Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 9;67(Pt 12):m1731–m1732. doi: 10.1107/S160053681104668X

Poly[[hexa­aqua­(μ2-oxalato-κ4 O 1,O 2:O 1′,O 2′)bis­(μ3-pyridine-2,4-dicarboxyl­ato-κ4 N,O 2:O 2′:O 4)dilanthanum(III)] monohydrate]

Fwu Ming Shen a, Shie Fu Lush b,*
PMCID: PMC3238643  PMID: 22199534

Abstract

In the polymeric title compound, {[La2(C7H3NO4)2(C2O4)(H2O)6]·H2O}n, the La3+ cation is nine-coordinated in a distorted LaNO8 tricapped trigonal–prismatic geometry formed by three pyridinedicarboxylate anions, one oxalate anion and three water mol­ecules. The oxalate anion is located on an inversion center. The oxalate and pyridine­dicarboxyl­ate anions bridge the La3+ cations, forming a two-dimensional polymeric complex parallel to (010). Inter­molecular O—H⋯O hydrogen bonding and weak C—H⋯O hydrogen bonding is present in the crystal structure and π–π stacking [centroid–centroid distance = 3.571 (3) Å] is observed between parallel pyridine rings of adjacent mol­ecules. The uncoordinated water molecule shows an occupancy of 0.5.

Related literature

For related structures, see: Aghabozorg et al. (2011); Li et al. (2007); Wang et al. (2009).graphic file with name e-67-m1731-scheme1.jpg

Experimental

Crystal data

  • [La2(C7H3NO4)2(C2O4)(H2O)6]·H2O

  • M r = 822.16

  • Triclinic, Inline graphic

  • a = 6.4614 (8) Å

  • b = 6.6844 (8) Å

  • c = 14.0796 (17) Å

  • α = 89.735 (2)°

  • β = 85.266 (2)°

  • γ = 73.135 (2)°

  • V = 579.85 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.73 mm−1

  • T = 295 K

  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.686, T max = 0.950

  • 5023 measured reflections

  • 2046 independent reflections

  • 1795 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.093

  • S = 1.09

  • 2046 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 2.14 e Å−3

  • Δρmin = −2.13 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104668X/xu5376sup1.cif

e-67-m1731-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104668X/xu5376Isup2.hkl

e-67-m1731-Isup2.hkl (102.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

La1—N1 2.726 (4)
La1—O1i 2.454 (4)
La1—O3ii 2.541 (5)
La1—O4 2.551 (5)
La1—O5 2.543 (4)
La1—O6iii 2.550 (5)
La1—O7 2.604 (7)
La1—O8 2.553 (5)
La1—O9 2.612 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4ii 0.84 2.08 2.911 (8) 168
O7—H7B⋯O10iv 0.83 1.71 2.533 (12) 168
O8—H8A⋯O2v 0.83 1.83 2.660 (7) 173
O8—H8B⋯O6vi 0.96 2.03 2.914 (7) 153
O9—H9A⋯O6vi 0.88 2.27 2.987 (8) 138
O9—H9B⋯O10 0.85 1.73 2.390 (14) 133
O10—H10A⋯O5ii 0.83 2.24 2.885 (12) 135
O10—H10A⋯O8ii 0.83 2.29 2.924 (15) 133
O10—H10B⋯O9vii 0.85 1.77 2.591 (17) 163
C5—H5A⋯O3ii 0.93 2.49 3.164 (7) 130

Symmetry codes: (ii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This work was supported financially by Yuanpei University, Taiwan.

supplementary crystallographic information

Comment

The pyridine-2,4-dicarboxylic acid (pdcH2) has important coordination functions to metals by either carboxylate bridges between metal centers, to form dimeric complexes or tridentate (O, N, O') chelation to metal ions. Some pydc complexes have been reported (Li et al., 2007; Wang et al., 2009; Aghabozorg et al., 2011).

The symmetric unit of the title compound,{[(LaC7H3NO4)(C2O4)0.5(H2O)3]2.(H2O)}n, contains two LaIII atoms, two pyridine-2,4-dicarboxylate(pydc) ligands, one oxalate ligand and six coordinated water molecules. The oxalate ligand are both chelating and bridging, forming an oxalate-bridged dinuclear complex. The LaIII is nine-coordinated in a distorted tricapped trigonal prismatic geometry by N,O atom from a pydc ligand, two O atoms from two pydc ligands, two O atoms from one oxalate ligand and three O atoms from coordinated water molecules (shown as Fig. 1, Table 1). The geometric center of the dimer lies on an inversion center.

The crystal structure contains weak O—H···O and non-classical C—H···O hydrogen bonds. The π-π stacking between two pyridine rings of (pydc) anion fragments with distances of 3.570 (3) Å (1 - x, 1 - y,1 - z) are observed (Fig. 3). The uncoordinated water molecule shows half-occupation.

Experimental

La(NO3)3.6H2O (0.1096 g, 0.25 mmole), pydridine-2,4-dicarboxylic acid (0.0418 g, 0.25 mmol) and 4,4'-dipyridine (0.0464 g, 0.25 mmol) were mixed in 10 ml of deionized water. After stirring for 30 min, the mixture was placed in a 23 ml Teflon-lined reactor which was heated under autogenous pressure to 418 K for 48 h and then allowed to cool to room temperature. The brown transparent single crystals were obtained in 41.3% yield (based on La).

Refinement

The site occupancy factor of the lattice water O10 was refined to 0.509 (16), and was set as 0.5 at the final cycles of refinement. Water H atoms were fixed in chemical sensible positions, thermal parameters were fixed as 0.08 Å2. Other H atoms were positioned geometrically with C—H = 0.93 Å (aromatic) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry code: (i) -1 + x, y, z; (ii) 1 - x, 1 - y, 1 - z; (iv)1+x, y, z.]

Fig. 2.

Fig. 2.

The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

π-π Stacking between pyridine rings [symmetry code: (ii) 1 - x, 1 - y,1 - z.]

Crystal data

[La2(C7H3NO4)2(C2O4)(H2O)6]·H2O Z = 1
Mr = 822.16 F(000) = 396
Triclinic, P1 Dx = 2.355 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.4614 (8) Å Cell parameters from 3390 reflections
b = 6.6844 (8) Å θ = 2.5–25.0°
c = 14.0796 (17) Å µ = 3.73 mm1
α = 89.735 (2)° T = 295 K
β = 85.266 (2)° Columnar, brown
γ = 73.135 (2)° 0.30 × 0.10 × 0.10 mm
V = 579.85 (12) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2046 independent reflections
Radiation source: fine-focus sealed tube 1795 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 9 pixels mm-1 θmax = 25.0°, θmin = 1.5°
φ and ω scans h = −7→7
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −7→7
Tmin = 0.686, Tmax = 0.950 l = −16→16
5023 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3
2046 reflections (Δ/σ)max = 0.001
175 parameters Δρmax = 2.14 e Å3
0 restraints Δρmin = −2.13 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
La1 0.36051 (5) 0.32815 (5) 0.80389 (2) 0.0265 (1)
O1 0.7674 (8) 0.3427 (7) 0.2806 (3) 0.0392 (16)
O2 1.0913 (8) 0.2154 (8) 0.3384 (3) 0.0525 (19)
O3 1.0788 (7) 0.2730 (8) 0.6993 (3) 0.0396 (16)
O4 0.7592 (7) 0.3177 (9) 0.7799 (3) 0.0521 (18)
O5 0.5103 (8) 0.2478 (6) 0.9657 (3) 0.0423 (14)
O6 0.5841 (9) 0.3677 (7) 1.1030 (3) 0.0485 (18)
O7 −0.0071 (10) 0.5171 (10) 0.8990 (5) 0.0863 (19)
O8 0.5618 (9) −0.0608 (7) 0.7835 (4) 0.0542 (19)
O9 0.1731 (10) 0.0871 (10) 0.9025 (5) 0.0863 (19)
N1 0.5725 (7) 0.2598 (7) 0.6261 (3) 0.0249 (14)
C1 0.7769 (9) 0.2729 (9) 0.6137 (4) 0.0257 (17)
C2 0.5722 (10) 0.2408 (9) 0.4559 (4) 0.0294 (17)
C3 0.7801 (9) 0.2612 (8) 0.4439 (4) 0.0260 (17)
C4 0.8843 (9) 0.2739 (9) 0.5250 (4) 0.0285 (17)
C5 0.4771 (9) 0.2395 (9) 0.5474 (4) 0.0291 (17)
C6 0.8914 (10) 0.2739 (9) 0.3464 (4) 0.0301 (17)
C7 0.8804 (10) 0.2893 (10) 0.7040 (4) 0.0341 (19)
C8 0.5274 (10) 0.3885 (9) 1.0197 (4) 0.0288 (17)
O10 −0.1015 (18) −0.0885 (16) 0.9137 (11) 0.072 (5) 0.500
H2A 0.49810 0.22820 0.40340 0.0350*
H4A 1.02570 0.28300 0.51960 0.0340*
H5A 0.33850 0.22340 0.55470 0.0350*
H7A −0.08470 0.47740 0.86270 0.0800*
H7B −0.05250 0.64720 0.89900 0.0800*
H8A 0.67010 −0.11890 0.74700 0.0800*
H8B 0.55880 −0.18960 0.81340 0.0800*
H9A 0.29540 −0.01320 0.89080 0.0800*
H9B 0.07450 0.05280 0.87580 0.0800*
H10A −0.22390 −0.01980 0.89910 0.0800* 0.500
H10B −0.11240 −0.06870 0.97360 0.0800* 0.500

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
La1 0.0283 (2) 0.0378 (2) 0.0187 (2) −0.0182 (2) −0.0020 (1) 0.0042 (1)
O1 0.043 (3) 0.047 (3) 0.025 (2) −0.009 (2) −0.004 (2) 0.0078 (19)
O2 0.033 (3) 0.074 (4) 0.039 (3) −0.001 (2) 0.009 (2) 0.014 (2)
O3 0.028 (2) 0.060 (3) 0.038 (3) −0.022 (2) −0.0100 (19) 0.002 (2)
O4 0.037 (3) 0.112 (4) 0.023 (2) −0.046 (3) −0.005 (2) 0.007 (2)
O5 0.067 (3) 0.029 (2) 0.032 (2) −0.013 (2) −0.015 (2) 0.0013 (19)
O6 0.079 (4) 0.038 (2) 0.036 (3) −0.022 (2) −0.030 (3) 0.013 (2)
O7 0.059 (3) 0.072 (3) 0.113 (4) −0.008 (2) 0.037 (3) 0.026 (3)
O8 0.071 (4) 0.034 (3) 0.053 (3) −0.016 (2) 0.023 (3) 0.001 (2)
O9 0.059 (3) 0.072 (3) 0.113 (4) −0.008 (2) 0.037 (3) 0.026 (3)
N1 0.020 (2) 0.029 (2) 0.027 (3) −0.0093 (19) −0.0018 (19) 0.002 (2)
C1 0.018 (3) 0.029 (3) 0.031 (3) −0.008 (2) −0.003 (2) 0.006 (2)
C2 0.030 (3) 0.037 (3) 0.023 (3) −0.011 (3) −0.009 (2) 0.002 (2)
C3 0.025 (3) 0.027 (3) 0.024 (3) −0.005 (2) −0.001 (2) 0.004 (2)
C4 0.019 (3) 0.039 (3) 0.027 (3) −0.008 (2) −0.002 (2) 0.008 (3)
C5 0.023 (3) 0.036 (3) 0.030 (3) −0.011 (2) −0.004 (2) 0.003 (2)
C6 0.033 (3) 0.032 (3) 0.023 (3) −0.007 (3) 0.001 (2) 0.000 (2)
C7 0.030 (3) 0.046 (4) 0.033 (3) −0.021 (3) −0.006 (3) 0.011 (3)
C8 0.032 (3) 0.030 (3) 0.022 (3) −0.006 (2) 0.000 (2) 0.003 (2)
O10 0.044 (6) 0.044 (6) 0.135 (12) −0.014 (5) −0.036 (7) 0.007 (7)

Geometric parameters (Å, °)

La1—N1 2.726 (4) O8—H8B 0.9600
La1—O1i 2.454 (4) O9—H9B 0.8500
La1—O3ii 2.541 (5) O9—H9A 0.8800
La1—O4 2.551 (5) O10—H10A 0.8300
La1—O5 2.543 (4) O10—H10B 0.8500
La1—O6iii 2.550 (5) N1—C5 1.338 (7)
La1—O7 2.604 (7) N1—C1 1.346 (8)
La1—O8 2.553 (5) C1—C4 1.379 (8)
La1—O9 2.612 (7) C1—C7 1.503 (8)
O1—C6 1.271 (8) C2—C3 1.386 (9)
O2—C6 1.232 (9) C2—C5 1.382 (8)
O3—C7 1.251 (8) C3—C6 1.510 (8)
O4—C7 1.253 (7) C3—C4 1.388 (8)
O5—C8 1.247 (7) C8—C8iii 1.541 (8)
O6—C8 1.253 (7) C2—H2A 0.9300
O7—H7B 0.8300 C4—H4A 0.9300
O7—H7A 0.8400 C5—H5A 0.9300
O8—H8A 0.8300
O4—La1—O5 73.91 (15) La1—O5—C8 121.8 (4)
O4—La1—O7 143.20 (19) La1iii—O6—C8 121.6 (4)
O4—La1—O8 76.08 (19) La1—O7—H7B 119.00
O4—La1—O9 130.46 (19) H7A—O7—H7B 105.00
O4—La1—N1 60.09 (14) La1—O7—H7A 96.00
O3ii—La1—O4 136.05 (14) La1—O8—H8A 129.00
O1i—La1—O4 94.15 (17) H8A—O8—H8B 93.00
O4—La1—O6iii 71.03 (17) La1—O8—H8B 138.00
O5—La1—O7 85.94 (19) La1—O9—H9A 87.00
O5—La1—O8 78.78 (15) H9A—O9—H9B 108.00
O5—La1—O9 68.31 (19) La1—O9—H9B 116.00
O5—La1—N1 129.55 (15) H10A—O10—H10B 102.00
O3ii—La1—O5 143.58 (15) La1—N1—C5 123.7 (4)
O1i—La1—O5 131.93 (14) La1—N1—C1 118.9 (3)
O5—La1—O6iii 62.98 (13) C1—N1—C5 116.8 (5)
O7—La1—O8 130.39 (19) N1—C1—C4 122.9 (5)
O7—La1—O9 64.2 (2) N1—C1—C7 115.1 (5)
O7—La1—N1 143.97 (18) C4—C1—C7 121.9 (6)
O3ii—La1—O7 76.45 (18) C3—C2—C5 118.7 (5)
O1i—La1—O7 76.62 (19) C2—C3—C6 122.0 (5)
O6iii—La1—O7 72.42 (19) C4—C3—C6 120.1 (5)
O8—La1—O9 66.27 (19) C2—C3—C4 117.9 (5)
O8—La1—N1 71.47 (16) C1—C4—C3 119.6 (6)
O3ii—La1—O8 88.67 (17) N1—C5—C2 123.9 (6)
O1i—La1—O8 144.45 (16) O1—C6—O2 126.8 (6)
O6iii—La1—O8 134.78 (18) O2—C6—C3 117.2 (5)
O9—La1—N1 128.72 (18) O1—C6—C3 116.1 (6)
O3ii—La1—O9 75.33 (18) O4—C7—C1 116.7 (6)
O1i—La1—O9 135.03 (19) O3—C7—C1 119.0 (5)
O6iii—La1—O9 115.40 (18) O3—C7—O4 124.3 (6)
O3ii—La1—N1 76.02 (14) O5—C8—O6 126.8 (5)
O1i—La1—N1 74.06 (14) O5—C8—C8iii 116.9 (5)
O6iii—La1—N1 114.76 (15) O6—C8—C8iii 116.4 (5)
O1i—La1—O3ii 74.77 (16) C5—C2—H2A 121.00
O3ii—La1—O6iii 136.50 (17) C3—C2—H2A 121.00
O1i—La1—O6iii 69.06 (15) C1—C4—H4A 120.00
La1i—O1—C6 137.1 (4) C3—C4—H4A 120.00
La1iv—O3—C7 139.6 (4) N1—C5—H5A 118.00
La1—O4—C7 128.4 (4) C2—C5—H5A 118.00
O5—La1—O4—C7 158.8 (6) N1—La1—O1i—C6i 73.1 (6)
O7—La1—O4—C7 −141.7 (5) O4—La1—O6iii—C8iii −86.9 (5)
O8—La1—O4—C7 76.7 (6) O5—La1—O6iii—C8iii −5.7 (5)
O9—La1—O4—C7 117.6 (6) O7—La1—O6iii—C8iii 88.8 (5)
N1—La1—O4—C7 0.3 (5) O8—La1—O6iii—C8iii −41.2 (6)
O3ii—La1—O4—C7 3.7 (7) O9—La1—O6iii—C8iii 39.8 (6)
O1i—La1—O4—C7 −68.6 (6) N1—La1—O6iii—C8iii −129.2 (5)
O6iii—La1—O4—C7 −134.8 (6) La1i—O1—C6—C3 102.3 (6)
O4—La1—O5—C8 82.1 (5) La1i—O1—C6—O2 −78.5 (8)
O7—La1—O5—C8 −66.7 (5) La1iv—O3—C7—O4 −11.4 (11)
O8—La1—O5—C8 160.7 (5) La1iv—O3—C7—C1 169.0 (4)
O9—La1—O5—C8 −130.5 (5) La1—O4—C7—C1 4.4 (9)
N1—La1—O5—C8 106.5 (5) La1—O4—C7—O3 −175.2 (5)
O3ii—La1—O5—C8 −127.3 (5) La1—O5—C8—O6 174.5 (5)
O1i—La1—O5—C8 1.2 (6) La1—O5—C8—C8iii −5.3 (8)
O6iii—La1—O5—C8 5.6 (5) La1iii—O6—C8—O5 174.7 (5)
O4—La1—N1—C1 −5.7 (4) La1iii—O6—C8—C8iii −5.5 (8)
O4—La1—N1—C5 −177.0 (5) C5—N1—C1—C4 2.4 (8)
O5—La1—N1—C1 −32.9 (5) La1—N1—C1—C7 9.8 (6)
O5—La1—N1—C5 155.9 (4) C1—N1—C5—C2 −3.0 (8)
O7—La1—N1—C1 135.5 (4) C5—N1—C1—C7 −178.3 (5)
O7—La1—N1—C5 −35.7 (6) La1—N1—C5—C2 168.4 (4)
O8—La1—N1—C1 −90.0 (4) La1—N1—C1—C4 −169.4 (4)
O8—La1—N1—C5 98.8 (4) N1—C1—C7—O3 170.2 (6)
O9—La1—N1—C1 −125.6 (4) N1—C1—C7—O4 −9.4 (8)
O9—La1—N1—C5 63.2 (5) C4—C1—C7—O3 −10.5 (9)
O3ii—La1—N1—C1 176.7 (4) C4—C1—C7—O4 169.9 (6)
O3ii—La1—N1—C5 5.4 (4) N1—C1—C4—C3 0.1 (9)
O1i—La1—N1—C1 98.8 (4) C7—C1—C4—C3 −179.1 (5)
O1i—La1—N1—C5 −72.4 (4) C5—C2—C3—C4 1.6 (8)
O6iii—La1—N1—C1 41.6 (4) C3—C2—C5—N1 1.0 (9)
O6iii—La1—N1—C5 −129.7 (4) C5—C2—C3—C6 −177.2 (5)
O4—La1—O3ii—C7ii −173.4 (6) C2—C3—C6—O1 25.5 (8)
O5—La1—O3ii—C7ii 49.4 (8) C6—C3—C4—C1 176.7 (5)
O7—La1—O3ii—C7ii −13.9 (7) C4—C3—C6—O2 27.4 (8)
O8—La1—O3ii—C7ii 118.3 (7) C2—C3—C6—O2 −153.9 (6)
O9—La1—O3ii—C7ii 52.5 (7) C4—C3—C6—O1 −153.3 (5)
N1—La1—O3ii—C7ii −170.5 (7) C2—C3—C4—C1 −2.1 (8)
O4—La1—O1i—C6i 130.4 (6) O5—C8—C8iii—O5iii −180.0 (6)
O5—La1—O1i—C6i −157.6 (6) O5—C8—C8iii—O6iii −0.2 (9)
O7—La1—O1i—C6i −85.8 (6) O6—C8—C8iii—O5iii 0.2 (9)
O8—La1—O1i—C6i 58.6 (7) O6—C8—C8iii—O6iii 180.0 (6)
O9—La1—O1i—C6i −56.3 (7)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+2; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O7—H7A···O4ii 0.84 2.08 2.911 (8) 168
O7—H7B···O10v 0.83 1.71 2.533 (12) 168
O8—H8A···O2vi 0.83 1.83 2.660 (7) 173
O8—H8B···O6vii 0.96 2.03 2.914 (7) 153
O9—H9A···O6vii 0.88 2.27 2.987 (8) 138
O9—H9B···O10 0.85 1.73 2.390 (14) 133
O10—H10A···O5ii 0.83 2.24 2.885 (12) 135
O10—H10A···O8ii 0.83 2.29 2.924 (15) 133
O10—H10B···O9viii 0.85 1.77 2.591 (17) 163
C5—H5A···O3ii 0.93 2.49 3.164 (7) 130

Symmetry codes: (ii) x−1, y, z; (v) x, y+1, z; (vi) −x+2, −y, −z+1; (vii) −x+1, −y, −z+2; (viii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5376).

References

  1. Aghabozorg, H., Jafarbak, F., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m435–m436. [DOI] [PMC free article] [PubMed]
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Li, X.-M., Niu, Y.-L., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m487–m488.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104668X/xu5376sup1.cif

e-67-m1731-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104668X/xu5376Isup2.hkl

e-67-m1731-Isup2.hkl (102.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES