Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 5;67(Pt 12):m1692. doi: 10.1107/S160053681104520X

Bis[methyl 3-(propyl­amino)­but-2-eno­ato]zinc

Olamide O Onakoya a, Keneshia O Johnson a, Raymond J Butcher a, Jason S Matthews a,*
PMCID: PMC3238618  PMID: 22199509

Abstract

The title compound, [Zn(C8H14NO2)2], represents a zinc complex with the Zn2+ cation coordinated by two O and two N atoms in a distorted tetrahedral geometry.

Related literature

For background to ZnO and its applications, see: Norton et al. (2004); Groenen et al. (2005); Wan et al. (2004). For the growth of ZnO, see: Tribolate et al. (1999); Fan et al. (2005); El Hichou et al. (2004); Hoon et al. (2011); Jong et al. (2009); Malandrino et al. (2005). For ZnO precursors, see: Smith (1983); Sato et al. (1994). The corresponding complex is a monomer; its structure consists of a Zn2+ cation with a distorted tetrahedral coordin­ation (Matthews et al., 2006).graphic file with name e-67-m1692-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H14NO2)2]

  • M r = 377.77

  • Triclinic, Inline graphic

  • a = 7.8087 (5) Å

  • b = 9.4353 (6) Å

  • c = 12.8788 (11) Å

  • α = 76.820 (3)°

  • β = 77.381 (3)°

  • γ = 83.413 (3)°

  • V = 899.46 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 103 K

  • 0.64 × 0.51 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.471, T max = 0.840

  • 9957 measured reflections

  • 4977 independent reflections

  • 4508 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.070

  • S = 1.00

  • 4977 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104520X/bt5685sup1.cif

e-67-m1692-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104520X/bt5685Isup2.hkl

e-67-m1692-Isup2.hkl (243.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn—O1B 1.9784 (10)
Zn—N1A 1.9784 (12)
Zn—N1B 1.9785 (11)
Zn—O1A 1.9963 (10)
O1B—Zn—N1A 117.85 (4)
O1B—Zn—N1B 97.63 (4)
N1A—Zn—N1B 123.66 (5)
O1B—Zn—O1A 106.41 (4)
N1A—Zn—O1A 96.73 (5)
N1B—Zn—O1A 114.34 (5)

Acknowledgments

The authors thank NSF-PREM #0611595 for financial support.

supplementary crystallographic information

Comment

Novel precursors have been synthesized and utilized in the growth of ZnO thin films via metal-organic chemical vapor deposition (MOCVD). ZnO is a wide band gap (3.37ev) semiconductor, with several favorable properties including good transparency, high electron mobility, strong room-temperature luminescence and piezoelectric properties (Norton et al., 2004). ZnO has a variety of potential applications such as gas sensors, ultraviolet light-emitting diodes, solar cells, photodetectors, transistors and laser systems (Groenen et al., 2005) and (Wan et al., 2004). These applications of ZnO have propelled researchers to develop methods for the growth of ZnO thin films. Techniques that have been employed include sublimation (Tribolate et al., 1999), pulsed-laser deposition (PLD) (Fan et al., 2005), spray pyrolysis (SP) (El Hichou et al., 2004), magnetron sputtering (Hoon et al., 2011) and MOCVD (Jong et al., 2009). MOCVD has proven to be a promising method for ZnO growth due to a high degree of controllability of the film composition, capability for large scale area growth, high growth rate, prefered orientation and high quality thin films (Malandrino et al., 2005). In order for the MOCVD process to produce uniform and reproducible films, the precursors employed need to be volatile and thermally stable. Previous studies have reported the use of metal alkyls such as diethyzinc in combination with an oxygen source (e.g.H2O or ROH) (Smith, 1983). The drawback with these precursors is that gas-phase pre-reaction occurs resulting in film contamination and precursor decomposition. In addition, dialkyzinc precursors of acetate, alkoxide and acetylacetonate have been employed (Sato et al., 1994), however impurities are often found in prepared ZnO films. These drawbacks have sparked researchers interest in developing more favorable precursors for growing ZnO. Our research group has investigated the use of β-ketoiminate and β-iminoesterate ligand platforms for growing ZnO thin films (Matthews et al., 2006). Herein we describe the synthesis, characterization, of a novel bis β-iminoesterate.The bond lengths and angles of the reported compound were compared to an analogous Zn bis β-iminoesterate complex that has been previously reported (Matthews et al., 2006). The Zn—O bond lengths for the reported compound are longer than that observed for the analogous complex whose bond lengths measure 1.9454 Å and 1.9572 Å respectively. The Zn—N bond lengths are also longer in the analogous compound measuring 1.9475 Å and 1.9491 Å respectively. The is no difference between the Zn—O(1B) and Zn—N(1 A) bond lengths of 1.974 Å. However, Zn—O(1 A) and Zn—N(1B) measure 1.9963 Å and 1.9785 Å respectively.

Experimental

Synthesis of bis [Methyl 3-N-(propylimino)butanoato] zinc (II) To a 100 ml round bottom flask Under an inert atmosphere of dry nitrogen, 2.00 g (12.7 mmol) of Methyl 3-N-(propylimino)butanoate was added to a Schlenk flask containing 50 ml of dried hexanes and a magnetic stir bar. The mixture was cooled to 0° and 6.4 ml s of diethyl zinc (1.0 M) was added drop wise by syringe. The mixture was allowed to warm up to room temperature and stirred for 1 h. The solvent was removed in vaccuo to afford a white solid. The isolated solid was dissolved in dry pentane and held at -5 °C for 2 days at which time the formation of colorless crystals was observed. Spectroscopic Analysis: 1H NMR 400 MHz, CDCl3, δ p.p.m.: 0.83 (t, 6H, CH3CH2CH2), 1.42 (m, 4H, CH3CH2CH2), 1.90 (s, 6H, CH3CN), 3.12 (m, 2H, CH3CH2CH), 3.20 (m, 2H, CH3CH2CH), 3.57 (s, 6H, OCH3), 4.28 (s, 2H, CCHCO); 13C NMR 100 MHz, CDCl3, δ p.p.m.: 11.70 [CH3CH2CH2], 22.19 [CH3CH2CH2], 24.63 [CH3CN], 50.89 [CH3CH2CH2], 52.30 [OCH3], 77.31 [CHCO], 171.54 [CH3CN], 172.31 [CHCO].

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 and 0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as spheres of arbitrary radius.

Crystal data

[Zn(C8H14NO2)2] Z = 2
Mr = 377.77 F(000) = 400
Triclinic, P1 Dx = 1.395 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8087 (5) Å Cell parameters from 7001 reflections
b = 9.4353 (6) Å θ = 2.3–24.6°
c = 12.8788 (11) Å µ = 1.39 mm1
α = 76.820 (3)° T = 103 K
β = 77.381 (3)° Plate, colourless
γ = 83.413 (3)° 0.64 × 0.51 × 0.13 mm
V = 899.46 (11) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 4977 independent reflections
Radiation source: fine-focus sealed tube 4508 reflections with I > 2σ(I)
graphite Rint = 0.020
phi and ω scans θmax = 30.7°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −9→11
Tmin = 0.471, Tmax = 0.840 k = −12→12
9957 measured reflections l = −17→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.4769P] where P = (Fo2 + 2Fc2)/3
4977 reflections (Δ/σ)max = 0.003
214 parameters Δρmax = 0.82 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn 0.54308 (2) 0.924864 (17) 0.751108 (12) 0.01951 (5)
O1A 0.32476 (13) 0.81656 (11) 0.79509 (8) 0.0236 (2)
O2A 0.15956 (15) 0.64045 (12) 0.90620 (9) 0.0302 (2)
O1B 0.46956 (13) 1.13117 (11) 0.69599 (8) 0.02141 (19)
O2B 0.47457 (14) 1.33455 (11) 0.56379 (8) 0.0244 (2)
N1A 0.61225 (15) 0.87359 (13) 0.89469 (9) 0.0202 (2)
N1B 0.69909 (15) 0.88855 (13) 0.61512 (9) 0.0199 (2)
C1A 0.0663 (2) 0.65066 (19) 0.82025 (14) 0.0326 (3)
H1AA −0.0258 0.5813 0.8439 0.049*
H1AB 0.1483 0.6278 0.7560 0.049*
H1AC 0.0127 0.7499 0.8021 0.049*
C2A 0.30075 (18) 0.72305 (15) 0.88369 (11) 0.0225 (3)
C3A 0.3992 (2) 0.69008 (16) 0.96517 (11) 0.0246 (3)
H3AA 0.3658 0.6099 1.0233 0.030*
C4A 0.54370 (19) 0.76365 (15) 0.97014 (11) 0.0212 (3)
C5A 0.6216 (2) 0.70783 (17) 1.07104 (12) 0.0276 (3)
H5AA 0.7470 0.6799 1.0496 0.041*
H5AB 0.5609 0.6227 1.1160 0.041*
H5AC 0.6073 0.7848 1.1127 0.041*
C6A 0.75495 (18) 0.94490 (15) 0.91732 (11) 0.0217 (3)
H6AA 0.8526 0.8712 0.9317 0.026*
H6AB 0.7105 0.9852 0.9835 0.026*
C7A 0.8239 (2) 1.06658 (16) 0.82344 (12) 0.0252 (3)
H7AA 0.7286 1.1437 0.8120 0.030*
H7AB 0.8621 1.0279 0.7561 0.030*
C8A 0.9787 (2) 1.13208 (18) 0.84601 (13) 0.0303 (3)
H8AA 1.0179 1.2130 0.7856 0.045*
H8AB 1.0756 1.0571 0.8533 0.045*
H8AC 0.9417 1.1682 0.9136 0.045*
C1B 0.3431 (2) 1.40060 (16) 0.63758 (12) 0.0254 (3)
H1BA 0.3152 1.5019 0.6030 0.038*
H1BB 0.3871 1.3986 0.7036 0.038*
H1BC 0.2367 1.3466 0.6567 0.038*
C2B 0.53266 (17) 1.19383 (15) 0.59936 (11) 0.0198 (2)
C3B 0.65608 (19) 1.13903 (16) 0.52004 (11) 0.0227 (3)
H3BA 0.6949 1.2061 0.4539 0.027*
C4B 0.72970 (17) 0.99394 (15) 0.52762 (11) 0.0203 (2)
C5B 0.8511 (2) 0.96427 (17) 0.42470 (11) 0.0251 (3)
H5BA 0.9607 0.9128 0.4425 0.038*
H5BB 0.8773 1.0569 0.3735 0.038*
H5BC 0.7938 0.9039 0.3915 0.038*
C6B 0.78253 (19) 0.74229 (15) 0.60851 (12) 0.0239 (3)
H6BA 0.9067 0.7392 0.6156 0.029*
H6BB 0.7819 0.7233 0.5361 0.029*
C7B 0.6909 (2) 0.62329 (16) 0.69560 (13) 0.0276 (3)
H7BA 0.5660 0.6270 0.6899 0.033*
H7BB 0.6946 0.6397 0.7683 0.033*
C8B 0.7791 (2) 0.47334 (17) 0.68364 (15) 0.0345 (3)
H8BA 0.7201 0.3983 0.7421 0.052*
H8BB 0.9032 0.4702 0.6881 0.052*
H8BC 0.7706 0.4552 0.6130 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.01943 (8) 0.02190 (8) 0.01611 (8) −0.00083 (6) −0.00332 (5) −0.00224 (5)
O1A 0.0198 (5) 0.0271 (5) 0.0231 (5) −0.0020 (4) −0.0047 (4) −0.0026 (4)
O2A 0.0254 (5) 0.0325 (6) 0.0328 (6) −0.0100 (4) −0.0064 (4) −0.0023 (4)
O1B 0.0212 (5) 0.0235 (5) 0.0181 (4) −0.0015 (4) −0.0029 (4) −0.0023 (4)
O2B 0.0245 (5) 0.0230 (5) 0.0217 (5) 0.0005 (4) −0.0015 (4) −0.0003 (4)
N1A 0.0203 (5) 0.0225 (5) 0.0181 (5) −0.0012 (4) −0.0037 (4) −0.0048 (4)
N1B 0.0175 (5) 0.0237 (5) 0.0195 (5) −0.0019 (4) −0.0048 (4) −0.0055 (4)
C1A 0.0245 (7) 0.0379 (8) 0.0389 (8) −0.0046 (6) −0.0085 (6) −0.0120 (7)
C2A 0.0197 (6) 0.0222 (6) 0.0244 (6) −0.0017 (5) −0.0011 (5) −0.0054 (5)
C3A 0.0273 (7) 0.0235 (6) 0.0212 (6) −0.0043 (5) −0.0034 (5) −0.0013 (5)
C4A 0.0224 (6) 0.0223 (6) 0.0181 (6) 0.0019 (5) −0.0033 (5) −0.0048 (5)
C5A 0.0337 (8) 0.0294 (7) 0.0189 (6) −0.0040 (6) −0.0074 (5) −0.0003 (5)
C6A 0.0203 (6) 0.0258 (6) 0.0196 (6) −0.0016 (5) −0.0046 (5) −0.0055 (5)
C7A 0.0219 (7) 0.0296 (7) 0.0233 (6) −0.0043 (5) −0.0044 (5) −0.0028 (5)
C8A 0.0225 (7) 0.0362 (8) 0.0323 (7) −0.0074 (6) −0.0047 (6) −0.0054 (6)
C1B 0.0256 (7) 0.0230 (6) 0.0244 (6) 0.0011 (5) −0.0022 (5) −0.0026 (5)
C2B 0.0163 (6) 0.0224 (6) 0.0209 (6) −0.0030 (5) −0.0062 (5) −0.0019 (5)
C3B 0.0205 (6) 0.0254 (6) 0.0196 (6) −0.0036 (5) −0.0019 (5) −0.0005 (5)
C4B 0.0152 (6) 0.0285 (6) 0.0188 (6) −0.0034 (5) −0.0047 (4) −0.0062 (5)
C5B 0.0227 (7) 0.0326 (7) 0.0196 (6) −0.0028 (5) −0.0016 (5) −0.0065 (5)
C6B 0.0235 (7) 0.0249 (6) 0.0237 (6) 0.0002 (5) −0.0038 (5) −0.0076 (5)
C7B 0.0242 (7) 0.0234 (7) 0.0331 (7) −0.0011 (5) −0.0028 (6) −0.0048 (6)
C8B 0.0321 (8) 0.0245 (7) 0.0447 (9) 0.0001 (6) −0.0043 (7) −0.0070 (6)

Geometric parameters (Å, °)

Zn—O1B 1.9784 (10) C6A—H6AB 0.9900
Zn—N1A 1.9784 (12) C7A—C8A 1.527 (2)
Zn—N1B 1.9785 (11) C7A—H7AA 0.9900
Zn—O1A 1.9963 (10) C7A—H7AB 0.9900
O1A—C2A 1.2653 (17) C8A—H8AA 0.9800
O2A—C2A 1.3644 (17) C8A—H8AB 0.9800
O2A—C1A 1.432 (2) C8A—H8AC 0.9800
O1B—C2B 1.2666 (16) C1B—H1BA 0.9800
O2B—C2B 1.3615 (16) C1B—H1BB 0.9800
O2B—C1B 1.4292 (17) C1B—H1BC 0.9800
N1A—C4A 1.3218 (18) C2B—C3B 1.3915 (19)
N1A—C6A 1.4773 (18) C3B—C4B 1.413 (2)
N1B—C4B 1.3197 (18) C3B—H3BA 0.9500
N1B—C6B 1.4694 (18) C4B—C5B 1.5143 (19)
C1A—H1AA 0.9800 C5B—H5BA 0.9800
C1A—H1AB 0.9800 C5B—H5BB 0.9800
C1A—H1AC 0.9800 C5B—H5BC 0.9800
C2A—C3A 1.392 (2) C6B—C7B 1.513 (2)
C3A—C4A 1.411 (2) C6B—H6BA 0.9900
C3A—H3AA 0.9500 C6B—H6BB 0.9900
C4A—C5A 1.515 (2) C7B—C8B 1.526 (2)
C5A—H5AA 0.9800 C7B—H7BA 0.9900
C5A—H5AB 0.9800 C7B—H7BB 0.9900
C5A—H5AC 0.9800 C8B—H8BA 0.9800
C6A—C7A 1.515 (2) C8B—H8BB 0.9800
C6A—H6AA 0.9900 C8B—H8BC 0.9800
O1B—Zn—N1A 117.85 (4) C8A—C7A—H7AB 109.5
O1B—Zn—N1B 97.63 (4) H7AA—C7A—H7AB 108.0
N1A—Zn—N1B 123.66 (5) C7A—C8A—H8AA 109.5
O1B—Zn—O1A 106.41 (4) C7A—C8A—H8AB 109.5
N1A—Zn—O1A 96.73 (5) H8AA—C8A—H8AB 109.5
N1B—Zn—O1A 114.34 (5) C7A—C8A—H8AC 109.5
C2A—O1A—Zn 119.24 (9) H8AA—C8A—H8AC 109.5
C2A—O2A—C1A 116.87 (12) H8AB—C8A—H8AC 109.5
C2B—O1B—Zn 120.03 (9) O2B—C1B—H1BA 109.5
C2B—O2B—C1B 117.56 (11) O2B—C1B—H1BB 109.5
C4A—N1A—C6A 117.53 (12) H1BA—C1B—H1BB 109.5
C4A—N1A—Zn 120.54 (10) O2B—C1B—H1BC 109.5
C6A—N1A—Zn 121.60 (9) H1BA—C1B—H1BC 109.5
C4B—N1B—C6B 118.11 (11) H1BB—C1B—H1BC 109.5
C4B—N1B—Zn 121.21 (9) O1B—C2B—O2B 118.07 (12)
C6B—N1B—Zn 120.67 (9) O1B—C2B—C3B 129.19 (13)
O2A—C1A—H1AA 109.5 O2B—C2B—C3B 112.75 (12)
O2A—C1A—H1AB 109.5 C2B—C3B—C4B 126.74 (13)
H1AA—C1A—H1AB 109.5 C2B—C3B—H3BA 116.6
O2A—C1A—H1AC 109.5 C4B—C3B—H3BA 116.6
H1AA—C1A—H1AC 109.5 N1B—C4B—C3B 124.95 (12)
H1AB—C1A—H1AC 109.5 N1B—C4B—C5B 120.39 (12)
O1A—C2A—O2A 117.82 (13) C3B—C4B—C5B 114.65 (12)
O1A—C2A—C3A 129.20 (13) C4B—C5B—H5BA 109.5
O2A—C2A—C3A 112.99 (12) C4B—C5B—H5BB 109.5
C2A—C3A—C4A 126.59 (13) H5BA—C5B—H5BB 109.5
C2A—C3A—H3AA 116.7 C4B—C5B—H5BC 109.5
C4A—C3A—H3AA 116.7 H5BA—C5B—H5BC 109.5
N1A—C4A—C3A 124.94 (13) H5BB—C5B—H5BC 109.5
N1A—C4A—C5A 119.84 (13) N1B—C6B—C7B 112.72 (11)
C3A—C4A—C5A 115.22 (12) N1B—C6B—H6BA 109.0
C4A—C5A—H5AA 109.5 C7B—C6B—H6BA 109.0
C4A—C5A—H5AB 109.5 N1B—C6B—H6BB 109.0
H5AA—C5A—H5AB 109.5 C7B—C6B—H6BB 109.0
C4A—C5A—H5AC 109.5 H6BA—C6B—H6BB 107.8
H5AA—C5A—H5AC 109.5 C6B—C7B—C8B 110.83 (13)
H5AB—C5A—H5AC 109.5 C6B—C7B—H7BA 109.5
N1A—C6A—C7A 112.03 (11) C8B—C7B—H7BA 109.5
N1A—C6A—H6AA 109.2 C6B—C7B—H7BB 109.5
C7A—C6A—H6AA 109.2 C8B—C7B—H7BB 109.5
N1A—C6A—H6AB 109.2 H7BA—C7B—H7BB 108.1
C7A—C6A—H6AB 109.2 C7B—C8B—H8BA 109.5
H6AA—C6A—H6AB 107.9 C7B—C8B—H8BB 109.5
C6A—C7A—C8A 110.95 (12) H8BA—C8B—H8BB 109.5
C6A—C7A—H7AA 109.5 C7B—C8B—H8BC 109.5
C8A—C7A—H7AA 109.5 H8BA—C8B—H8BC 109.5
C6A—C7A—H7AB 109.5 H8BB—C8B—H8BC 109.5
O1B—Zn—O1A—C2A −136.62 (10) C6A—N1A—C4A—C3A 175.45 (13)
N1A—Zn—O1A—C2A −14.94 (11) Zn—N1A—C4A—C3A −11.12 (19)
N1B—Zn—O1A—C2A 116.82 (10) C6A—N1A—C4A—C5A −4.78 (18)
N1A—Zn—O1B—C2B 132.15 (10) Zn—N1A—C4A—C5A 168.66 (10)
N1B—Zn—O1B—C2B −2.54 (11) C2A—C3A—C4A—N1A −2.6 (2)
O1A—Zn—O1B—C2B −120.76 (10) C2A—C3A—C4A—C5A 177.56 (14)
O1B—Zn—N1A—C4A 129.69 (10) C4A—N1A—C6A—C7A 178.77 (12)
N1B—Zn—N1A—C4A −108.15 (11) Zn—N1A—C6A—C7A 5.41 (15)
O1A—Zn—N1A—C4A 17.10 (11) N1A—C6A—C7A—C8A −176.50 (12)
O1B—Zn—N1A—C6A −57.14 (11) Zn—O1B—C2B—O2B 178.12 (9)
N1B—Zn—N1A—C6A 65.01 (11) Zn—O1B—C2B—C3B −1.2 (2)
O1A—Zn—N1A—C6A −169.74 (10) C1B—O2B—C2B—O1B −1.40 (18)
O1B—Zn—N1B—C4B 3.50 (11) C1B—O2B—C2B—C3B 178.06 (12)
N1A—Zn—N1B—C4B −127.45 (10) O1B—C2B—C3B—C4B 5.5 (3)
O1A—Zn—N1B—C4B 115.43 (10) O2B—C2B—C3B—C4B −173.93 (13)
O1B—Zn—N1B—C6B −175.72 (10) C6B—N1B—C4B—C3B 178.33 (13)
N1A—Zn—N1B—C6B 53.32 (12) Zn—N1B—C4B—C3B −0.91 (19)
O1A—Zn—N1B—C6B −63.79 (11) C6B—N1B—C4B—C5B −1.41 (19)
Zn—O1A—C2A—O2A −173.49 (9) Zn—N1B—C4B—C5B 179.35 (10)
Zn—O1A—C2A—C3A 6.7 (2) C2B—C3B—C4B—N1B −4.1 (2)
C1A—O2A—C2A—O1A 9.44 (19) C2B—C3B—C4B—C5B 175.68 (14)
C1A—O2A—C2A—C3A −170.72 (13) C4B—N1B—C6B—C7B −159.60 (13)
O1A—C2A—C3A—C4A 5.2 (3) Zn—N1B—C6B—C7B 19.65 (16)
O2A—C2A—C3A—C4A −174.58 (13) N1B—C6B—C7B—C8B 178.50 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5685).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. El Hichou, A., Addou, M., Bougrine, A., Dounia, R., Ebothe, J., Troyon, M. & Amrani, M. (2004). Mater. Chem. Phys. 83, 43–47.
  3. Fan, X. M., Lian, J. S., Guo, Z. X. & Lu, H. (2005). Appl. Surf. Sci. 239, 176–181.
  4. Groenen, R., Loeffler, J., Linden, J. L., Schropp, R. E. I. & Van de Sanden, M. C. M. (2005). Thin Solid Films, 492, 298–306.
  5. Hoon, W. J., Chan, Y. K., Krishnasamy, J., Tou, Y. T. & Knipp, D. (2011). Appl. Surf. Sci. 257, 2508–2515.
  6. Jong, P. P., Sin, K. K., Park, J. Y., Ok, K. M. & Shim, W. (2009). Bull. Korean Chem. Soc. 30, 114–118.
  7. Malandrino, G., Balandino, M., Laura, M., Perdicaro, S. & Fragala, I. L. (2005). Inorg. Chem. 44, 9684–9689. [DOI] [PubMed]
  8. Matthews, J. S., Onakoya, O. O., Ouattara, T. S. & Butcher, R. J. (2006). Dalton Trans. pp. 3806–3811. [DOI] [PubMed]
  9. Norton, D. P., Heo, Y. W., Ivill, M. P., Ip, K., Pearton, S. J., Chisholm, M. F. & Steiner, T. (2004). Mater. Today, 7, 34–40.
  10. Sato, H., Minami, T., Miyata, T., Takata, S. & Ishii, M. (1994). Thin Solid Films, 246, 65–70.
  11. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Smith, F. (1983). Appl. Phys. Lett. 43, 1108–1110.
  14. Tribolate, R., N’tep, J. M., Barbe, M., Lemasson, P., Mora-Sero, I. & Munoz, V. J. (1999). J. Cryst. Growth, 198/199, 968–974.
  15. Wan, Q., Li, Q., Chen, Y., Wang, T., He, X., Li, J. & Lin, C. (2004). Appl. Phys. Lett. 84, 3654–3656.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104520X/bt5685sup1.cif

e-67-m1692-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104520X/bt5685Isup2.hkl

e-67-m1692-Isup2.hkl (243.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES