Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 9;67(Pt 12):m1729–m1730. doi: 10.1107/S1600536811046769

catena-Poly[[[bis­(methanol-κO)lead(II)]-μ-N′-[1-(pyridin-2-yl-κN)ethyl­idene]isonicotinohydrazidato-κ3 N′,O:N 1] perchlorate]

Gholam Hossein Shahverdizadeh a,, Edward R T Tiekink b,*, Babak Mirtamizdoust c
PMCID: PMC3238642  PMID: 22199533

Abstract

The PbII atom in the polymeric title compound, {[Pb(C13H11N4O)(CH3OH)2]ClO4}n, is coordinated by an N′-[1-(pyridin-2-yl-κN)ethyl­idene]isonicotinohydrazidate ligand via O,N,N′-donors and simultaneously bridged by a neighbouring ligand via the isonicotinoyl N atom; two additional sites are occupied by methanol O atoms. The resultant supra­molecular chain is a zigzag along the c axis. The PbII atom is seven-coordinated within an N3O3 donor set and a lone pair of electrons, which defines a Ψ-pentagonal–bipyramidal coordination geometry with the pyridine N and lone pair in axial positions. The supra­molecular chains are linked into the two-dimensional array via inter­molecular Pb⋯N [3.020 (4) Å] inter­actions. Layers stack along the a axis, being connected by O—H⋯O hydrogen bonds formed between the coordinated methanol mol­ecules and perchlorate anions.

Related literature

For the structures of metal complexes containing the N′-[1-(2-pyrid­yl)ethyl­idene]isonicotinohydrazide ligand, see: Maurya et al. (2002); Abboud et al. (2007); Zhang & Liu (2009); Hao et al. (2010); Shahverdizadeh et al. (2011). For specialized crystallization techniques, see: Harrowfield et al. (1996).graphic file with name e-67-m1729-scheme1.jpg

Experimental

Crystal data

  • [Pb(C13H11N4O)(CH4O)2]ClO4

  • M r = 609.98

  • Monoclinic, Inline graphic

  • a = 11.2122 (14) Å

  • b = 13.4644 (17) Å

  • c = 14.1451 (18) Å

  • β = 111.906 (2)°

  • V = 1981.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.70 mm−1

  • T = 173 K

  • 0.46 × 0.43 × 0.37 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.108, T max = 0.141

  • 10367 measured reflections

  • 3492 independent reflections

  • 2641 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.066

  • S = 1.05

  • 3492 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.98 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046769/hg5133sup1.cif

e-67-m1729-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046769/hg5133Isup2.hkl

e-67-m1729-Isup2.hkl (167.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pb—O1 2.415 (3)
Pb—O2 2.733 (4)
Pb—O3 2.891 (4)
Pb—N1 2.669 (4)
Pb—N2 2.493 (4)
Pb—N4i 2.477 (4)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O4 0.84 2.16 2.909 (7) 149
O3—H3o⋯O5ii 0.84 2.11 2.930 (7) 166

Symmetry code: (ii) Inline graphic.

Acknowledgments

The authors thank the Islamic Azad University for support.

supplementary crystallographic information

Comment

Structural studies of coordination complexes containing the N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand are rare (Maurya et al., 2002; Abboud et al., 2007; Zhang & Liu, 2009; Hao et al., 2010). In each of these, the ligand coordinates in a tridentate mode with the terminal 4-pyridyl-N atom being non-coordinating. In a recently reported PbII structure, all four donor atoms were involved in coordination leading to a zigzag chain (Shahverdizadeh et al., 2011). A similar mode of coordination was found in the title lead(II) complex, (I), with complete details described herein.

The crystallographic asymmetric unit of (I), Fig. 1, comprises a PbII atom, an N'-1-(2-pyridyl)ethylidene]isonicotinohydrazide anion, a perchlorate anion, and two methanol molecules. The N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand coordinates a lead atom in a tridentate mode, via the N1, N2 and O1 atoms, and simultaneously bridges a symmetry related lead atom via the 4-pyridyl-N4 atom., Table 1. Both methanol molecules are connected to the PbII atom. The resulting N3O3 donor set, along with a stereochemically active lone pair of electrons, define a pentagonal bipyramidal geometry with the pyridyl-N4 atom lone pair of electrons occupying axial positions. The µ2-bridging mode of the tetradentate N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand leads to a zigzag chain (glide symmetry) along the c axis, Fig. 2.

In the crystal packing, centrosymmetrically related supramolecular chains are linked into a two-dimensional array by Pb···N interactions [Pb···N3i = 3.020 (4) Å for i: 1 - x, 1 - y, 1 - z]. The layers thus formed in the bc plane are connected into a three-dimensional architecture via O—H···O hydrogen bonds involving the coordinated methanol molecules and the perchlorate anions, Fig. 4 and Table 2.

Experimental

A solution of methyl 2-pyridyl ketone (15 mmol) in MeOH (25 ml) was added drop-wise to a solution of 4-pyridinecarboxylic acid hydrazide (15 mmol) in MeOH (15 ml). The mixture was refluxed for 6 h. The white precipitate was removed by filtration and recrystallized from MeOH solution. Then the compound (1 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and a mixture of lead(II) acetate (1 mmol) and sodium perchlorate (1 mmol) in the other. Methanol was then added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After 2 weeks, crystals had deposited in the arm held at ambient temperature. They were filtered off, washed with acetone and ether, and air dried. Yield: 66%; M.pt.: 516 K.

Refinement

The O– and C-bound H-atoms were placed in calculated positions [O—H = 0.84 Å; C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(parent atom)] and were included in the refinement in the riding model approximation. The atoms comprising the coordinated methanol molecules (and anion) exhibit greater thermal motion than the other atoms in the structure. No evidence for resolvable disorder was found, however.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecular structure has been expanded to indicate the µ2-bridging mode of the tetradentate ligand. Symmetry operations i: x, 0.5 - y, -1/2 + z; ii: x, 1/2 + y, 0.5 - z.

Fig. 2.

Fig. 2.

A view of the supramolecular zigzag chain along the c axis in (I).

Fig. 3.

Fig. 3.

A view of the two-dimensional array in the bc plane in (I). The weaker Pb···N interactions (see text) are shown as blue dashed lines.

Fig. 4.

Fig. 4.

A view in projection down the c axis of the crystal packing in (I). The weaker Pb···N interactions (see text) are shown as blue dashed lines, and the O—H···O hydrogen bonds are shown as orange dashed lines.

Crystal data

[Pb(C13H11N4O)(CH4O)2]ClO4 F(000) = 1168
Mr = 609.98 Dx = 2.045 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4546 reflections
a = 11.2122 (14) Å θ = 2.2–25.0°
b = 13.4644 (17) Å µ = 8.70 mm1
c = 14.1451 (18) Å T = 173 K
β = 111.906 (2)° Prism, yellow
V = 1981.2 (4) Å3 0.46 × 0.43 × 0.37 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3492 independent reflections
Radiation source: fine-focus sealed tube 2641 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→8
Tmin = 0.108, Tmax = 0.141 k = −16→15
10367 measured reflections l = −12→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0282P)2 + 6.1832P] where P = (Fo2 + 2Fc2)/3
3492 reflections (Δ/σ)max = 0.001
255 parameters Δρmax = 0.97 e Å3
0 restraints Δρmin = −0.98 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb 0.379666 (16) 0.502370 (14) 0.303341 (13) 0.01308 (8)
Cl1 −0.07646 (14) 0.25586 (11) 0.34029 (12) 0.0297 (3)
O1 0.3551 (3) 0.3685 (3) 0.4082 (3) 0.0160 (8)
O2 0.1391 (4) 0.4209 (3) 0.2361 (3) 0.0304 (10)
H2O 0.1367 0.3678 0.2666 0.037*
O3 0.2933 (5) 0.5804 (4) 0.0983 (3) 0.0449 (12)
H3O 0.2399 0.6262 0.0916 0.054*
O4 0.0480 (5) 0.2805 (5) 0.3505 (4) 0.080 (2)
O5 −0.0732 (6) 0.2110 (5) 0.4315 (4) 0.081 (2)
O6 −0.1531 (6) 0.3419 (5) 0.3194 (5) 0.088 (2)
O7 −0.1306 (6) 0.1904 (5) 0.2568 (4) 0.076 (2)
N1 0.6011 (4) 0.5630 (3) 0.2931 (3) 0.0171 (10)
N2 0.5835 (4) 0.4394 (3) 0.4342 (3) 0.0138 (9)
N3 0.5741 (4) 0.3751 (3) 0.5074 (3) 0.0138 (9)
N4 0.4129 (4) 0.1305 (3) 0.6945 (3) 0.0168 (10)
C1 0.7110 (5) 0.5362 (4) 0.3701 (4) 0.0136 (11)
C2 0.8302 (5) 0.5696 (4) 0.3747 (5) 0.0255 (13)
H2 0.9062 0.5498 0.4293 0.031*
C3 0.8377 (6) 0.6317 (5) 0.2996 (5) 0.0313 (15)
H3 0.9188 0.6541 0.3011 0.038*
C4 0.7259 (6) 0.6607 (4) 0.2223 (5) 0.0285 (14)
H4 0.7282 0.7047 0.1705 0.034*
C5 0.6108 (5) 0.6249 (4) 0.2216 (4) 0.0205 (12)
H5 0.5340 0.6448 0.1679 0.025*
C6 0.6980 (5) 0.4684 (4) 0.4476 (4) 0.0147 (11)
C7 0.8175 (5) 0.4367 (4) 0.5349 (4) 0.0195 (12)
H7A 0.7934 0.3963 0.5826 0.029*
H7B 0.8646 0.4956 0.5701 0.029*
H7C 0.8722 0.3975 0.5087 0.029*
C8 0.4546 (5) 0.3432 (4) 0.4834 (4) 0.0125 (11)
C9 0.4411 (5) 0.2683 (4) 0.5577 (4) 0.0120 (10)
C10 0.3203 (5) 0.2332 (4) 0.5473 (4) 0.0163 (11)
H10 0.2457 0.2561 0.4932 0.020*
C11 0.3101 (5) 0.1652 (4) 0.6160 (4) 0.0182 (12)
H11 0.2271 0.1414 0.6080 0.022*
C12 0.5287 (5) 0.1646 (4) 0.7041 (4) 0.0174 (12)
H12 0.6019 0.1410 0.7590 0.021*
C13 0.5467 (5) 0.2326 (4) 0.6377 (4) 0.0148 (11)
H13 0.6307 0.2546 0.6468 0.018*
C15 0.0171 (6) 0.4465 (6) 0.1622 (6) 0.0463 (19)
H15A −0.0462 0.3962 0.1617 0.069*
H15B 0.0228 0.4497 0.0948 0.069*
H15C −0.0094 0.5114 0.1791 0.069*
C16 0.3117 (8) 0.5665 (8) 0.0072 (6) 0.065 (3)
H16A 0.3963 0.5365 0.0213 0.098*
H16B 0.3071 0.6307 −0.0265 0.098*
H16C 0.2447 0.5224 −0.0373 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb 0.01177 (12) 0.01436 (11) 0.01108 (11) 0.00120 (9) 0.00192 (8) −0.00026 (9)
Cl1 0.0206 (7) 0.0349 (8) 0.0335 (8) −0.0006 (7) 0.0101 (6) −0.0074 (7)
O1 0.013 (2) 0.020 (2) 0.0106 (18) −0.0043 (15) −0.0003 (15) 0.0014 (15)
O2 0.018 (2) 0.037 (2) 0.028 (2) −0.0036 (18) 0.0004 (18) 0.002 (2)
O3 0.046 (3) 0.057 (3) 0.035 (3) 0.024 (2) 0.018 (2) 0.015 (2)
O4 0.028 (3) 0.143 (6) 0.057 (4) −0.022 (3) 0.003 (3) 0.039 (4)
O5 0.099 (5) 0.097 (5) 0.048 (4) −0.042 (4) 0.031 (3) 0.000 (3)
O6 0.078 (5) 0.084 (5) 0.098 (5) 0.040 (4) 0.027 (4) −0.015 (4)
O7 0.078 (4) 0.075 (4) 0.050 (4) 0.013 (3) −0.006 (3) −0.032 (3)
N1 0.013 (2) 0.021 (2) 0.017 (2) −0.0003 (19) 0.0044 (19) 0.0029 (19)
N2 0.018 (2) 0.011 (2) 0.013 (2) 0.0007 (18) 0.0071 (18) 0.0020 (17)
N3 0.010 (2) 0.019 (2) 0.011 (2) −0.0015 (18) 0.0024 (18) 0.0029 (18)
N4 0.017 (2) 0.017 (2) 0.015 (2) 0.0003 (19) 0.0042 (19) 0.0030 (18)
C1 0.018 (3) 0.009 (2) 0.017 (3) 0.000 (2) 0.010 (2) −0.003 (2)
C2 0.014 (3) 0.027 (3) 0.033 (3) 0.004 (2) 0.006 (3) 0.010 (3)
C3 0.021 (3) 0.033 (4) 0.043 (4) 0.000 (3) 0.015 (3) 0.017 (3)
C4 0.036 (4) 0.023 (3) 0.030 (4) 0.000 (3) 0.016 (3) 0.010 (3)
C5 0.023 (3) 0.020 (3) 0.017 (3) 0.000 (2) 0.005 (2) 0.005 (2)
C6 0.013 (3) 0.013 (2) 0.017 (3) 0.002 (2) 0.004 (2) −0.001 (2)
C7 0.012 (3) 0.026 (3) 0.019 (3) 0.003 (2) 0.003 (2) 0.006 (2)
C8 0.013 (3) 0.012 (3) 0.012 (3) 0.000 (2) 0.003 (2) −0.003 (2)
C9 0.015 (3) 0.012 (2) 0.010 (2) −0.002 (2) 0.005 (2) −0.003 (2)
C10 0.013 (3) 0.020 (3) 0.011 (3) −0.002 (2) 0.000 (2) 0.000 (2)
C11 0.013 (3) 0.020 (3) 0.020 (3) −0.005 (2) 0.004 (2) 0.000 (2)
C12 0.016 (3) 0.021 (3) 0.014 (3) 0.000 (2) 0.003 (2) 0.000 (2)
C13 0.013 (3) 0.014 (3) 0.017 (3) 0.000 (2) 0.005 (2) 0.001 (2)
C15 0.024 (4) 0.056 (5) 0.044 (4) 0.006 (3) −0.004 (3) −0.005 (4)
C16 0.043 (5) 0.116 (8) 0.031 (4) 0.004 (5) 0.007 (4) 0.005 (5)

Geometric parameters (Å, °)

Pb—O1 2.415 (3) C2—H2 0.9500
Pb—O2 2.733 (4) C3—C4 1.378 (8)
Pb—O3 2.891 (4) C3—H3 0.9500
Pb—N1 2.669 (4) C4—C5 1.374 (8)
Pb—N2 2.493 (4) C4—H4 0.9500
Pb—N4i 2.477 (4) C5—H5 0.9500
Cl1—O4 1.389 (5) C6—C7 1.505 (7)
Cl1—O6 1.406 (6) C7—H7A 0.9800
Cl1—O5 1.412 (6) C7—H7B 0.9800
Cl1—O7 1.417 (5) C7—H7C 0.9800
O1—C8 1.268 (6) C8—C9 1.505 (7)
O2—C15 1.420 (7) C9—C13 1.384 (7)
O2—H2O 0.8400 C9—C10 1.389 (7)
O3—C16 1.392 (9) C10—C11 1.371 (7)
O3—H3O 0.8400 C10—H10 0.9500
N1—C5 1.345 (7) C11—H11 0.9500
N1—C1 1.354 (7) C12—C13 1.379 (7)
N2—C6 1.286 (7) C12—H12 0.9500
N2—N3 1.384 (6) C13—H13 0.9500
N3—C8 1.325 (7) C15—H15A 0.9800
N4—C12 1.335 (7) C15—H15B 0.9800
N4—C11 1.351 (7) C15—H15C 0.9800
N4—Pbii 2.477 (4) C16—H16A 0.9800
C1—C2 1.389 (7) C16—H16B 0.9800
C1—C6 1.475 (8) C16—H16C 0.9800
C2—C3 1.379 (8)
O1—Pb—N4i 85.45 (13) C2—C3—H3 120.5
O1—Pb—N2 64.74 (12) C5—C4—C3 118.7 (5)
N4i—Pb—N2 84.66 (14) C5—C4—H4 120.7
O1—Pb—N1 125.71 (12) C3—C4—H4 120.7
N4i—Pb—N1 80.14 (14) N1—C5—C4 123.4 (5)
N2—Pb—N1 61.99 (13) N1—C5—H5 118.3
O1—Pb—O2 65.79 (12) C4—C5—H5 118.3
N4i—Pb—O2 81.46 (14) N2—C6—C1 116.6 (5)
N2—Pb—O2 129.38 (13) N2—C6—C7 124.6 (5)
N1—Pb—O2 157.14 (13) C1—C6—C7 118.8 (5)
O1—Pb—O3 144.62 (13) C6—C7—H7A 109.5
N4i—Pb—O3 73.20 (14) C6—C7—H7B 109.5
N2—Pb—O3 137.72 (13) H7A—C7—H7B 109.5
N1—Pb—O3 78.73 (13) C6—C7—H7C 109.5
O2—Pb—O3 83.06 (14) H7A—C7—H7C 109.5
O4—Cl1—O6 109.6 (5) H7B—C7—H7C 109.5
O4—Cl1—O5 108.9 (4) O1—C8—N3 128.2 (5)
O6—Cl1—O5 110.5 (4) O1—C8—C9 118.6 (5)
O4—Cl1—O7 109.7 (4) N3—C8—C9 113.2 (4)
O6—Cl1—O7 107.4 (4) C13—C9—C10 118.1 (5)
O5—Cl1—O7 110.6 (4) C13—C9—C8 121.7 (5)
C8—O1—Pb 116.7 (3) C10—C9—C8 120.2 (5)
C15—O2—Pb 135.5 (4) C11—C10—C9 119.2 (5)
C15—O2—H2O 112.3 C11—C10—H10 120.4
Pb—O2—H2O 112.3 C9—C10—H10 120.4
C16—O3—Pb 140.3 (5) N4—C11—C10 122.8 (5)
C16—O3—H3O 109.8 N4—C11—H11 118.6
Pb—O3—H3O 109.8 C10—C11—H11 118.6
C5—N1—C1 117.8 (5) N4—C12—C13 122.9 (5)
C5—N1—Pb 124.6 (3) N4—C12—H12 118.6
C1—N1—Pb 117.4 (3) C13—C12—H12 118.6
C6—N2—N3 115.5 (4) C12—C13—C9 119.3 (5)
C6—N2—Pb 126.5 (3) C12—C13—H13 120.3
N3—N2—Pb 117.6 (3) C9—C13—H13 120.3
C8—N3—N2 111.3 (4) O2—C15—H15A 109.5
C12—N4—C11 117.6 (4) O2—C15—H15B 109.5
C12—N4—Pbii 123.4 (3) H15A—C15—H15B 109.5
C11—N4—Pbii 118.7 (3) O2—C15—H15C 109.5
N1—C1—C2 121.5 (5) H15A—C15—H15C 109.5
N1—C1—C6 116.8 (5) H15B—C15—H15C 109.5
C2—C1—C6 121.7 (5) O3—C16—H16A 109.5
C3—C2—C1 119.6 (5) O3—C16—H16B 109.5
C3—C2—H2 120.2 H16A—C16—H16B 109.5
C1—C2—H2 120.2 O3—C16—H16C 109.5
C4—C3—C2 119.0 (6) H16A—C16—H16C 109.5
C4—C3—H3 120.5 H16B—C16—H16C 109.5
N4i—Pb—O1—C8 94.7 (4) C5—N1—C1—C2 −1.2 (8)
N2—Pb—O1—C8 8.5 (3) Pb—N1—C1—C2 −175.8 (4)
N1—Pb—O1—C8 20.3 (4) C5—N1—C1—C6 −180.0 (5)
O2—Pb—O1—C8 177.4 (4) Pb—N1—C1—C6 5.4 (6)
O3—Pb—O1—C8 147.0 (3) N1—C1—C2—C3 0.2 (9)
O1—Pb—O2—C15 168.6 (6) C6—C1—C2—C3 178.9 (5)
N4i—Pb—O2—C15 −102.5 (6) C1—C2—C3—C4 1.2 (9)
N2—Pb—O2—C15 −178.4 (5) C2—C3—C4—C5 −1.4 (10)
N1—Pb—O2—C15 −65.8 (7) C1—N1—C5—C4 0.9 (8)
O3—Pb—O2—C15 −28.6 (6) Pb—N1—C5—C4 175.1 (4)
O1—Pb—O3—C16 −79.2 (8) C3—C4—C5—N1 0.4 (9)
N4i—Pb—O3—C16 −23.8 (8) N3—N2—C6—C1 179.5 (4)
N2—Pb—O3—C16 37.7 (9) Pb—N2—C6—C1 −8.2 (6)
N1—Pb—O3—C16 59.1 (8) N3—N2—C6—C7 0.4 (7)
O2—Pb—O3—C16 −107.0 (8) Pb—N2—C6—C7 172.8 (4)
O1—Pb—N1—C5 167.4 (4) N1—C1—C6—N2 1.1 (7)
N4i—Pb—N1—C5 90.3 (4) C2—C1—C6—N2 −177.7 (5)
N2—Pb—N1—C5 179.5 (5) N1—C1—C6—C7 −179.8 (5)
O2—Pb—N1—C5 53.5 (6) C2—C1—C6—C7 1.4 (8)
O3—Pb—N1—C5 15.6 (4) Pb—O1—C8—N3 −6.4 (7)
O1—Pb—N1—C1 −18.5 (4) Pb—O1—C8—C9 173.2 (3)
N4i—Pb—N1—C1 −95.5 (4) N2—N3—C8—O1 −3.9 (7)
N2—Pb—N1—C1 −6.3 (3) N2—N3—C8—C9 176.6 (4)
O2—Pb—N1—C1 −132.3 (4) O1—C8—C9—C13 175.8 (5)
O3—Pb—N1—C1 −170.2 (4) N3—C8—C9—C13 −4.6 (7)
O1—Pb—N2—C6 177.0 (5) O1—C8—C9—C10 −4.4 (7)
N4i—Pb—N2—C6 89.5 (4) N3—C8—C9—C10 175.2 (5)
N1—Pb—N2—C6 7.8 (4) C13—C9—C10—C11 0.0 (7)
O2—Pb—N2—C6 163.8 (4) C8—C9—C10—C11 −179.8 (5)
O3—Pb—N2—C6 31.8 (5) C12—N4—C11—C10 −0.3 (8)
O1—Pb—N2—N3 −10.8 (3) Pbii—N4—C11—C10 −175.1 (4)
N4i—Pb—N2—N3 −98.3 (3) C9—C10—C11—N4 0.4 (8)
N1—Pb—N2—N3 −180.0 (4) C11—N4—C12—C13 −0.1 (8)
O2—Pb—N2—N3 −24.0 (4) Pbii—N4—C12—C13 174.4 (4)
O3—Pb—N2—N3 −156.0 (3) N4—C12—C13—C9 0.4 (8)
C6—N2—N3—C8 −175.1 (4) C10—C9—C13—C12 −0.4 (7)
Pb—N2—N3—C8 11.8 (5) C8—C9—C13—C12 179.4 (5)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2o···O4 0.84 2.16 2.909 (7) 149
O3—H3o···O5iii 0.84 2.11 2.930 (7) 166

Symmetry codes: (iii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5133).

References

  1. Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642–3646.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Hao, Z.-Y., Liu, Q.-W., Xu, J., Jia, L. & Li, S.-B. (2010). Chem. Pharm. Bull. 58, 1306–1312. [DOI] [PubMed]
  6. Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.
  7. Maurya, M. R., Khurana, S., Zhang, W. & Rehder, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 3015–3023.
  8. Shahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011). Acta Cryst E67, m1727–m1728. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Zhang, Y.-Y. & Liu, S.-X. (2009). Acta Cryst. C65, m269–m272. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046769/hg5133sup1.cif

e-67-m1729-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046769/hg5133Isup2.hkl

e-67-m1729-Isup2.hkl (167.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES