Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 9;67(Pt 12):m1727–m1728. doi: 10.1107/S1600536811046691

catena-Poly[[lead(II)-μ-N′-[1-(pyridin-2-yl-κN)ethyl­idene]isonicotino­hydrazidato-κ3 N′,O:N 1] perchlorate]

Gholam Hossein Shahverdizadeh a,, Edward R T Tiekink b,*, Babak Mirtamizdoust c
PMCID: PMC3238641  PMID: 22199532

Abstract

The PbII atom in the polymeric title compound, {[Pb(C13H11N4O)]ClO4}n, is coordinated by the N′-[1-(pyridin-2-yl-κN)ethyl­idene]isonicotinohydrazidate ligand via its O,N,N′-donors and simultaneously bridged by a neighbouring ligand via the pyridin-2-yl N atom. The resultant supra­molecular chain is a zigzag along the a axis. The stereochemistry of the PbII atom is defined by an N3OE donor set (E = lone pair of electrons), which results in a Ψ-trigonal–bipyramidal coordination with the O and pyridin-2-yl N atoms in axial positions. The dihedral angle between the pyridine rings of the ligand is 6.3 (3)°. The supra­molecular cationic chains are linked into a three-dimensional array via secondary Pb⋯O [3.133 (6) and 3.28 (7) Å] and Pb⋯N [3.028 (4) Å] inter­actions. Weak C—H⋯O inter­actions and aromatic π–π stacking [centroid–centroid separation = 3.693 (2) Å] also occur in the crystal.

Related literature

For the structures of metal complexes containing the N′-[1-(2-pyrid­yl)ethyl­idene]isonicotinohydrazide ligand, see: Maurya et al. (2002); Abboud et al. (2007); Zhang & Liu (2009); Hao et al. (2010). For specialized crystallization techniques, see: Harrowfield et al. (1996).graphic file with name e-67-m1727-scheme1.jpg

Experimental

Crystal data

  • [Pb(C13H11N4O)]ClO4

  • M r = 545.90

  • Monoclinic, Inline graphic

  • a = 10.0620 (6) Å

  • b = 14.4431 (8) Å

  • c = 11.1456 (7) Å

  • β = 99.174 (1)°

  • V = 1599.03 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.75 mm−1

  • T = 293 K

  • 0.29 × 0.11 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.691, T max = 1.000

  • 8396 measured reflections

  • 2811 independent reflections

  • 2392 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.056

  • S = 1.07

  • 2811 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046691/hb6465sup1.cif

e-67-m1727-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046691/hb6465Isup2.hkl

e-67-m1727-Isup2.hkl (135.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pb—O1 2.405 (3)
Pb—N1 2.597 (4)
Pb—N2 2.456 (4)
Pb—N4i 2.472 (4)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3ii 0.93 2.53 3.422 (10) 160
C4—H4⋯O1iii 0.93 2.45 3.277 (7) 148
C10—H10⋯O2iv 0.93 2.57 3.485 (8) 170

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Islamic Azad University for support.

supplementary crystallographic information

Comment

Structural studies of coordination complexes containing the N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand are rare (Maurya et al., 2002; Abboud et al., 2007; Zhang & Liu, 2009; Hao et al., 2010). In each of these, the ligand coordinates in a tridentate mode with the terminal 4-pyridyl-N atom being non-coordinating. In the title lead(II) complex, (I), all four donor atoms participate in coordination of the Pb atom.

The asymmetric unit of (I), Fig. 1, comprises a Pb atom, a N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide anion and a perchlorate anion. The N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand coordinates a lead atom in a tridentate mode, via the N1, N2 and O1 atoms, and simultaneously bridges a symmetry related lead atom via the 4-pyridyl-N4 atom, Table 1.

The resultant N3O donor set plus the lone pair of electrons is based on a trigonal bipyramid with the O1 and N1 atoms in axial positions [O1—Pb—N1 = 126.27 (12)°] and the remaining N atoms [N2—Pb—N4i = 90.17 (13)°] and lone pair in equatorial positions; symmetry operation i: -1/2 + x, 1.5 - y, -1/2 + z. The µ2-bridging mode of the tetradentate N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand leads to a zigzag chain along the a axis, Fig. 2. The considerable distortions from the ideal geometry arise from the acute chelate angles (O1—Pb—N2 = 64.75 (12)° and N1—Pb—N2 = 63.45 (12)°) as well as the close approach of other donor atoms. Most notable amongst the latter are Pb···O(perchlorate) interactions with the two shortest contacts being Pb···O4ii of 3.133 (6) Å and Pb···O5iii = 3.287 (7) Å for i: -1 + x, y, z and ii: 1 - x, 1 - y, 2 - z. These interactions along with Pb···N3iii contacts of 3.028 (4) Å [iii: 1 - x, 1 - y, 2 - z] generate a three-dimensional architecture, Fig. 3.

Experimental

A solution of methyl 2-pyridyl ketone (10 mmol) in MeOH (25 ml) was added drop wise to a solution of 4-pyridinecarboxylic acid hydrazide (10 mmol) in MeOH (15 ml). The mixture was refluxed for 6 h. The white precipitate was removed by filtration and recrystallized from MeOH solution. Then the ligand (1 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and a mixture of lead(II) acetate (1 mmol) and sodium perchlorate (1 mmol) in the other. Methanol was then added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After 1 week, yellow needles of (I) had deposited in the arm held at ambient temperature. They were then filtered off, washed with acetone and ether, and air dried. Yield: 75%. M.pt.: 506 K

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93–0.96 Å, Uiso(H) = 1.2–1.5Ueq(parent atom)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) showing displacement ellipsoids at the 35% probability level. The molecular structure has been expanded to indicate the µ2-bridging mode of the tetradentate ligand. Symmetry operation i: -1/2 + x, 1.5 - y, -1/2 + z; ii: 1/2 + x, 1.5 - y, 1/2 + z.

Fig. 2.

Fig. 2.

A view of the zigzag chain along the a axis in (I).

Fig. 3.

Fig. 3.

A view in projection down the a axis of the crystal packing in (I). The weaker Pb···O and Pb···N interactions (see text) are shown as black and blue dashed lines, respectively.

Crystal data

[Pb(C13H11N4O)]ClO4 F(000) = 1024
Mr = 545.90 Dx = 2.268 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4195 reflections
a = 10.0620 (6) Å θ = 2.3–25.0°
b = 14.4431 (8) Å µ = 10.75 mm1
c = 11.1456 (7) Å T = 293 K
β = 99.174 (1)° Needle, yellow
V = 1599.03 (16) Å3 0.29 × 0.11 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2811 independent reflections
Radiation source: fine-focus sealed tube 2392 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.691, Tmax = 1.000 k = −11→17
8396 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0241P)2 + 1.6546P] where P = (Fo2 + 2Fc2)/3
2811 reflections (Δ/σ)max = 0.001
218 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb 0.260829 (17) 0.509355 (12) 0.899845 (16) 0.03242 (8)
O1 0.3478 (3) 0.6440 (2) 1.0129 (3) 0.0444 (9)
N1 0.3495 (4) 0.4394 (3) 0.7130 (4) 0.0376 (10)
N2 0.4858 (4) 0.5592 (3) 0.8673 (3) 0.0308 (9)
N3 0.5527 (4) 0.6241 (3) 0.9458 (4) 0.0350 (10)
N4 0.6569 (4) 0.8756 (3) 1.2492 (4) 0.0388 (10)
C1 0.4775 (5) 0.4584 (3) 0.7001 (4) 0.0341 (11)
C2 0.5405 (6) 0.4140 (4) 0.6142 (5) 0.0435 (13)
H2 0.6291 0.4280 0.6070 0.052*
C3 0.4696 (7) 0.3487 (4) 0.5400 (5) 0.0528 (15)
H3 0.5103 0.3183 0.4818 0.063*
C4 0.3396 (6) 0.3285 (4) 0.5516 (5) 0.0511 (15)
H4 0.2907 0.2843 0.5021 0.061*
C5 0.2827 (6) 0.3754 (4) 0.6388 (5) 0.0465 (13)
H5 0.1940 0.3621 0.6466 0.056*
C6 0.5476 (5) 0.5291 (3) 0.7823 (4) 0.0303 (10)
C7 0.6833 (5) 0.5647 (4) 0.7653 (5) 0.0457 (13)
H7A 0.6929 0.6278 0.7926 0.068*
H7B 0.6918 0.5617 0.6808 0.068*
H7C 0.7521 0.5275 0.8117 0.068*
C8 0.4712 (5) 0.6637 (3) 1.0126 (4) 0.0310 (11)
C9 0.5353 (5) 0.7392 (3) 1.0933 (4) 0.0328 (11)
C10 0.4698 (5) 0.7752 (3) 1.1837 (5) 0.0367 (11)
H10 0.3848 0.7541 1.1932 0.044*
C11 0.5342 (5) 0.8432 (3) 1.2592 (5) 0.0389 (12)
H11 0.4903 0.8675 1.3196 0.047*
C12 0.7181 (6) 0.8406 (4) 1.1623 (6) 0.0511 (15)
H12 0.8036 0.8621 1.1550 0.061*
C13 0.6599 (5) 0.7735 (4) 1.0819 (5) 0.0492 (14)
H13 0.7048 0.7518 1.0207 0.059*
Cl1 0.95237 (15) 0.36424 (10) 0.81424 (16) 0.0580 (4)
O2 0.8284 (6) 0.3288 (5) 0.7644 (6) 0.123 (2)
O3 1.0468 (7) 0.2953 (5) 0.8172 (8) 0.166 (4)
O4 0.9936 (6) 0.4365 (4) 0.7458 (5) 0.1034 (19)
O5 0.9435 (7) 0.3990 (5) 0.9303 (6) 0.136 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb 0.02641 (11) 0.03361 (12) 0.03622 (12) −0.00167 (8) 0.00186 (8) 0.00472 (8)
O1 0.024 (2) 0.051 (2) 0.058 (2) −0.0028 (16) 0.0077 (17) −0.0170 (18)
N1 0.038 (2) 0.035 (2) 0.039 (2) −0.0048 (18) 0.0035 (19) −0.0047 (18)
N2 0.026 (2) 0.028 (2) 0.037 (2) 0.0003 (16) −0.0002 (18) −0.0026 (17)
N3 0.032 (2) 0.031 (2) 0.040 (2) −0.0021 (17) 0.0030 (19) −0.0055 (18)
N4 0.033 (2) 0.034 (2) 0.048 (3) −0.0015 (18) 0.002 (2) −0.0085 (19)
C1 0.042 (3) 0.026 (2) 0.033 (3) 0.000 (2) 0.004 (2) 0.003 (2)
C2 0.050 (3) 0.039 (3) 0.044 (3) −0.005 (2) 0.016 (3) −0.008 (2)
C3 0.071 (4) 0.043 (3) 0.047 (3) −0.005 (3) 0.018 (3) −0.011 (3)
C4 0.069 (4) 0.043 (3) 0.038 (3) −0.017 (3) 0.001 (3) −0.013 (3)
C5 0.038 (3) 0.044 (3) 0.055 (3) −0.012 (2) 0.000 (3) −0.006 (3)
C6 0.029 (3) 0.029 (2) 0.033 (3) 0.001 (2) 0.003 (2) 0.002 (2)
C7 0.041 (3) 0.052 (3) 0.046 (3) −0.010 (3) 0.015 (3) −0.008 (3)
C8 0.030 (3) 0.028 (2) 0.033 (3) 0.0022 (19) −0.002 (2) 0.0010 (19)
C9 0.033 (3) 0.029 (3) 0.034 (3) 0.000 (2) −0.001 (2) −0.004 (2)
C10 0.030 (3) 0.037 (3) 0.043 (3) 0.000 (2) 0.005 (2) −0.004 (2)
C11 0.037 (3) 0.040 (3) 0.040 (3) 0.001 (2) 0.008 (2) −0.007 (2)
C12 0.036 (3) 0.051 (3) 0.070 (4) −0.011 (3) 0.018 (3) −0.023 (3)
C13 0.040 (3) 0.052 (3) 0.059 (4) −0.011 (3) 0.019 (3) −0.020 (3)
Cl1 0.0411 (8) 0.0515 (9) 0.0836 (12) −0.0050 (7) 0.0165 (8) 0.0117 (8)
O2 0.070 (4) 0.162 (6) 0.140 (5) −0.055 (4) 0.026 (4) −0.042 (5)
O3 0.128 (6) 0.143 (6) 0.246 (9) 0.083 (5) 0.084 (6) 0.103 (6)
O4 0.114 (5) 0.073 (3) 0.132 (5) −0.007 (3) 0.046 (4) 0.040 (3)
O5 0.134 (6) 0.191 (7) 0.090 (4) −0.061 (5) 0.035 (4) −0.037 (5)

Geometric parameters (Å, °)

Pb—O1 2.405 (3) C4—H4 0.9300
Pb—N1 2.597 (4) C5—H5 0.9300
Pb—N2 2.456 (4) C6—C7 1.499 (6)
Pb—N4i 2.472 (4) C7—H7A 0.9600
O1—C8 1.274 (5) C7—H7B 0.9600
N1—C1 1.347 (6) C7—H7C 0.9600
N1—C5 1.347 (6) C8—C9 1.494 (6)
N2—C6 1.289 (6) C9—C13 1.372 (7)
N2—N3 1.383 (5) C9—C10 1.389 (7)
N3—C8 1.322 (6) C10—C11 1.385 (7)
N4—C12 1.329 (6) C10—H10 0.9300
N4—C11 1.341 (6) C11—H11 0.9300
N4—Pbii 2.472 (4) C12—C13 1.385 (7)
C1—C2 1.387 (7) C12—H12 0.9300
C1—C6 1.475 (7) C13—H13 0.9300
C2—C3 1.376 (7) Cl1—O3 1.372 (6)
C2—H2 0.9300 Cl1—O2 1.380 (5)
C3—C4 1.367 (8) Cl1—O4 1.394 (5)
C3—H3 0.9300 Cl1—O5 1.404 (6)
C4—C5 1.381 (7)
O1—Pb—N2 64.75 (12) N2—C6—C7 122.3 (4)
O1—Pb—N4i 83.77 (14) C1—C6—C7 120.9 (4)
N2—Pb—N4i 90.17 (13) C6—C7—H7A 109.5
O1—Pb—N1 126.27 (12) C6—C7—H7B 109.5
N2—Pb—N1 63.45 (12) H7A—C7—H7B 109.5
N4i—Pb—N1 83.07 (13) C6—C7—H7C 109.5
C8—O1—Pb 116.9 (3) H7A—C7—H7C 109.5
C1—N1—C5 117.8 (4) H7B—C7—H7C 109.5
C1—N1—Pb 117.6 (3) O1—C8—N3 126.7 (4)
C5—N1—Pb 123.9 (3) O1—C8—C9 119.3 (4)
C6—N2—N3 116.7 (4) N3—C8—C9 114.1 (4)
C6—N2—Pb 125.0 (3) C13—C9—C10 118.6 (4)
N3—N2—Pb 118.2 (3) C13—C9—C8 121.4 (4)
C8—N3—N2 111.5 (4) C10—C9—C8 120.0 (4)
C12—N4—C11 117.9 (4) C11—C10—C9 118.4 (5)
C12—N4—Pbii 123.8 (3) C11—C10—H10 120.8
C11—N4—Pbii 118.3 (3) C9—C10—H10 120.8
N1—C1—C2 122.0 (5) N4—C11—C10 123.0 (5)
N1—C1—C6 116.5 (4) N4—C11—H11 118.5
C2—C1—C6 121.6 (5) C10—C11—H11 118.5
C3—C2—C1 118.8 (5) N4—C12—C13 122.8 (5)
C3—C2—H2 120.6 N4—C12—H12 118.6
C1—C2—H2 120.6 C13—C12—H12 118.6
C2—C3—C4 120.2 (5) C9—C13—C12 119.4 (5)
C2—C3—H3 119.9 C9—C13—H13 120.3
C4—C3—H3 119.9 C12—C13—H13 120.3
C3—C4—C5 118.2 (5) O3—Cl1—O2 108.6 (5)
C3—C4—H4 120.9 O3—Cl1—O4 106.9 (4)
C5—C4—H4 120.9 O2—Cl1—O4 112.7 (4)
N1—C5—C4 123.1 (5) O3—Cl1—O5 112.5 (5)
N1—C5—H5 118.5 O2—Cl1—O5 108.5 (4)
C4—C5—H5 118.5 O4—Cl1—O5 107.7 (4)
N2—C6—C1 116.8 (4)
N2—Pb—O1—C8 −10.2 (3) C3—C4—C5—N1 −0.4 (9)
N4i—Pb—O1—C8 −103.3 (4) N3—N2—C6—C1 178.8 (4)
N1—Pb—O1—C8 −26.7 (4) Pb—N2—C6—C1 −0.9 (6)
O1—Pb—N1—C1 23.1 (4) N3—N2—C6—C7 −2.2 (7)
N2—Pb—N1—C1 6.4 (3) Pb—N2—C6—C7 178.1 (3)
N4i—Pb—N1—C1 100.1 (3) N1—C1—C6—N2 7.1 (7)
O1—Pb—N1—C5 −166.7 (4) C2—C1—C6—N2 −172.7 (4)
N2—Pb—N1—C5 176.6 (4) N1—C1—C6—C7 −171.9 (4)
N4i—Pb—N1—C5 −89.7 (4) C2—C1—C6—C7 8.2 (7)
O1—Pb—N2—C6 −167.9 (4) Pb—O1—C8—N3 8.1 (6)
N4i—Pb—N2—C6 −84.9 (4) Pb—O1—C8—C9 −172.5 (3)
N1—Pb—N2—C6 −2.7 (3) N2—N3—C8—O1 3.4 (7)
O1—Pb—N2—N3 12.4 (3) N2—N3—C8—C9 −176.0 (4)
N4i—Pb—N2—N3 95.4 (3) O1—C8—C9—C13 −169.0 (5)
N1—Pb—N2—N3 177.6 (3) N3—C8—C9—C13 10.5 (7)
C6—N2—N3—C8 167.1 (4) O1—C8—C9—C10 12.2 (7)
Pb—N2—N3—C8 −13.1 (5) N3—C8—C9—C10 −168.3 (4)
C5—N1—C1—C2 −0.4 (7) C13—C9—C10—C11 −0.8 (8)
Pb—N1—C1—C2 170.4 (4) C8—C9—C10—C11 178.0 (4)
C5—N1—C1—C6 179.8 (5) C12—N4—C11—C10 0.3 (8)
Pb—N1—C1—C6 −9.5 (5) Pbii—N4—C11—C10 −176.6 (4)
N1—C1—C2—C3 0.2 (8) C9—C10—C11—N4 −0.2 (8)
C6—C1—C2—C3 −179.9 (5) C11—N4—C12—C13 0.7 (9)
C1—C2—C3—C4 −0.2 (9) Pbii—N4—C12—C13 177.4 (4)
C2—C3—C4—C5 0.2 (9) C10—C9—C13—C12 1.7 (8)
C1—N1—C5—C4 0.5 (8) C8—C9—C13—C12 −177.1 (5)
Pb—N1—C5—C4 −169.7 (4) N4—C12—C13—C9 −1.7 (9)

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x+1/2, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O3iii 0.93 2.53 3.422 (10) 160
C4—H4···O1iv 0.93 2.45 3.277 (7) 148
C10—H10···O2v 0.93 2.57 3.485 (8) 170

Symmetry codes: (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6465).

References

  1. Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642–3646.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Hao, Z.-Y., Liu, Q.-W., Xu, J., Jia, L. & Li, S.-B. (2010). Chem. Pharm. Bull. 58, 1306–1312. [DOI] [PubMed]
  6. Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.
  7. Maurya, M. R., Khurana, S., Zhang, W. & Rehder, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 3015–3023.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Zhang, Y.-Y. & Liu, S.-X. (2009). Acta Cryst. C65, m269–m272. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046691/hb6465sup1.cif

e-67-m1727-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046691/hb6465Isup2.hkl

e-67-m1727-Isup2.hkl (135.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES