Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 9;67(Pt 12):m1722–m1723. doi: 10.1107/S1600536811046484

Dichlorido[(4E,11E)-5,7,12,14-tetra­benzyl-7,14-dimethyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene]cobalt(III) perchlorate

Tapashi G Roy a,, Saroj K S Hazari a, Kanak K Barua a, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3238638  PMID: 22199529

Abstract

The CoIII atom in the title complex, [CoCl2(C40H48N4)]ClO4, is octa­hedrally coordinated within a trans-Cl2N4 donor set provided by the tetra­dentate macrocylic ligand and two chloride ions. The N—H atoms, which are orientated to one side of the N4 plane, form hydrogen bonds with chloride ions and perchlorate-O atoms. These along with C—H⋯O inter­actions consolidate the three-dimensional crystal structure. One of the benzene rings was disordered. This was resolved over two positions with the major component of the disorder having a site-occupancy factor of 0.672 (4).

Related literature

For background to the synthesis, characterization, kinetic studies and biological activity of 14-membered methyl-substituted tetra­aza­macrocyclic ligands, their N-substituted derivatives and metal complexes, see: Bembi et al. (1990); Roy et al. (2007, 2011a ); Hazari et al. (2008). For a related structure, see: Roy et al. (2011b ).graphic file with name e-67-m1722-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C40H48N4)]ClO4

  • M r = 814.10

  • Triclinic, Inline graphic

  • a = 10.8111 (7) Å

  • b = 13.835 (2) Å

  • c = 14.868 (3) Å

  • α = 73.66 (3)°

  • β = 70.06 (3)°

  • γ = 68.65 (2)°

  • V = 1915.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 153 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.627, T max = 1.000

  • 20336 measured reflections

  • 7470 independent reflections

  • 6940 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.142

  • S = 1.05

  • 7470 reflections

  • 476 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) & DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046484/pv2479sup1.cif

e-67-m1722-sup1.cif (37.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046484/pv2479Isup2.hkl

e-67-m1722-Isup2.hkl (358.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O1 0.88 (3) 2.24 (3) 3.063 (4) 155 (2)
N4—H4n⋯Cl2i 0.88 (3) 2.64 (2) 3.432 (2) 150 (3)
C10—H10a⋯O3ii 0.99 2.50 3.437 (4) 159
C19—H19b⋯O1iii 0.99 2.54 3.409 (4) 147
C38a—H38a⋯O4iv 0.95 2.57 3.480 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful to the University Grant Commission (UGC), Bangladesh, for the award of a research grant to TGR.

supplementary crystallographic information

Comment

In continuation of on-going studies of the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Bembi et al., 1990; Roy et al., 2007; Hazari et al., 2008; Roy et al., 2011a; Roy et al. 2011b), the synthesis and crystal structure of the title complex, (I), was investigated.

In (I), Fig. 1, the CoIII atom exists within a trans-Cl2N4 donor set defined by the four nitrogen atoms of the macrocyclic ligand and two chlorido atoms. The coordination geometry is based on an octahedron, with the greatest angular distortion manifested in the N2—Co—N3 angle of 83.81 (9)°. With respect to the central N4 plane, the rings adopt three distinct orientations. Two rings adopt similar orientations lying approximately perpendicular and parallel to the N4 plane: the dihedral angle between the N4 and the C12–C17 and C20–C25 planes are 86.928 (8) and 78.645 (10) °, respectively. The C27–C32 ring is also orientated in a perpendicular fashion (dihedral angle = 88.921 (10)°) but lies to one side of the N4 plane, with the C6—C26—C27—C28 torsion angle = 117.15 (4)°. The final ring is disordered over two positions. The major component is approximately planar with the N4 donor set, forming a dihedral angle of 20.644 (10)°, whereas the minor component forms a dihedral angle of 13.400 (9) °, i.e. even more co-planar. Within the N4 donor set, the two amine-H atoms are orientated to one side of the plane. The N2—H atom forms a contact with the perchlorate-O1 atom, and the N4—H forms an intramolecular N—H···Cl hydrogen bond, Table 2. These interactions along with several C—H···O contacts lead to the formation of supramolecular arrays in the ab plane. The layers stack along the c axis with the closest connection being of the type C—H···O, involving the perchlorate-O4 atom (Fig. 2 and Table 1).

Experimental

The macrocyclic ligand, (4E,11E)-5,7,12,14-tetrabenzyl-7,14-dimethyl- 1,4,8,11-tetraazacyclotetradeca-4,11-diene (0.783 g, 1.0 mmol) was suspended in methanol (30 ml). Separately, cobaltous acetate (0.248 g, 1.0 mmol) was dissolved in methanol (30 ml). The combined solutions were heated on a water bath until the solution turned red. Concentrated HCl was added drop-wise so that the solution turned green. Then, about 1 ml HClO4 was added whereupon a green product started to appear. The mixture was heated in order to reduce the volume to 15 ml. The resulting solution was kept at room temperature for about 1 h. The solid product, (I), was separated by filtration, washed with dry ethanol, followed by diethylether and dried in a vacuum desiccator over silica-gel. The yield was about 50%. The same complex was also prepared by using the acetonitrile as the solvent instead of methanol. However, the yield was about 42%. Green crystals of (I) were isolated from the slow evaporation of its methanol solution.

Refinement

The H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C). The N—H atoms were located from a difference map and refined with N—H = 0.88±0.01 Å, and with Uiso(H)= 1.2Uequiv(N). The C35–C40 phenyl ring was found to be disordered over two positions with a dihedral angle of 24.9 (3) Å between the orientations. After anisotropic refinement (pairs of atoms were constrained to have equivalent anisotropic displacement parameters), the major component had a site occupancy = 0.672 (4). A number of reflections, i.e. (3 2 11), (6 0 6), (10 5 0), (3 2 10), (2 1 12) and (2 2 11), were omitted from the final refinement owing to poor agreement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major orientation of the disordered C35—C40 ring is shown.

Fig. 2.

Fig. 2.

A view of the unit-cell contents in projection down the b axis in (I). The N—H···O(perchlorate), N—H···Cl, C—H···O(intra-layer) and C—H···O(inter-layer) interactions are shown as blue, orange, pink and brown dashed lines, respectively.

Crystal data

[CoCl2(C40H48N4)]ClO4 Z = 2
Mr = 814.10 F(000) = 852
Triclinic, P1 Dx = 1.411 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.8111 (7) Å Cell parameters from 6113 reflections
b = 13.835 (2) Å θ = 2.2–30.4°
c = 14.868 (3) Å µ = 0.70 mm1
α = 73.66 (3)° T = 153 K
β = 70.06 (3)° Prism, green
γ = 68.65 (2)° 0.30 × 0.20 × 0.10 mm
V = 1915.6 (5) Å3

Data collection

Rigaku AFC12K/SATURN724 diffractometer 7470 independent reflections
Radiation source: fine-focus sealed tube 6940 reflections with I > 2σ(I)
graphite Rint = 0.027
ω scans θmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −13→13
Tmin = 0.627, Tmax = 1.000 k = −15→17
20336 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0779P)2 + 2.2391P] where P = (Fo2 + 2Fc2)/3
7470 reflections (Δ/σ)max = 0.001
476 parameters Δρmax = 0.72 e Å3
2 restraints Δρmin = −0.50 e Å3

Special details

Experimental. Microanalysis: Calculated for C40H48Cl3CoN4O4, C, 59.09; H, 5.78; N, 6.89; Co, 7.25%. Found, C, 59.25; H, 5.65; N, 6.89; Co, 7.05%. IR (cm-1): 3161 ν(N—H); 3024 ν(Ar—H); 2949 and 2978 ν(C—H); 1393 ν(CH3); 1095 and 622 ν(ClO4-); 550 ν(Co—N).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co 0.03217 (3) 0.25958 (2) 0.57912 (2) 0.01928 (12)
Cl1 −0.08339 (7) 0.13989 (5) 0.64106 (5) 0.02986 (17)
Cl2 0.14748 (6) 0.38188 (5) 0.51694 (4) 0.02299 (15)
N1 −0.0314 (2) 0.29843 (17) 0.46384 (16) 0.0230 (4)
N2 0.2055 (2) 0.15227 (16) 0.52957 (15) 0.0219 (4)
H2N 0.265 (2) 0.186 (2) 0.518 (2) 0.026*
N3 0.0985 (2) 0.22239 (16) 0.69411 (16) 0.0227 (4)
N4 −0.1336 (2) 0.37339 (17) 0.62547 (15) 0.0217 (4)
H4N −0.105 (3) 0.4285 (16) 0.5924 (19) 0.026*
C1 0.0414 (3) 0.2780 (2) 0.3799 (2) 0.0272 (6)
C2 0.1919 (3) 0.2166 (2) 0.36292 (19) 0.0263 (5)
H2A 0.2430 0.2636 0.3621 0.032*
H2B 0.2250 0.1975 0.2976 0.032*
C3 0.2289 (3) 0.1159 (2) 0.43667 (19) 0.0235 (5)
C4 0.2349 (3) 0.0693 (2) 0.61436 (19) 0.0268 (6)
H4A 0.3298 0.0215 0.5966 0.032*
H4B 0.1696 0.0271 0.6367 0.032*
C5 0.2186 (3) 0.1249 (2) 0.69361 (19) 0.0269 (6)
H5A 0.2038 0.0775 0.7575 0.032*
H5B 0.3034 0.1438 0.6821 0.032*
C6 0.0646 (3) 0.2809 (2) 0.75664 (19) 0.0248 (5)
C7 −0.0518 (3) 0.3823 (2) 0.75592 (19) 0.0258 (5)
H7A −0.0141 0.4381 0.7091 0.031*
H7B −0.0823 0.4014 0.8211 0.031*
C8 −0.1801 (3) 0.3860 (2) 0.73077 (19) 0.0264 (6)
C9 −0.2421 (3) 0.3776 (2) 0.5824 (2) 0.0279 (6)
H9A −0.3176 0.4446 0.5888 0.033*
H9B −0.2811 0.3183 0.6163 0.033*
C10 −0.1742 (3) 0.3700 (2) 0.4760 (2) 0.0261 (5)
H10A −0.2277 0.3430 0.4518 0.031*
H10B −0.1729 0.4410 0.4375 0.031*
C11 −0.0180 (3) 0.3201 (3) 0.2918 (2) 0.0397 (7)
H11A −0.1191 0.3332 0.3150 0.048*
H11B −0.0006 0.3886 0.2589 0.048*
C12 0.0400 (3) 0.2479 (2) 0.2186 (2) 0.0331 (6)
C13 0.1397 (4) 0.2649 (3) 0.1340 (2) 0.0432 (8)
H13 0.1690 0.3257 0.1200 0.052*
C14 0.1982 (4) 0.1960 (3) 0.0691 (2) 0.0521 (9)
H14 0.2669 0.2094 0.0112 0.063*
C15 0.1565 (5) 0.1085 (3) 0.0888 (3) 0.0630 (12)
H15 0.1967 0.0604 0.0447 0.076*
C16 0.0565 (6) 0.0897 (3) 0.1725 (3) 0.0714 (13)
H16 0.0278 0.0287 0.1860 0.086*
C17 −0.0029 (4) 0.1600 (3) 0.2374 (2) 0.0534 (9)
H17 −0.0729 0.1473 0.2947 0.064*
C18 0.1422 (3) 0.0454 (2) 0.4501 (2) 0.0305 (6)
H18A 0.1701 −0.0196 0.4958 0.046*
H18B 0.1556 0.0280 0.3873 0.046*
H18C 0.0447 0.0824 0.4758 0.046*
C19 0.3844 (3) 0.0560 (2) 0.4032 (2) 0.0274 (6)
H19A 0.4384 0.1015 0.4010 0.033*
H19B 0.4063 −0.0079 0.4528 0.033*
C20 0.4313 (3) 0.0230 (2) 0.3052 (2) 0.0281 (6)
C21 0.4946 (3) 0.0826 (3) 0.2235 (2) 0.0398 (7)
H21 0.5067 0.1452 0.2289 0.048*
C22 0.5411 (4) 0.0521 (3) 0.1329 (3) 0.0528 (9)
H22 0.5844 0.0938 0.0771 0.063*
C23 0.5241 (4) −0.0387 (3) 0.1248 (3) 0.0519 (10)
H23 0.5557 −0.0598 0.0633 0.062*
C24 0.4615 (3) −0.0988 (3) 0.2055 (3) 0.0451 (8)
H24 0.4493 −0.1611 0.1995 0.054*
C25 0.4161 (3) −0.0692 (2) 0.2956 (2) 0.0349 (6)
H25 0.3743 −0.1119 0.3512 0.042*
C26 0.1434 (3) 0.2615 (2) 0.8307 (2) 0.0298 (6)
H26A 0.0801 0.2578 0.8971 0.036*
H26B 0.2173 0.1933 0.8275 0.036*
C27 0.2058 (3) 0.3502 (2) 0.8096 (2) 0.0291 (6)
C28 0.1666 (3) 0.4162 (2) 0.8764 (2) 0.0355 (7)
H28 0.0996 0.4058 0.9364 0.043*
C29 0.2248 (4) 0.4971 (3) 0.8560 (3) 0.0450 (8)
H29 0.1979 0.5414 0.9022 0.054*
C30 0.3218 (3) 0.5132 (3) 0.7689 (3) 0.0441 (8)
H30 0.3616 0.5683 0.7552 0.053*
C31 0.3605 (3) 0.4491 (3) 0.7019 (3) 0.0388 (7)
H31 0.4265 0.4607 0.6417 0.047*
C32 0.3035 (3) 0.3676 (2) 0.7217 (2) 0.0340 (6)
H32 0.3312 0.3235 0.6752 0.041*
C33 −0.2828 (3) 0.4958 (2) 0.7397 (2) 0.0336 (6)
H33A −0.3678 0.4998 0.7268 0.050*
H33B −0.2427 0.5491 0.6924 0.050*
H33C −0.3038 0.5088 0.8055 0.050*
Cl3 0.54134 (7) 0.26751 (5) 0.43796 (5) 0.03305 (18)
O1 0.4658 (2) 0.20304 (16) 0.51435 (16) 0.0382 (5)
O2 0.5109 (3) 0.36627 (18) 0.4651 (2) 0.0499 (6)
O3 0.6847 (2) 0.2140 (2) 0.4224 (2) 0.0592 (7)
O4 0.4999 (3) 0.2853 (2) 0.35077 (18) 0.0575 (7)
C34A −0.2460 (18) 0.2928 (8) 0.8000 (11) 0.0270 (17) 0.672 (3)
H34A −0.3205 0.2923 0.7758 0.032* 0.672 (3)
H34B −0.1740 0.2238 0.7954 0.032* 0.672 (3)
C35A −0.3028 (3) 0.3053 (3) 0.90364 (18) 0.0331 (9) 0.672 (3)
C36A −0.4428 (3) 0.3556 (3) 0.9363 (2) 0.0439 (11) 0.672 (3)
H36A −0.4986 0.3835 0.8922 0.053* 0.672 (3)
C37A −0.5011 (3) 0.3649 (3) 1.0337 (2) 0.0550 (13) 0.672 (3)
H37A −0.5968 0.3993 1.0560 0.066* 0.672 (3)
C38A −0.4194 (4) 0.3240 (3) 1.09829 (16) 0.0597 (16) 0.672 (3)
H38A −0.4593 0.3304 1.1648 0.072* 0.672 (3)
C39A −0.2795 (4) 0.2738 (3) 1.0656 (2) 0.0600 (16) 0.672 (3)
H39A −0.2236 0.2458 1.1098 0.072* 0.672 (3)
C40A −0.2212 (3) 0.2644 (3) 0.9683 (2) 0.0477 (13) 0.672 (3)
H40A −0.1255 0.2300 0.9459 0.057* 0.672 (3)
C34B −0.245 (4) 0.314 (2) 0.789 (3) 0.0270 (17) 0.328 (3)
H34C −0.3364 0.3354 0.7759 0.032* 0.328 (3)
H34D −0.1923 0.2458 0.7662 0.032* 0.328 (3)
C35B −0.2705 (8) 0.2912 (6) 0.9041 (4) 0.0331 (9) 0.328 (3)
C36B −0.3766 (7) 0.3593 (5) 0.9616 (5) 0.0439 (11) 0.328 (3)
H36B −0.4417 0.4163 0.9335 0.053* 0.328 (3)
C37B −0.3876 (8) 0.3441 (6) 1.0601 (5) 0.0550 (13) 0.328 (3)
H37B −0.4601 0.3907 1.0994 0.066* 0.328 (3)
C38B −0.2923 (10) 0.2607 (7) 1.1012 (4) 0.0597 (16) 0.328 (3)
H38B −0.2998 0.2503 1.1686 0.07 (4)* 0.328 (3)
C39B −0.1861 (8) 0.1926 (6) 1.0438 (5) 0.0600 (16) 0.328 (3)
H39B −0.1210 0.1356 1.0719 0.072* 0.328 (3)
C40B −0.1752 (7) 0.2078 (6) 0.9452 (5) 0.0477 (13) 0.328 (3)
H40B −0.1027 0.1613 0.9060 0.057* 0.328 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co 0.01748 (19) 0.0189 (2) 0.02131 (19) −0.00528 (14) −0.00556 (14) −0.00311 (13)
Cl1 0.0289 (3) 0.0277 (3) 0.0344 (4) −0.0131 (3) −0.0044 (3) −0.0063 (3)
Cl2 0.0211 (3) 0.0206 (3) 0.0262 (3) −0.0075 (2) −0.0044 (2) −0.0033 (2)
N1 0.0188 (10) 0.0235 (11) 0.0259 (11) −0.0040 (8) −0.0070 (9) −0.0053 (9)
N2 0.0227 (11) 0.0197 (10) 0.0241 (11) −0.0051 (8) −0.0084 (9) −0.0041 (8)
N3 0.0197 (10) 0.0214 (11) 0.0266 (11) −0.0068 (8) −0.0066 (9) −0.0022 (8)
N4 0.0195 (10) 0.0238 (11) 0.0209 (10) −0.0072 (8) −0.0039 (8) −0.0034 (8)
C1 0.0277 (14) 0.0248 (13) 0.0302 (14) −0.0046 (10) −0.0121 (11) −0.0055 (11)
C2 0.0238 (13) 0.0283 (14) 0.0251 (13) −0.0045 (10) −0.0056 (11) −0.0075 (11)
C3 0.0206 (12) 0.0228 (13) 0.0286 (13) −0.0025 (10) −0.0090 (11) −0.0093 (10)
C4 0.0270 (13) 0.0225 (13) 0.0273 (13) −0.0023 (10) −0.0099 (11) −0.0023 (10)
C5 0.0255 (13) 0.0254 (13) 0.0267 (13) −0.0023 (10) −0.0106 (11) −0.0026 (10)
C6 0.0247 (13) 0.0274 (13) 0.0236 (12) −0.0118 (10) −0.0064 (10) −0.0012 (10)
C7 0.0289 (14) 0.0254 (13) 0.0229 (12) −0.0085 (11) −0.0045 (11) −0.0063 (10)
C8 0.0247 (13) 0.0288 (14) 0.0233 (13) −0.0063 (11) −0.0034 (11) −0.0071 (10)
C9 0.0175 (12) 0.0323 (14) 0.0323 (14) −0.0053 (10) −0.0062 (11) −0.0064 (11)
C10 0.0202 (13) 0.0262 (13) 0.0317 (14) −0.0016 (10) −0.0110 (11) −0.0071 (11)
C11 0.0395 (17) 0.0425 (17) 0.0331 (16) 0.0050 (13) −0.0184 (14) −0.0131 (13)
C12 0.0319 (15) 0.0384 (16) 0.0264 (14) −0.0027 (12) −0.0128 (12) −0.0058 (12)
C13 0.0477 (19) 0.0477 (19) 0.0307 (16) −0.0109 (15) −0.0127 (14) −0.0036 (14)
C14 0.054 (2) 0.058 (2) 0.0284 (16) −0.0016 (17) −0.0061 (15) −0.0110 (15)
C15 0.093 (3) 0.047 (2) 0.039 (2) 0.000 (2) −0.023 (2) −0.0148 (17)
C16 0.125 (4) 0.056 (3) 0.048 (2) −0.045 (3) −0.026 (3) −0.0022 (19)
C17 0.070 (3) 0.070 (3) 0.0291 (16) −0.036 (2) −0.0096 (17) −0.0064 (16)
C18 0.0267 (14) 0.0287 (14) 0.0398 (15) −0.0083 (11) −0.0094 (12) −0.0109 (12)
C19 0.0214 (13) 0.0280 (14) 0.0320 (14) −0.0033 (10) −0.0078 (11) −0.0087 (11)
C20 0.0196 (12) 0.0307 (14) 0.0306 (14) 0.0020 (10) −0.0076 (11) −0.0118 (11)
C21 0.0331 (16) 0.0392 (17) 0.0391 (17) −0.0060 (13) −0.0028 (13) −0.0097 (13)
C22 0.045 (2) 0.057 (2) 0.0339 (17) −0.0023 (16) 0.0015 (15) −0.0065 (16)
C23 0.046 (2) 0.064 (2) 0.0354 (17) 0.0091 (17) −0.0118 (15) −0.0256 (17)
C24 0.0412 (18) 0.0457 (19) 0.050 (2) 0.0034 (15) −0.0164 (16) −0.0280 (16)
C25 0.0323 (15) 0.0325 (15) 0.0393 (16) −0.0025 (12) −0.0100 (13) −0.0144 (13)
C26 0.0348 (15) 0.0318 (14) 0.0255 (13) −0.0103 (12) −0.0115 (12) −0.0044 (11)
C27 0.0285 (14) 0.0307 (14) 0.0303 (14) −0.0081 (11) −0.0144 (12) −0.0018 (11)
C28 0.0411 (17) 0.0379 (16) 0.0324 (15) −0.0121 (13) −0.0155 (13) −0.0061 (12)
C29 0.057 (2) 0.0374 (17) 0.054 (2) −0.0145 (15) −0.0316 (18) −0.0073 (15)
C30 0.0443 (18) 0.0365 (17) 0.063 (2) −0.0184 (14) −0.0333 (17) 0.0064 (15)
C31 0.0281 (15) 0.0401 (17) 0.0474 (18) −0.0133 (13) −0.0167 (14) 0.0059 (14)
C32 0.0292 (15) 0.0380 (16) 0.0352 (15) −0.0082 (12) −0.0139 (12) −0.0027 (12)
C33 0.0285 (14) 0.0323 (15) 0.0311 (14) −0.0018 (11) −0.0012 (12) −0.0103 (12)
Cl3 0.0299 (4) 0.0291 (4) 0.0425 (4) −0.0119 (3) −0.0124 (3) −0.0022 (3)
O1 0.0405 (12) 0.0344 (11) 0.0437 (12) −0.0187 (9) −0.0179 (10) 0.0050 (9)
O2 0.0455 (13) 0.0350 (12) 0.0713 (17) −0.0174 (10) −0.0075 (12) −0.0154 (11)
O3 0.0303 (12) 0.0483 (15) 0.093 (2) −0.0083 (11) −0.0085 (13) −0.0182 (14)
O4 0.0720 (18) 0.0681 (17) 0.0413 (14) −0.0345 (14) −0.0223 (13) 0.0043 (12)
C34A 0.0324 (16) 0.021 (5) 0.023 (4) −0.018 (4) 0.001 (2) 0.005 (4)
C35A 0.038 (3) 0.0297 (19) 0.0295 (15) −0.0150 (18) −0.0039 (16) −0.0024 (13)
C36A 0.041 (3) 0.046 (2) 0.033 (2) −0.011 (2) 0.0013 (19) −0.0047 (19)
C37A 0.061 (3) 0.051 (3) 0.035 (2) −0.015 (3) 0.011 (2) −0.012 (2)
C38A 0.097 (5) 0.060 (4) 0.029 (2) −0.051 (3) 0.002 (3) −0.005 (2)
C39A 0.079 (4) 0.082 (4) 0.037 (3) −0.054 (3) −0.022 (3) 0.011 (3)
C40A 0.042 (3) 0.053 (3) 0.043 (3) −0.023 (3) −0.010 (2) 0.010 (2)
C34B 0.0324 (16) 0.021 (5) 0.023 (4) −0.018 (4) 0.001 (2) 0.005 (4)
C35B 0.038 (3) 0.0297 (19) 0.0295 (15) −0.0150 (18) −0.0039 (16) −0.0024 (13)
C36B 0.041 (3) 0.046 (2) 0.033 (2) −0.011 (2) 0.0013 (19) −0.0047 (19)
C37B 0.061 (3) 0.051 (3) 0.035 (2) −0.015 (3) 0.011 (2) −0.012 (2)
C38B 0.097 (5) 0.060 (4) 0.029 (2) −0.051 (3) 0.002 (3) −0.005 (2)
C39B 0.079 (4) 0.082 (4) 0.037 (3) −0.054 (3) −0.022 (3) 0.011 (3)
C40B 0.042 (3) 0.053 (3) 0.043 (3) −0.023 (3) −0.010 (2) 0.010 (2)

Geometric parameters (Å, °)

Co—N1 1.927 (2) C20—C21 1.381 (4)
Co—N3 1.943 (2) C20—C25 1.394 (4)
Co—N4 1.969 (2) C21—C22 1.396 (5)
Co—N2 1.977 (2) C21—H21 0.9500
Co—Cl1 2.2395 (9) C22—C23 1.377 (6)
Co—Cl2 2.2676 (8) C22—H22 0.9500
N1—C1 1.274 (4) C23—C24 1.373 (5)
N1—C10 1.482 (3) C23—H23 0.9500
N2—C4 1.484 (3) C24—C25 1.384 (4)
N2—C3 1.511 (3) C24—H24 0.9500
N2—H2N 0.877 (10) C25—H25 0.9500
N3—C6 1.276 (3) C26—C27 1.519 (4)
N3—C5 1.493 (3) C26—H26A 0.9900
N4—C9 1.494 (3) C26—H26B 0.9900
N4—C8 1.512 (3) C27—C28 1.393 (4)
N4—H4N 0.878 (10) C27—C32 1.396 (4)
C1—C2 1.506 (4) C28—C29 1.390 (5)
C1—C11 1.530 (4) C28—H28 0.9500
C2—C3 1.529 (4) C29—C30 1.381 (5)
C2—H2A 0.9900 C29—H29 0.9500
C2—H2B 0.9900 C30—C31 1.377 (5)
C3—C18 1.517 (4) C30—H30 0.9500
C3—C19 1.552 (3) C31—C32 1.390 (4)
C4—C5 1.511 (4) C31—H31 0.9500
C4—H4A 0.9900 C32—H32 0.9500
C4—H4B 0.9900 C33—H33A 0.9800
C5—H5A 0.9900 C33—H33B 0.9800
C5—H5B 0.9900 C33—H33C 0.9800
C6—C7 1.506 (4) Cl3—O3 1.421 (2)
C6—C26 1.522 (4) Cl3—O2 1.425 (2)
C7—C8 1.535 (4) Cl3—O4 1.441 (3)
C7—H7A 0.9900 Cl3—O1 1.442 (2)
C7—H7B 0.9900 C34A—C35A 1.486 (17)
C8—C33 1.531 (4) C34A—H34A 0.9900
C8—C34B 1.36 (3) C34A—H34B 0.9900
C8—C34A 1.629 (10) C35A—C36A 1.3900
C9—C10 1.515 (4) C35A—C40A 1.3900
C9—H9A 0.9900 C36A—C37A 1.3900
C9—H9B 0.9900 C36A—H36A 0.9500
C10—H10A 0.9900 C37A—C38A 1.3900
C10—H10B 0.9900 C37A—H37A 0.9500
C11—C12 1.505 (4) C38A—C39A 1.3900
C11—H11A 0.9900 C38A—H38A 0.9500
C11—H11B 0.9900 C39A—C40A 1.3900
C12—C13 1.375 (4) C39A—H39A 0.9500
C12—C17 1.379 (5) C40A—H40A 0.9500
C13—C14 1.380 (5) C34B—C35B 1.60 (4)
C13—H13 0.9500 C34B—H34C 0.9900
C14—C15 1.365 (6) C34B—H34D 0.9900
C14—H14 0.9500 C35B—C36B 1.3900
C15—C16 1.374 (6) C35B—C40B 1.3900
C15—H15 0.9500 C36B—C37B 1.3900
C16—C17 1.393 (6) C36B—H36B 0.9500
C16—H16 0.9500 C37B—C38B 1.3900
C17—H17 0.9500 C37B—H37B 0.9500
C18—H18A 0.9800 C38B—C39B 1.3900
C18—H18B 0.9800 C38B—H38B 0.9500
C18—H18C 0.9800 C39B—C40B 1.3900
C19—C20 1.514 (4) C39B—H39B 0.9500
C19—H19A 0.9900 C40B—H40B 0.9500
C19—H19B 0.9900
N1—Co—N3 178.83 (9) C3—C18—H18A 109.5
N1—Co—N4 84.22 (9) C3—C18—H18B 109.5
N3—Co—N4 95.83 (9) H18A—C18—H18B 109.5
N1—Co—N2 96.07 (9) C3—C18—H18C 109.5
N3—Co—N2 83.80 (9) H18A—C18—H18C 109.5
N4—Co—N2 176.17 (9) H18B—C18—H18C 109.5
N1—Co—Cl1 89.85 (7) C20—C19—C3 115.3 (2)
N3—Co—Cl1 91.32 (7) C20—C19—H19A 108.4
N4—Co—Cl1 91.81 (7) C3—C19—H19A 108.4
N2—Co—Cl1 92.00 (7) C20—C19—H19B 108.4
N1—Co—Cl2 90.11 (7) C3—C19—H19B 108.4
N3—Co—Cl2 88.72 (7) H19A—C19—H19B 107.5
N4—Co—Cl2 87.68 (7) C21—C20—C25 118.6 (3)
N2—Co—Cl2 88.50 (7) C21—C20—C19 120.0 (3)
Cl1—Co—Cl2 179.50 (3) C25—C20—C19 121.3 (3)
C1—N1—C10 119.7 (2) C20—C21—C22 120.8 (3)
C1—N1—Co 126.26 (18) C20—C21—H21 119.6
C10—N1—Co 113.59 (17) C22—C21—H21 119.6
C4—N2—C3 117.1 (2) C23—C22—C21 119.7 (3)
C4—N2—Co 106.90 (16) C23—C22—H22 120.2
C3—N2—Co 119.99 (15) C21—C22—H22 120.2
C4—N2—H2N 103 (2) C24—C23—C22 120.0 (3)
C3—N2—H2N 107 (2) C24—C23—H23 120.0
Co—N2—H2N 100 (2) C22—C23—H23 120.0
C6—N3—C5 120.0 (2) C23—C24—C25 120.4 (3)
C6—N3—Co 126.05 (18) C23—C24—H24 119.8
C5—N3—Co 112.83 (16) C25—C24—H24 119.8
C9—N4—C8 116.6 (2) C24—C25—C20 120.4 (3)
C9—N4—Co 107.52 (16) C24—C25—H25 119.8
C8—N4—Co 120.35 (16) C20—C25—H25 119.8
C9—N4—H4N 105 (2) C27—C26—C6 109.7 (2)
C8—N4—H4N 105 (2) C27—C26—H26A 109.7
Co—N4—H4N 100 (2) C6—C26—H26A 109.7
N1—C1—C2 120.8 (2) C27—C26—H26B 109.7
N1—C1—C11 121.6 (2) C6—C26—H26B 109.7
C2—C1—C11 117.5 (2) H26A—C26—H26B 108.2
C1—C2—C3 116.3 (2) C28—C27—C32 118.8 (3)
C1—C2—H2A 108.2 C28—C27—C26 121.1 (3)
C3—C2—H2A 108.2 C32—C27—C26 120.1 (3)
C1—C2—H2B 108.2 C29—C28—C27 120.4 (3)
C3—C2—H2B 108.2 C29—C28—H28 119.8
H2A—C2—H2B 107.4 C27—C28—H28 119.8
N2—C3—C18 112.3 (2) C30—C29—C28 120.2 (3)
N2—C3—C2 105.6 (2) C30—C29—H29 119.9
C18—C3—C2 111.0 (2) C28—C29—H29 119.9
N2—C3—C19 107.4 (2) C31—C30—C29 119.9 (3)
C18—C3—C19 110.3 (2) C31—C30—H30 120.0
C2—C3—C19 109.9 (2) C29—C30—H30 120.0
N2—C4—C5 106.9 (2) C30—C31—C32 120.4 (3)
N2—C4—H4A 110.3 C30—C31—H31 119.8
C5—C4—H4A 110.3 C32—C31—H31 119.8
N2—C4—H4B 110.3 C31—C32—C27 120.3 (3)
C5—C4—H4B 110.3 C31—C32—H32 119.9
H4A—C4—H4B 108.6 C27—C32—H32 119.9
N3—C5—C4 109.4 (2) C8—C33—H33A 109.5
N3—C5—H5A 109.8 C8—C33—H33B 109.5
C4—C5—H5A 109.8 H33A—C33—H33B 109.5
N3—C5—H5B 109.8 C8—C33—H33C 109.5
C4—C5—H5B 109.8 H33A—C33—H33C 109.5
H5A—C5—H5B 108.2 H33B—C33—H33C 109.5
N3—C6—C7 121.2 (2) O3—Cl3—O2 109.85 (16)
N3—C6—C26 124.3 (2) O3—Cl3—O4 110.38 (19)
C7—C6—C26 114.3 (2) O2—Cl3—O4 109.29 (17)
C6—C7—C8 118.6 (2) O3—Cl3—O1 108.94 (15)
C6—C7—H7A 107.7 O2—Cl3—O1 109.77 (15)
C8—C7—H7A 107.7 O4—Cl3—O1 108.59 (14)
C6—C7—H7B 107.7 C35A—C34A—C8 113.0 (10)
C8—C7—H7B 107.7 C35A—C34A—H34A 109.0
H7A—C7—H7B 107.1 C8—C34A—H34A 109.0
N4—C8—C33 108.7 (2) C35A—C34A—H34B 109.0
N4—C8—C7 106.2 (2) C8—C34A—H34B 109.0
C33—C8—C7 107.4 (2) H34A—C34A—H34B 107.8
N4—C8—C34B 111.2 (18) C36A—C35A—C40A 120.0
C33—C8—C34B 107.7 (16) C36A—C35A—C34A 118.2 (7)
C7—C8—C34B 115.3 (17) C40A—C35A—C34A 121.8 (7)
N4—C8—C34A 110.5 (7) C35A—C36A—C37A 120.0
C33—C8—C34A 112.0 (6) C35A—C36A—H36A 120.0
C7—C8—C34A 111.8 (6) C37A—C36A—H36A 120.0
N4—C9—C10 107.3 (2) C38A—C37A—C36A 120.0
N4—C9—H9A 110.3 C38A—C37A—H37A 120.0
C10—C9—H9A 110.3 C36A—C37A—H37A 120.0
N4—C9—H9B 110.3 C37A—C38A—C39A 120.0
C10—C9—H9B 110.3 C37A—C38A—H38A 120.0
H9A—C9—H9B 108.5 C39A—C38A—H38A 120.0
N1—C10—C9 110.0 (2) C38A—C39A—C40A 120.0
N1—C10—H10A 109.7 C38A—C39A—H39A 120.0
C9—C10—H10A 109.7 C40A—C39A—H39A 120.0
N1—C10—H10B 109.7 C39A—C40A—C35A 120.0
C9—C10—H10B 109.7 C39A—C40A—H40A 120.0
H10A—C10—H10B 108.2 C35A—C40A—H40A 120.0
C12—C11—C1 114.6 (2) C35B—C34B—C8 121 (3)
C12—C11—H11A 108.6 C35B—C34B—H34C 107.1
C1—C11—H11A 108.6 C8—C34B—H34C 107.1
C12—C11—H11B 108.6 C35B—C34B—H34D 107.1
C1—C11—H11B 108.6 C8—C34B—H34D 107.1
H11A—C11—H11B 107.6 H34C—C34B—H34D 106.8
C13—C12—C17 118.5 (3) C36B—C35B—C40B 120.0
C13—C12—C11 121.5 (3) C36B—C35B—C34B 121.1 (14)
C17—C12—C11 119.9 (3) C40B—C35B—C34B 118.5 (14)
C12—C13—C14 121.7 (4) C37B—C36B—C35B 120.0
C12—C13—H13 119.1 C37B—C36B—H36B 120.0
C14—C13—H13 119.1 C35B—C36B—H36B 120.0
C15—C14—C13 119.4 (4) C36B—C37B—C38B 120.0
C15—C14—H14 120.3 C36B—C37B—H37B 120.0
C13—C14—H14 120.3 C38B—C37B—H37B 120.0
C14—C15—C16 120.1 (4) C39B—C38B—C37B 120.0
C14—C15—H15 119.9 C39B—C38B—H38B 120.0
C16—C15—H15 119.9 C37B—C38B—H38B 120.0
C15—C16—C17 120.2 (4) C38B—C39B—C40B 120.0
C15—C16—H16 119.9 C38B—C39B—H39B 120.0
C17—C16—H16 119.9 C40B—C39B—H39B 120.0
C12—C17—C16 120.0 (4) C39B—C40B—C35B 120.0
C12—C17—H17 120.0 C39B—C40B—H40B 120.0
C16—C17—H17 120.0 C35B—C40B—H40B 120.0
N4—Co—N1—C1 159.7 (2) C6—C7—C8—C34A 54.4 (7)
N2—Co—N1—C1 −16.4 (2) C8—N4—C9—C10 176.6 (2)
Cl1—Co—N1—C1 −108.4 (2) Co—N4—C9—C10 −44.8 (2)
Cl2—Co—N1—C1 72.1 (2) C1—N1—C10—C9 177.0 (2)
N4—Co—N1—C10 −12.12 (17) Co—N1—C10—C9 −10.5 (3)
N2—Co—N1—C10 171.72 (17) N4—C9—C10—N1 35.8 (3)
Cl1—Co—N1—C10 79.72 (17) N1—C1—C11—C12 −146.9 (3)
Cl2—Co—N1—C10 −99.78 (17) C2—C1—C11—C12 36.6 (4)
N1—Co—N2—C4 −147.55 (17) C1—C11—C12—C13 −100.9 (4)
N3—Co—N2—C4 33.62 (16) C1—C11—C12—C17 76.4 (4)
Cl1—Co—N2—C4 −57.49 (16) C17—C12—C13—C14 −0.8 (5)
Cl2—Co—N2—C4 122.50 (16) C11—C12—C13—C14 176.6 (3)
N1—Co—N2—C3 −11.10 (19) C12—C13—C14—C15 0.0 (5)
N3—Co—N2—C3 170.07 (19) C13—C14—C15—C16 0.3 (6)
Cl1—Co—N2—C3 78.97 (18) C14—C15—C16—C17 0.1 (7)
Cl2—Co—N2—C3 −101.05 (18) C13—C12—C17—C16 1.2 (5)
N4—Co—N3—C6 −20.2 (2) C11—C12—C17—C16 −176.2 (4)
N2—Co—N3—C6 156.0 (2) C15—C16—C17—C12 −0.9 (7)
Cl1—Co—N3—C6 −112.1 (2) N2—C3—C19—C20 −173.9 (2)
Cl2—Co—N3—C6 67.4 (2) C18—C3—C19—C20 63.4 (3)
N4—Co—N3—C5 172.08 (17) C2—C3—C19—C20 −59.5 (3)
N2—Co—N3—C5 −11.75 (17) C3—C19—C20—C21 99.1 (3)
Cl1—Co—N3—C5 80.12 (16) C3—C19—C20—C25 −83.0 (3)
Cl2—Co—N3—C5 −100.38 (16) C25—C20—C21—C22 0.7 (4)
N1—Co—N4—C9 32.08 (16) C19—C20—C21—C22 178.6 (3)
N3—Co—N4—C9 −149.10 (16) C20—C21—C22—C23 −0.2 (5)
Cl1—Co—N4—C9 −57.59 (16) C21—C22—C23—C24 0.0 (5)
Cl2—Co—N4—C9 122.43 (16) C22—C23—C24—C25 −0.5 (5)
N1—Co—N4—C8 168.8 (2) C23—C24—C25—C20 1.0 (5)
N3—Co—N4—C8 −12.35 (19) C21—C20—C25—C24 −1.1 (4)
Cl1—Co—N4—C8 79.16 (18) C19—C20—C25—C24 −179.0 (3)
Cl2—Co—N4—C8 −100.83 (18) N3—C6—C26—C27 114.5 (3)
C10—N1—C1—C2 172.4 (2) C7—C6—C26—C27 −60.0 (3)
Co—N1—C1—C2 1.0 (4) C6—C26—C27—C28 117.1 (3)
C10—N1—C1—C11 −4.0 (4) C6—C26—C27—C32 −62.3 (3)
Co—N1—C1—C11 −175.4 (2) C32—C27—C28—C29 −0.6 (4)
N1—C1—C2—C3 47.3 (4) C26—C27—C28—C29 179.9 (3)
C11—C1—C2—C3 −136.2 (3) C27—C28—C29—C30 0.4 (5)
C4—N2—C3—C18 59.2 (3) C28—C29—C30—C31 0.2 (5)
Co—N2—C3—C18 −73.0 (2) C29—C30—C31—C32 −0.6 (4)
C4—N2—C3—C2 −179.6 (2) C30—C31—C32—C27 0.4 (4)
Co—N2—C3—C2 48.2 (2) C28—C27—C32—C31 0.2 (4)
C4—N2—C3—C19 −62.3 (3) C26—C27—C32—C31 179.7 (2)
Co—N2—C3—C19 165.48 (17) N4—C8—C34A—C35A −175.9 (8)
C1—C2—C3—N2 −70.3 (3) C33—C8—C34A—C35A −54.6 (11)
C1—C2—C3—C18 51.6 (3) C7—C8—C34A—C35A 66.0 (11)
C1—C2—C3—C19 174.0 (2) C8—C34A—C35A—C36A 95.3 (10)
C3—N2—C4—C5 174.1 (2) C8—C34A—C35A—C40A −87.4 (9)
Co—N2—C4—C5 −48.0 (2) C40A—C35A—C36A—C37A 0.0
C6—N3—C5—C4 178.9 (2) C34A—C35A—C36A—C37A 177.3 (6)
Co—N3—C5—C4 −12.5 (3) C35A—C36A—C37A—C38A 0.0
N2—C4—C5—N3 39.2 (3) C36A—C37A—C38A—C39A 0.0
C5—N3—C6—C7 177.1 (2) C37A—C38A—C39A—C40A 0.0
Co—N3—C6—C7 10.1 (4) C38A—C39A—C40A—C35A 0.0
C5—N3—C6—C26 3.0 (4) C36A—C35A—C40A—C39A 0.0
Co—N3—C6—C26 −163.99 (19) C34A—C35A—C40A—C39A −177.2 (6)
N3—C6—C7—C8 37.7 (4) N4—C8—C34B—C35B 165 (2)
C26—C6—C7—C8 −147.7 (2) C33—C8—C34B—C35B −76 (3)
C9—N4—C8—C33 −62.9 (3) C7—C8—C34B—C35B 43 (3)
Co—N4—C8—C33 164.00 (18) C8—C34B—C35B—C36B 79 (3)
C9—N4—C8—C7 −178.2 (2) C8—C34B—C35B—C40B −95 (3)
Co—N4—C8—C7 48.7 (3) C40B—C35B—C36B—C37B 0.0
C9—N4—C8—C34B 55.5 (17) C34B—C35B—C36B—C37B −173.2 (16)
Co—N4—C8—C34B −77.6 (17) C35B—C36B—C37B—C38B 0.0
C9—N4—C8—C34A 60.3 (7) C36B—C37B—C38B—C39B 0.0
Co—N4—C8—C34A −72.8 (6) C37B—C38B—C39B—C40B 0.0
C6—C7—C8—N4 −66.1 (3) C38B—C39B—C40B—C35B 0.0
C6—C7—C8—C33 177.7 (2) C36B—C35B—C40B—C39B 0.0
C6—C7—C8—C34B 57.6 (19) C34B—C35B—C40B—C39B 173.3 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2n···O1 0.88 (3) 2.24 (3) 3.063 (4) 155 (2)
N4—H4n···Cl2i 0.88 (3) 2.64 (2) 3.432 (2) 150 (3)
C10—H10a···O3ii 0.99 2.50 3.437 (4) 159
C19—H19b···O1iii 0.99 2.54 3.409 (4) 147
C38a—H38a···O4iv 0.95 2.57 3.480 (3) 160

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y, −z+1; (iv) x−1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2479).

References

  1. Bembi, R., Roy, T. G., Jhanji, A. K. & Maheswari, A. (1990). J. Chem. Soc. Dalton Trans. pp. 3531–3534.
  2. Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Hazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8.
  6. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC. (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  8. Roy, T. G., Hazari, S. K. S., Dey, B. K., Miah, H. A., Olbrich, F. & Rehder, D. (2007). Inorg. Chem. 46, 5372–5380. [DOI] [PubMed]
  9. Roy, T. G., Hazari, S. K. S., Dey, B. K., Nath, B. C., Dutta, A., Olbrich, F. & Rehder, D. (2011a). Inorg. Chim. Acta, 371, 63–70.
  10. Roy, T. G., Hazari, S. K. S., Nath, B. C., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, m1581–m1582. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046484/pv2479sup1.cif

e-67-m1722-sup1.cif (37.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046484/pv2479Isup2.hkl

e-67-m1722-Isup2.hkl (358.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES