4 0.90 2.57 3.284 (5) 137
N1—H1D···Cl5 0.90 2.75 3.455 (5) 136
N2—H2A···O1 0.90 1.82 2.705 (7) 167
N2—H2D···Cl7iv 0.90 2.26 3.149 (5) 169
N3—H3C···Cl6 0.90 2.36 3.208 (5) 158
N3—H3D···Cl7v 0.90 2.21 3.069 (5) 159
N4—H4C···Cl1vi 0.90 2.37 3.228 (5) 158
N4—H4D···Cl4vii 0.90 2.43 3.155 (5) 138

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+1, −y, −z+2; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) −x+2, y+1/2, −z+3/2; (vii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5366).

References

  1. Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1719–m1720.
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Wu, P.-F., Tan, X.-F., Meng, X.-G., Li, D.-S., Zhu, Y.-L. & Wei, Y.-G. (2005). Acta Cryst. E61, m1506–m1508.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811045594/xu5366sup1.cif

e-67-m1688-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045594/xu5366Isup2.hkl

e-67-m1688-Isup2.hkl (201.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES