Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 9;67(Pt 12):m1708–m1709. doi: 10.1107/S1600536811046198

catena-Poly[[(6-carb­oxy­pyrazine-2-carboxyl­ato)lithium]-μ-aqua]

Wojciech Starosta a, Janusz Leciejewicz a,*
PMCID: PMC3238630  PMID: 22199521

Abstract

The asymmetric unit of the title compound, [Li(C6H3N2O4)(H2O)]n, contains an LiI ion with a distorted trigonal–bipyramidal coordination environment. It is chelated by a singly protonated ligand mol­ecule via its heterocyclic N atom, by two O aoms, each donated by an adjacent carboxyl­ate group, and is further coordinated by a water O atom which acts as a bridge, forming a mol­ecular ribbon. A proton attached to one of the carboxyl­ate O atoms is situated on an inversion centre and forms a short centrosymmetric hydrogen bond, generating mol­ecular layers parallel to the ac plane. These layers are held together by weak O—H⋯O hydrogen bonds in which the coordinated water mol­ecules act as donors, whereas carboxyl­ate O atoms are acceptors.

Related literature

For the structures of three lithium complexes with pyrazine-2,3-dicarboxyl­ate and water ligands, see: Tombul et al. (2008); Tombul & Guven (2009); Starosta & Leciejewicz (2011b ). For the structure of a LiI complex with a pyrazine-2,5-dicarboxyl­ate ligand, see: Starosta & Leciejewicz (2011a ) and for the structure of a LiI complex with pyrazine-2,3,5,6-tetra­carboxyl­ate, see: Starosta & Leciejewicz (2010). The structure of pyrazine-2,6-dicarboxyl­ate acid dihydrate has been also reported, see: Ptasiewicz-Bąk & Leciejewicz (2003). graphic file with name e-67-m1708-scheme1.jpg

Experimental

Crystal data

  • [Li(C6H3N2O4)(H2O)]

  • M r = 192.06

  • Monoclinic, Inline graphic

  • a = 3.5346 (7) Å

  • b = 12.519 (3) Å

  • c = 8.3583 (17) Å

  • β = 97.86 (3)°

  • V = 366.37 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.31 × 0.22 × 0.08 mm

Data collection

  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.954, T max = 0.973

  • 1262 measured reflections

  • 1106 independent reflections

  • 729 reflections with I > 2σ(I)

  • R int = 0.027

  • 3 standard reflections every 200 reflections intensity decay: 1.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.171

  • S = 1.09

  • 1106 reflections

  • 75 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046198/kp2364sup1.cif

e-67-m1708-sup1.cif (13KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046198/kp2364Isup2.hkl

e-67-m1708-Isup2.hkl (54.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

N1—Li1 2.115 (7)
O1—Li1 2.271 (2)
O3—Li1 1.950 (7)
O3—Li1i 2.085 (7)
Li1—O1ii 2.271 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O2iii 0.83 (2) 2.24 (2) 2.9987 (19) 152 (3)
O1—H1⋯O1iii 1.23 (1) 1.23 (1) 2.455 (3) 180 (1)

Symmetry code: (iii) Inline graphic.

supplementary crystallographic information

Comment

The asymmetric unit of the title compound consists of a LiI ion, a singly deprotonated pyrazine-2,6-dicarboxylate iigand molecule and a coordinated water molecule (Fig. 1). The coordination environment of the Li1 ion is composed of five atoms: ligand carboxylate O1, O1i, hetero-ring N1, aqua O3 and O3iii atoms. The coplanar Li1, N1, O3 and O3iii form the base of a distorted trigonal bipyramid with O1 and O1i atoms at its apices.[Symmetry code: ix, -y + 3/2, z; iix + 1, y, z, iiix - 1, y, z, iv 1 - x, 1 - y, -z]. The observed Li—O and Li—N bond distances (Table 1) are typical for LiI complexes with diazine carboxylate ligands, see, for example: Tombul & Guven, (2009); Starosta & Leciejewicz, (2010); Starosta & Leciejewicz,(2011b). Coordinated aqua O3 atom bridges Li1 with Liii ion to form molecular ribbons which propagate in the crystal alon [001] direction (Fig. 2). The carboxylato O1 atom remains protonated and mantains the charge balance. This proton, located at an inversion centre, forms a short centrosymmetric O1—H1···O1iv hydrogen bond of 2.455 (3) A° which links adjacent ribbons to form molecular layers. The pyrazine ring is planar with r.m.s of 0.0024 (1) Å.The C7/O1/O2 and C7i/O1i/O2i carboxylic groups make with it dihedral angles of 3.0 (1)°. Bond distances and bond angles within the ligand molecule do not differ from those reported in the structure of pyrazine-2,6-dicarboxylic acid dihydrate (Ptasiewicz-Bąk & Leciejewicz, 2003). The layers are held together by weak hydrogen bonds in which the coordinated water molecules act as donors and carboxylate O atoms and hetero-ring N atoms from adjacent layers are as acceptors (Table 2). Protonated ligand carboxylate groups have been observed in the structures of LiI complexes with pyrazine-2,3-carboxylate (Tombul et al., 2008, Starosta & Leciejewicz, 2011b) and pyrazine-2,5-dicarboxylate (Starosta & Leciejewicz, 2011a) ligands and in the structure of a LiI complex with pyrazine-2,3,5,6-tetracarboxylate ligand (Starosta & Leciejewicz, 2010). In the above structures, protons participate in short hydrogen bonds in which O atoms from adjacent intra-ligand carboxylate groups are donors and acceptors.

Experimental

Hot aqueous solutions of 1 mmol of pyrazine-2,6-dicarboxylic acid dihydrate and 1 mmol of lithium hydroxide (Aldrich) were mixed and boiled under reflux with constant stirring for 6 h. Left for evaporation at room temperature, after a couple of days small single-crystal plates of the title complex were obtained. Crystals were washed with cold ethanol and dried in air.

Refinement

Pyrazine ring H atoms atoms were placed in calculated positions with C—H = 0.93 and 0.96Å and treated as riding on the parent atoms with Uiso(H)= 1.2Ueq(C)or Uiso(H)=1.5Ueq(Cmethyl). Water H atoms were found in Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: ix, -y + 3/2, z; iix + 1, y, z; iiix - 1, y, z; iv 1 - x, 1 - y, -z; v 1 - x, -1/2 + y, -z; vix, 1/2 - y, z; vii 1 - x, 1/2 + y, -z; viii 2 - x, 1 - y, -z.

Fig. 2.

Fig. 2.

The alignment of the ribbons viewed along the axis a.

Crystal data

[Li(C6H3N2O4)(H2O)] F(000) = 196
Mr = 192.06 Dx = 1.741 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yb Cell parameters from 25 reflections
a = 3.5346 (7) Å θ = 6–15°
b = 12.519 (3) Å µ = 0.15 mm1
c = 8.3583 (17) Å T = 293 K
β = 97.86 (3)° Plates, colourless
V = 366.37 (13) Å3 0.31 × 0.22 × 0.08 mm
Z = 2

Data collection

Kuma KM-4 four-circle diffractometer 729 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
graphite θmax = 30.1°, θmin = 3.0°
Profile data from ω/2θ scans h = 0→4
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) k = −17→0
Tmin = 0.954, Tmax = 0.973 l = −11→11
1262 measured reflections 3 standard reflections every 200 reflections
1106 independent reflections intensity decay: 1.3%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1039P)2 + 0.0995P] where P = (Fo2 + 2Fc2)/3
1106 reflections (Δ/σ)max < 0.001
75 parameters Δρmax = 0.38 e Å3
2 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2901 (6) 0.7500 0.2305 (2) 0.0216 (4)
O1 0.4179 (5) 0.57853 (10) 0.07619 (15) 0.0333 (4)
C2 0.2425 (5) 0.65866 (13) 0.30619 (19) 0.0216 (4)
N2 0.0883 (7) 0.7500 0.5385 (2) 0.0297 (5)
O2 0.2587 (5) 0.47052 (12) 0.27081 (17) 0.0371 (4)
C3 0.1409 (5) 0.65888 (14) 0.4618 (2) 0.0269 (4)
H3 0.1092 0.5942 0.5130 0.032*
C7 0.3068 (5) 0.55822 (14) 0.2144 (2) 0.0245 (4)
O3 0.8304 (9) 0.7500 −0.1306 (3) 0.0572 (8)
Li1 0.3902 (17) 0.7500 −0.0132 (8) 0.0456 (13)
H31 0.866 (12) 0.6976 (8) −0.186 (4) 0.092 (14)*
H1 0.5000 0.5000 0.0000 0.10 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0281 (10) 0.0194 (9) 0.0187 (8) 0.000 0.0084 (7) 0.000
O1 0.0561 (9) 0.0228 (7) 0.0254 (6) 0.0003 (6) 0.0216 (6) −0.0014 (5)
C2 0.0253 (8) 0.0206 (7) 0.0198 (7) −0.0006 (6) 0.0059 (5) 0.0012 (6)
N2 0.0404 (12) 0.0314 (12) 0.0196 (9) 0.000 0.0124 (8) 0.000
O2 0.0584 (10) 0.0223 (7) 0.0340 (7) 0.0004 (6) 0.0186 (6) 0.0037 (5)
C3 0.0348 (9) 0.0261 (9) 0.0217 (7) 0.0000 (7) 0.0109 (6) 0.0031 (6)
C7 0.0300 (8) 0.0223 (7) 0.0225 (7) 0.0009 (6) 0.0080 (6) 0.0002 (6)
O3 0.0642 (18) 0.084 (2) 0.0247 (10) 0.000 0.0122 (10) 0.000
Li1 0.039 (3) 0.053 (3) 0.046 (3) 0.000 0.007 (2) 0.000

Geometric parameters (Å, °)

N1—C2i 1.3287 (18) O2—C7 1.216 (2)
N1—C2 1.3287 (18) C3—H3 0.9300
N1—Li1 2.115 (7) O3—Li1 1.950 (7)
O1—C7 1.295 (2) O3—Li1ii 2.085 (7)
O1—Li1 2.271 (2) O3—H31 0.825 (17)
O1—H1 1.2275 (13) Li1—O3iii 2.085 (7)
C2—C3 1.396 (2) Li1—O1i 2.271 (2)
C2—C7 1.506 (2) Li1—Li1iii 3.5346 (7)
N2—C3i 1.334 (2) Li1—Li1ii 3.5346 (7)
N2—C3 1.334 (2)
C2i—N1—C2 118.8 (2) O3—Li1—N1 137.3 (3)
C2i—N1—Li1 120.51 (10) O3iii—Li1—N1 100.4 (3)
C2—N1—Li1 120.51 (10) O3—Li1—O1i 99.45 (16)
C7—O1—Li1 118.33 (19) O3iii—Li1—O1i 98.65 (16)
C7—O1—H1 115.31 (13) N1—Li1—O1i 71.83 (16)
Li1—O1—H1 126.08 (17) O3—Li1—O1 99.45 (16)
N1—C2—C3 120.51 (16) O3iii—Li1—O1 98.65 (16)
N1—C2—C7 115.98 (14) N1—Li1—O1 71.84 (16)
C3—C2—C7 123.52 (15) O1i—Li1—O1 141.9 (3)
C3i—N2—C3 117.5 (2) O3—Li1—Li1iii 150.10 (19)
N2—C3—C2 121.34 (16) O3iii—Li1—Li1iii 27.79 (19)
N2—C3—H3 119.3 N1—Li1—Li1iii 72.60 (17)
C2—C3—H3 119.3 O1i—Li1—Li1iii 89.89 (15)
O2—C7—O1 126.77 (16) O1—Li1—Li1iii 89.89 (15)
O2—C7—C2 121.16 (15) O3—Li1—Li1ii 29.90 (19)
O1—C7—C2 112.07 (15) O3iii—Li1—Li1ii 152.21 (18)
Li1—O3—Li1ii 122.3 (3) N1—Li1—Li1ii 107.40 (17)
Li1—O3—H31 119 (3) O1i—Li1—Li1ii 90.11 (15)
Li1ii—O3—H31 93 (3) O1—Li1—Li1ii 90.11 (15)
O3—Li1—O3iii 122.3 (3) Li1iii—Li1—Li1ii 179.999 (1)

Symmetry codes: (i) x, −y+3/2, z; (ii) x+1, y, z; (iii) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H31···O2iv 0.83 (2) 2.24 (2) 2.9987 (19) 152 (3)
O1—H1···O1iv 1.23 (1) 1.23 (1) 2.455 (3) 180.(1)

Symmetry codes: (iv) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2364).

References

  1. Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  2. Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  3. Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  4. Ptasiewicz-Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 173–180.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1561–m1562. [DOI] [PMC free article] [PubMed]
  7. Starosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m50–m51. [DOI] [PMC free article] [PubMed]
  8. Starosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m1133–m1134. [DOI] [PMC free article] [PubMed]
  9. Tombul, M. & Guven, K. (2009). Acta Cryst. E65, m1704–m1705. [DOI] [PMC free article] [PubMed]
  10. Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491–m492. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046198/kp2364sup1.cif

e-67-m1708-sup1.cif (13KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046198/kp2364Isup2.hkl

e-67-m1708-Isup2.hkl (54.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES