Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):m1738–m1739. doi: 10.1107/S1600536811046952

μ-Oxido-bis­[chlorido(4,4′-di-tert-butyl-2,2′-bipyridine-κ2 N,N′)dioxido­molybdenum(VI)] 0.2-hydrate

Ana C Gomes a, José A Fernandes a, Carla A Gamelas b, Isabel S Gonçalves a, Filipe A Almeida Paz a,*
PMCID: PMC3238648  PMID: 22199539

Abstract

The title hydrate, [Mo2Cl2O5(C18H24N2)2]·0.2H2O, has been isolated as the oxidation product of [Mo(η3-C3H5)Cl(CO)2(di-t-Bu-bipy)] (where di-t-Bu-bipy is 4,4′-di-tert-butyl-2,2′-bipyridine). A μ-oxide ligand bridges two similar MoCl(di-t-Bu-bipy)O2 units, having the terminal oxide ligands mutually cis, and the chloride and μ-oxide trans to each other. In the binuclear complex, the coordination geometries of the metal atoms can be described as highly distorted octa­hedra. Individual complexes co-crystallize with a partially occupied water mol­ecule of crystallization (occupancy factor = 0.20; H atoms not located), with the crystal packing being mediated by the need to effectively fill the available space. A number of weak C—H⋯O and C—H⋯Cl inter­actions are present.

Related literature

For general background to dioxidomolybdenum(VI) com­plexes, see: Arzoumanian et al. (2006); Jeyakumar & Chand (2009); Kühn et al. (2002); Rodrigues et al. (2004). For studies on molybdenum complexes from our research groups, see: Coelho et al. (2011); Fernandes et al. (2011a ,b , 2011); Gago et al. (2009); Nunes et al. (2003); Pereira et al. (2007).graphic file with name e-67-m1738-scheme1.jpg

Experimental

Crystal data

  • [Mo2Cl2O5(C18H24N2)2]·0.2H2O

  • M r = 883.17

  • Monoclinic, Inline graphic

  • a = 16.9997 (7) Å

  • b = 12.7444 (6) Å

  • c = 18.4609 (8) Å

  • β = 99.582 (2)°

  • V = 3943.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 150 K

  • 0.08 × 0.06 × 0.03 mm

Data collection

  • Bruker X8 KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.938, T max = 0.976

  • 54239 measured reflections

  • 10578 independent reflections

  • 7469 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.086

  • S = 1.02

  • 10578 reflections

  • 463 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046952/tk5013sup1.cif

e-67-m1738-sup1.cif (33.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046952/tk5013Isup2.hkl

e-67-m1738-Isup2.hkl (517.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mo1—O1 1.8920 (19)
Mo1—O2 1.6972 (19)
Mo1—O3 1.696 (2)
Mo1—N1 2.330 (2)
Mo1—N2 2.323 (2)
Mo1—Cl1 2.4895 (8)
Mo2—O1 1.9274 (19)
Mo2—O4 1.6975 (19)
Mo2—O5 1.694 (2)
Mo2—N3 2.328 (2)
Mo2—N4 2.304 (2)
Mo2—Cl2 2.4283 (8)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O1i 0.95 2.52 3.341 (3) 145
C34—H34A⋯Cl1ii 0.98 2.77 3.748 (4) 174
C35—H35A⋯O4i 0.98 2.54 3.421 (4) 149
C12—H12C⋯O1W 0.98 2.69 3.641 (16) 163
C18—H18B⋯O1W 0.98 2.10 2.970 (18) 147
O1W⋯Cl2i     3.573 (18)  
O1W⋯O5iii     3.236 (17)  

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT/FEDER and POCI, Portugal) for their general financial support to CICECO, and for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF). Thanks are also due to the FCT for specific funding toward the purchase of the single-crystal diffractometer.

supplementary crystallographic information

Comment

Dioxomolybdenum(VI) complexes are known to be highly active catalysts in the epoxidation of olefins (Kühn et al., 2002; Jeyakumar & Chand, 2009). In these complexes the active metal-oxo functional group may appear with two distinct structural motifs: as a terminal oxo (Mo═O) or as a bridging µ-oxo (Mo—O—Mo). Compounds with the latter type of bridging group are significantly less studied but have been shown to be intermediates in a handful of interesting catalytic systems (Nunes et al., 2003). Following our on-going interest in the study of this type of family of compounds (Fernandes et al., 2010a,b, 2011) we have recently described the synthesis and structural details of the oxo-µ-oxo complexes [Mo2O4(µ-O)Cl2(DMF)4] (Gago et al., 2009), [Mo2O4(µ-O)Cl2(pyrazole)4] (Pereira et al., 2007), and [Mo2O4(µ-O)Cl2(PzPy)2] (where PzPy stands for 2-(3-pyrazolyl)pyridine) (Coelho et al., 2011). Noteworthy, these complexes were found to be highly active in epoxidation catalysis with tert-butylhydroperoxide. The title compound, a µ-oxo dimer with empirical formula [Mo2O4(µ-O)Cl2(di-t-Bu-bipy)2] (where di-t-Bu-bipy stands for 4,4'-di-tert-butyl-2,2'-bipyridine) which simultaneously contains terminal Mo═O oxo groups and a bridging µ-oxo one, has been recently synthesized by Arzoumanian et al. (2006) and we now wish to report its crystal structure at the low temperature of 150 K.

The asymmetric unit of the title compound comprises a whole binuclear molecular entity, C36H48Cl2Mo2N4O5, and a partially occupied (20%) water molecule of crystallization. The binuclear complex is formed by two crystallographically independent Mo(VI) centres bridged via a µ-oxo group imposing a Mo···Mo distance of 3.6273 (4) Å. The chemical environment of these metallic centers is very similar, being composed of a pair of cis-positioned terminal oxo ligands, a chlorido and a N,N-chelating 4,4'-di-tert-butyl-2,2'-bipyridine (di-t-Bu-bipy) molecule as depicted in Fig. 1. The coordination environments around the metal centers can be described as highly distorted octahedra due to, on the one hand, the existence of chlorido ligands (trans-positioned with respect to the µ-oxo ligand) and, on the other, to the typical trans effect of the Mo═O groups: while the Mo—Obridge distances are 1.8920 (19) and 1.9274 (19) Å, the Mo—Oterminal distances range from 1.694 (2) to 1.6975 (19) Å; the Mo—Cl distances are 2.4895 (8) and 2.4283 (8) Å and the Mo—N bonds range from 2.304 (2) to 2.330 (2) Å. The cis and trans octahedral angles are in the ranges of 68.95 (8) to 107.35 (10)° and 157.51 (6) to 160.69 (9)°, respectively. The Mo1—O1—Mo2 kink angle through the µ-oxo bridge is 143.50 (10)° which, to the best of our knowledge, constitutes the smallest reported to date for related binuclear dioxomolybdenum(VI) complexes: the analogous value for [Mo2O4(µ-O)Cl2(DMF)4] is ca 175° and that for [Mo2O4(µ-O)Cl2(pyrazole)4] is ca 151°, and those for the two conformers of [Mo2O4(µ-O)Cl2(PzPy)2] are ca 156 and 180°. We attribute this structural feature to the considerable steric hindrance associated with the di-t-Bu-bipy moieties, mostly due to the pendant —CH3 groups. In this context, the two average planes containing the aromatic rings of the two crystallographically independent di-t-Bu-bipy molecules subtend an angle of ca 34°, which contrasts with the parallel nature observed for the two conformers of [Mo2O4(µ-O)Cl2(PzPy)2]. Noteworthy, the torsion angles N1—Mo1···Mo2—N4 and N2—Mo1···Mo2—N3 are -18.40 (7) and -157.03 (9)°, respectively.

The crystal packing is mainly driven by the need to effectively fill the available space (van de Waals contacts) in conjunction with several weak supramolecular interactions, namely weak C—H···O and C—H···Cl hydrogen bonding interactions (light blue dashed lines in Fig. 2; see Table 2 for geometric details). The water molecule of crystallization (O1W), which is only statistically present in 1/5 of the asymmetric units, accepts the hydrogen donation from adjacent C—H groups and also acts as hydrogen bond donor to Cl2 and O5 of neighboring molecules (violet dashed lines in Figure 2; see Table 2 for geometrical details). Even though the location of the water molecule permits its full site occupancy, we postulate that the absence of suitable hydrogen bonding partners in the binuclear complexes contributes significantly for its partial occupancy in the crystal structure.

Experimental

Chemicals were purchased from commercial sources and used as received. The compound [Mo(η3-C3H5)Cl(CO)2(di-t-Bu-bipy)] (1) was prepared following a literature method (Rodrigues et al., 2004). Thus, 70% aqueous tert-butylhydroperoxide (TBHP) (0.64 mL, 4.60 mmol) was added dropwise to a stirred solution of 1 (0.23 g, 0.46 mmol) in CH3CN (20 mL). After stirring at ambient temperature for 15 h, the resultant yellow solution was filtered off, concentrated, and a very pale yellow solid precipitated after the addition of n-hexane and diethyl ether. The precipitate was filtered, washed with n-hexane and diethyl ether, and vacuum-dried. Yield: 0.14 g, 69%.

The same product (as confirmed by a comparison of FT–IR and 1H NMR spectra, and microanalysis data) was obtained by using a decane solution of TBHP (5–6 M, 10 equiv.) instead of the aqueous solution, with 1 dissolved in CH2Cl2 under otherwise similar conditions (the excess of TBHP was destroyed with MnO2).

Anal. Calcd. for C36H48N4Cl2Mo2O5.0.2H2O (in %): C, 48.96; H, 5.52; N, 6.34. Found (in %): C, 49.47; H, 5.52; N, 6.28. The FT–IR and 1H NMR spectral data were in agreement with published data (Arzoumanian et al., 2006).

Suitable crystals were obtained by the slow diffusion of diethyl ether into a concentrated solution of the compound in CH2Cl2 with a small layer of n-hexane.

Refinement

Hydrogen atoms bound to carbon were placed in idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic C—H) and 0.98 Å (—CH3). The isotropic thermal displacement parameters for these atoms were fixed at 1.2×Ueq (aromatic C—H) or 1.5×Ueq (—CH3) of the respective parent carbon atoms.

One water molecule of crystallization was found to be partially occupied and was included in the final structural model with fixed rate of occupancy of 20% (calculated from unrestrained refinement for the site occupancy). Hydrogen atoms associated with this water molecule could not be located from difference Fourier maps and attempts to include these in calculated positions did not lead stable structural refinements. Nevertheless, the hydrogen atoms associated with this chemical entity have been included in the empirical formula of the title compound.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the title compound showing all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level. The water molecule has a site occupancy factor = 0.20. Hydrogen atoms are represented as small spheres with arbitrary radii and the atomic labeling is provided for all non-hydrogen atoms.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed in perspective along [010] direction. The highly distorted {MoCl2N2O2} coordination polyhedra are represented as translucent octahedra for clarity. Supramolecular contacts interconnecting adjacent chemical moieties are represented as dashed lines: C—H···O and C—H···Cl in light blue; Owater···O and Owater···Cl in violet.

Crystal data

[Mo2Cl2O5(C18H24N2)2]·0.2H2O F(000) = 1808
Mr = 883.17 Dx = 1.487 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 9903 reflections
a = 16.9997 (7) Å θ = 2.8–29.1°
b = 12.7444 (6) Å µ = 0.82 mm1
c = 18.4609 (8) Å T = 150 K
β = 99.582 (2)° Block, yellow
V = 3943.8 (3) Å3 0.08 × 0.06 × 0.03 mm
Z = 4

Data collection

Bruker X8 KappaCCD APEXII diffractometer 10578 independent reflections
Radiation source: fine-focus sealed tube 7469 reflections with I > 2σ(I)
graphite Rint = 0.050
ω and φ scans θmax = 29.1°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −23→23
Tmin = 0.938, Tmax = 0.976 k = −16→17
54239 measured reflections l = −24→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0315P)2 + 3.406P] where P = (Fo2 + 2Fc2)/3
10578 reflections (Δ/σ)max = 0.001
463 parameters Δρmax = 0.96 e Å3
18 restraints Δρmin = −0.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mo1 0.161140 (13) 0.78289 (2) 0.101763 (13) 0.02009 (7)
Mo2 0.153567 (14) 0.63578 (2) −0.067460 (14) 0.02215 (7)
Cl1 0.16494 (4) 0.87386 (6) 0.22163 (4) 0.02652 (16)
Cl2 0.21012 (5) 0.51282 (7) −0.14517 (4) 0.03473 (19)
N1 0.11178 (12) 0.65491 (18) 0.17242 (13) 0.0210 (5)
N2 0.02749 (13) 0.81233 (19) 0.10764 (13) 0.0213 (5)
N3 0.27507 (13) 0.59963 (19) 0.00696 (13) 0.0223 (5)
N4 0.14638 (12) 0.48235 (19) −0.00290 (12) 0.0211 (5)
O1 0.12571 (10) 0.69242 (15) 0.02171 (10) 0.0224 (4)
O2 0.25605 (11) 0.73982 (17) 0.12818 (11) 0.0276 (5)
O3 0.16755 (12) 0.89784 (16) 0.05679 (12) 0.0311 (5)
O4 0.06091 (11) 0.61851 (17) −0.11680 (11) 0.0297 (5)
O5 0.19330 (13) 0.74344 (18) −0.10133 (12) 0.0360 (5)
C1 0.15948 (16) 0.5835 (2) 0.21063 (16) 0.0238 (6)
H1 0.2115 0.5743 0.1992 0.029*
C2 0.13739 (16) 0.5228 (2) 0.26543 (17) 0.0245 (6)
H2 0.1739 0.4736 0.2910 0.029*
C3 0.06192 (16) 0.5334 (2) 0.28335 (16) 0.0263 (7)
C4 0.01067 (16) 0.6030 (3) 0.23986 (17) 0.0297 (7)
H4 −0.0432 0.6088 0.2472 0.036*
C5 0.03666 (15) 0.6629 (2) 0.18700 (16) 0.0235 (6)
C6 −0.01214 (16) 0.7471 (2) 0.14631 (16) 0.0232 (6)
C7 −0.09241 (16) 0.7619 (3) 0.14974 (17) 0.0292 (7)
H7 −0.1198 0.7126 0.1751 0.035*
C8 −0.13296 (16) 0.8487 (3) 0.11624 (17) 0.0298 (7)
C9 −0.09027 (17) 0.9162 (3) 0.07927 (17) 0.0295 (7)
H9 −0.1152 0.9770 0.0561 0.035*
C10 −0.01101 (17) 0.8954 (2) 0.07589 (16) 0.0245 (6)
H10 0.0171 0.9427 0.0497 0.029*
C11 0.03393 (19) 0.4783 (3) 0.34808 (19) 0.0385 (8)
C12 0.0029 (3) 0.5616 (4) 0.3962 (2) 0.0777 (16)
H12A 0.0464 0.6095 0.4158 0.117*
H12B −0.0172 0.5273 0.4370 0.117*
H12C −0.0403 0.6013 0.3666 0.117*
C13 −0.0336 (2) 0.4023 (4) 0.3180 (2) 0.0666 (14)
H13A −0.0763 0.4408 0.2868 0.100*
H13B −0.0547 0.3701 0.3590 0.100*
H13C −0.0129 0.3474 0.2890 0.100*
C14 0.1016 (2) 0.4186 (3) 0.3952 (2) 0.0461 (10)
H14A 0.1204 0.3627 0.3659 0.069*
H14B 0.0822 0.3878 0.4376 0.069*
H14C 0.1456 0.4669 0.4123 0.069*
C15 −0.22161 (17) 0.8645 (3) 0.1206 (2) 0.0397 (9)
C16 −0.2495 (2) 0.9713 (4) 0.0924 (4) 0.0971 (19)
H16A −0.3076 0.9757 0.0886 0.146*
H16B −0.2348 0.9824 0.0438 0.146*
H16C −0.2243 1.0252 0.1264 0.146*
C17 −0.2693 (2) 0.7825 (4) 0.0698 (3) 0.0681 (13)
H17A −0.2527 0.7118 0.0870 0.102*
H17B −0.2590 0.7920 0.0195 0.102*
H17C −0.3264 0.7914 0.0706 0.102*
C18 −0.2369 (3) 0.8407 (6) 0.1960 (3) 0.106 (2)
H18A −0.2121 0.8948 0.2301 0.159*
H18B −0.2142 0.7720 0.2115 0.159*
H18C −0.2946 0.8397 0.1960 0.159*
C19 0.33976 (16) 0.6593 (2) 0.00679 (17) 0.0274 (7)
H19 0.3352 0.7203 −0.0232 0.033*
C20 0.41289 (16) 0.6358 (3) 0.04836 (17) 0.0279 (7)
H20 0.4572 0.6806 0.0465 0.033*
C21 0.42233 (15) 0.5476 (2) 0.09269 (16) 0.0241 (6)
C22 0.35406 (15) 0.4888 (2) 0.09491 (16) 0.0243 (6)
H22 0.3568 0.4295 0.1265 0.029*
C23 0.28184 (15) 0.5150 (2) 0.05182 (15) 0.0206 (6)
C24 0.20800 (15) 0.4519 (2) 0.04866 (15) 0.0209 (6)
C25 0.20205 (15) 0.3673 (2) 0.09379 (15) 0.0213 (6)
H25 0.2459 0.3494 0.1307 0.026*
C26 0.13233 (16) 0.3073 (2) 0.08606 (15) 0.0211 (6)
C27 0.07065 (16) 0.3385 (2) 0.03097 (16) 0.0234 (6)
H27 0.0223 0.2995 0.0223 0.028*
C28 0.07950 (15) 0.4252 (2) −0.01084 (16) 0.0232 (6)
H28 0.0360 0.4457 −0.0473 0.028*
C29 0.50289 (16) 0.5150 (3) 0.13790 (18) 0.0304 (7)
C30 0.50366 (18) 0.5490 (3) 0.21771 (19) 0.0435 (9)
H30A 0.5534 0.5256 0.2481 0.065*
H30B 0.4582 0.5174 0.2359 0.065*
H30C 0.4999 0.6256 0.2201 0.065*
C31 0.57226 (17) 0.5677 (3) 0.1089 (2) 0.0420 (9)
H31A 0.5688 0.6439 0.1147 0.063*
H31B 0.5696 0.5505 0.0568 0.063*
H31C 0.6229 0.5423 0.1367 0.063*
C32 0.51307 (18) 0.3958 (3) 0.1352 (2) 0.0428 (9)
H32A 0.5029 0.3722 0.0840 0.064*
H32B 0.4752 0.3619 0.1624 0.064*
H32C 0.5676 0.3770 0.1575 0.064*
C33 0.12703 (17) 0.2135 (2) 0.13614 (16) 0.0260 (6)
C34 0.1347 (2) 0.2522 (3) 0.21501 (17) 0.0394 (9)
H34A 0.1857 0.2888 0.2288 0.059*
H34B 0.1325 0.1923 0.2479 0.059*
H34C 0.0908 0.3006 0.2192 0.059*
C35 0.04774 (18) 0.1555 (3) 0.11683 (17) 0.0319 (7)
H35A 0.0043 0.2012 0.1265 0.048*
H35B 0.0490 0.0919 0.1469 0.048*
H35C 0.0391 0.1362 0.0647 0.048*
C36 0.1950 (2) 0.1374 (3) 0.1283 (2) 0.0459 (9)
H36A 0.1899 0.1143 0.0771 0.069*
H36B 0.1922 0.0763 0.1601 0.069*
H36C 0.2464 0.1729 0.1428 0.069*
O1W −0.1847 (9) 0.6639 (13) 0.2975 (10) 0.078 (5) 0.20

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.01580 (10) 0.02716 (14) 0.01656 (13) −0.00222 (10) 0.00054 (8) −0.00064 (11)
Mo2 0.02064 (11) 0.02864 (15) 0.01613 (13) 0.00094 (10) 0.00001 (9) 0.00249 (11)
Cl1 0.0231 (3) 0.0348 (4) 0.0201 (4) −0.0005 (3) −0.0010 (3) −0.0053 (3)
Cl2 0.0354 (4) 0.0461 (5) 0.0232 (4) 0.0068 (4) 0.0064 (3) −0.0019 (4)
N1 0.0157 (10) 0.0261 (14) 0.0201 (13) −0.0015 (9) 0.0001 (9) −0.0008 (10)
N2 0.0193 (11) 0.0258 (14) 0.0169 (13) 0.0015 (9) −0.0026 (9) −0.0009 (10)
N3 0.0197 (11) 0.0278 (14) 0.0197 (13) −0.0008 (10) 0.0042 (9) −0.0008 (10)
N4 0.0175 (10) 0.0289 (14) 0.0150 (12) −0.0024 (9) −0.0030 (9) 0.0006 (10)
O1 0.0183 (9) 0.0286 (12) 0.0188 (11) 0.0011 (8) −0.0015 (8) −0.0022 (8)
O2 0.0177 (9) 0.0421 (13) 0.0222 (11) −0.0017 (9) 0.0009 (8) −0.0067 (9)
O3 0.0377 (12) 0.0301 (12) 0.0259 (12) −0.0038 (9) 0.0067 (10) 0.0005 (9)
O4 0.0260 (10) 0.0400 (13) 0.0199 (11) 0.0023 (9) −0.0052 (8) −0.0001 (9)
O5 0.0374 (12) 0.0373 (14) 0.0332 (13) −0.0015 (10) 0.0059 (10) 0.0100 (11)
C1 0.0184 (12) 0.0276 (17) 0.0244 (16) 0.0005 (11) 0.0008 (11) −0.0013 (13)
C2 0.0202 (13) 0.0260 (16) 0.0257 (17) 0.0038 (11) −0.0011 (12) 0.0026 (13)
C3 0.0223 (13) 0.0332 (18) 0.0221 (16) 0.0011 (12) 0.0001 (12) 0.0064 (13)
C4 0.0164 (13) 0.043 (2) 0.0296 (18) 0.0021 (12) 0.0049 (12) 0.0090 (14)
C5 0.0167 (12) 0.0327 (17) 0.0204 (15) −0.0003 (11) 0.0008 (11) 0.0024 (13)
C6 0.0195 (13) 0.0300 (17) 0.0189 (15) 0.0008 (11) −0.0007 (11) 0.0022 (12)
C7 0.0168 (13) 0.044 (2) 0.0259 (17) 0.0010 (13) 0.0016 (12) 0.0048 (14)
C8 0.0201 (13) 0.043 (2) 0.0248 (17) 0.0051 (13) −0.0012 (12) −0.0036 (14)
C9 0.0282 (15) 0.0311 (18) 0.0256 (17) 0.0071 (13) −0.0059 (13) 0.0003 (14)
C10 0.0277 (14) 0.0245 (16) 0.0189 (16) −0.0003 (12) −0.0032 (12) −0.0014 (12)
C11 0.0338 (17) 0.051 (2) 0.033 (2) 0.0093 (16) 0.0107 (14) 0.0173 (17)
C12 0.107 (4) 0.090 (4) 0.047 (3) 0.053 (3) 0.043 (3) 0.033 (3)
C13 0.0322 (19) 0.099 (4) 0.070 (3) −0.011 (2) 0.0104 (19) 0.048 (3)
C14 0.0408 (19) 0.058 (3) 0.040 (2) 0.0081 (17) 0.0077 (16) 0.0235 (19)
C15 0.0185 (14) 0.059 (2) 0.040 (2) 0.0117 (15) 0.0008 (13) 0.0013 (18)
C16 0.037 (2) 0.072 (3) 0.186 (6) 0.021 (2) 0.029 (3) 0.006 (4)
C17 0.0261 (17) 0.096 (4) 0.083 (3) −0.005 (2) 0.0089 (19) −0.006 (3)
C18 0.048 (2) 0.219 (6) 0.056 (3) 0.055 (3) 0.023 (2) 0.010 (4)
C19 0.0246 (14) 0.0271 (17) 0.0318 (18) 0.0008 (12) 0.0084 (13) 0.0010 (14)
C20 0.0179 (13) 0.0360 (18) 0.0302 (18) −0.0029 (12) 0.0057 (12) −0.0050 (14)
C21 0.0188 (13) 0.0330 (18) 0.0198 (16) 0.0008 (12) 0.0013 (11) −0.0062 (13)
C22 0.0201 (13) 0.0294 (17) 0.0230 (16) 0.0016 (12) 0.0025 (11) −0.0003 (13)
C23 0.0175 (12) 0.0281 (16) 0.0160 (15) 0.0000 (11) 0.0020 (10) −0.0008 (12)
C24 0.0186 (12) 0.0260 (16) 0.0163 (15) −0.0006 (11) −0.0024 (10) −0.0034 (12)
C25 0.0201 (12) 0.0250 (16) 0.0166 (14) −0.0008 (11) −0.0033 (11) 0.0003 (12)
C26 0.0221 (13) 0.0240 (16) 0.0161 (15) −0.0014 (11) 0.0000 (11) −0.0022 (12)
C27 0.0204 (13) 0.0268 (17) 0.0212 (16) −0.0040 (11) −0.0018 (11) −0.0022 (12)
C28 0.0189 (12) 0.0306 (17) 0.0178 (15) −0.0008 (11) −0.0039 (11) −0.0023 (13)
C29 0.0168 (13) 0.045 (2) 0.0282 (18) 0.0030 (13) 0.0011 (12) −0.0047 (15)
C30 0.0240 (15) 0.072 (3) 0.031 (2) 0.0066 (16) −0.0046 (14) −0.0089 (18)
C31 0.0182 (14) 0.064 (3) 0.043 (2) 0.0004 (15) 0.0031 (14) 0.0020 (19)
C32 0.0232 (15) 0.052 (2) 0.051 (2) 0.0094 (15) −0.0012 (15) −0.0005 (18)
C33 0.0273 (14) 0.0306 (17) 0.0182 (15) −0.0062 (13) −0.0013 (11) 0.0023 (13)
C34 0.0481 (19) 0.046 (2) 0.0210 (18) −0.0263 (16) −0.0025 (15) −0.0002 (15)
C35 0.0388 (17) 0.0327 (19) 0.0199 (17) −0.0130 (14) −0.0075 (13) 0.0037 (14)
C36 0.0426 (19) 0.034 (2) 0.060 (3) 0.0063 (16) 0.0040 (18) 0.0164 (18)
O1W 0.055 (9) 0.079 (12) 0.105 (14) −0.006 (8) 0.029 (9) 0.015 (10)

Geometric parameters (Å, °)

Mo1—O1 1.8920 (19) C15—C17 1.541 (5)
Mo1—O2 1.6972 (19) C16—H16A 0.9800
Mo1—O3 1.696 (2) C16—H16B 0.9800
Mo1—N1 2.330 (2) C16—H16C 0.9800
Mo1—N2 2.323 (2) C17—H17A 0.9800
Mo1—Cl1 2.4895 (8) C17—H17B 0.9800
Mo2—O1 1.9274 (19) C17—H17C 0.9800
Mo2—O4 1.6975 (19) C18—H18A 0.9800
Mo2—O5 1.694 (2) C18—H18B 0.9800
Mo2—N3 2.328 (2) C18—H18C 0.9800
Mo2—N4 2.304 (2) C19—C20 1.381 (4)
Mo2—Cl2 2.4283 (8) C19—H19 0.9500
N1—C1 1.339 (3) C20—C21 1.384 (4)
N1—C5 1.352 (3) C20—H20 0.9500
N2—C10 1.329 (4) C21—C22 1.388 (4)
N2—C6 1.347 (4) C21—C29 1.537 (4)
N3—C19 1.337 (4) C22—C23 1.388 (4)
N3—C23 1.353 (4) C22—H22 0.9500
N4—C28 1.338 (3) C23—C24 1.484 (4)
N4—C24 1.350 (3) C24—C25 1.377 (4)
C1—C2 1.375 (4) C25—C26 1.397 (4)
C1—H1 0.9500 C25—H25 0.9500
C2—C3 1.384 (4) C26—C27 1.391 (4)
C2—H2 0.9500 C26—C33 1.523 (4)
C3—C4 1.399 (4) C27—C28 1.371 (4)
C3—C11 1.529 (4) C27—H27 0.9500
C4—C5 1.369 (4) C28—H28 0.9500
C4—H4 0.9500 C29—C31 1.529 (4)
C5—C6 1.482 (4) C29—C32 1.531 (5)
C6—C7 1.389 (4) C29—C30 1.534 (5)
C7—C8 1.393 (4) C30—H30A 0.9800
C7—H7 0.9500 C30—H30B 0.9800
C8—C9 1.378 (4) C30—H30C 0.9800
C8—C15 1.536 (4) C31—H31A 0.9800
C9—C10 1.385 (4) C31—H31B 0.9800
C9—H9 0.9500 C31—H31C 0.9800
C10—H10 0.9500 C32—H32A 0.9800
C11—C14 1.524 (4) C32—H32B 0.9800
C11—C13 1.533 (5) C32—H32C 0.9800
C11—C12 1.534 (6) C33—C34 1.522 (4)
C12—H12A 0.9800 C33—C35 1.526 (4)
C12—H12B 0.9800 C33—C36 1.534 (4)
C12—H12C 0.9800 C34—H34A 0.9800
C13—H13A 0.9800 C34—H34B 0.9800
C13—H13B 0.9800 C34—H34C 0.9800
C13—H13C 0.9800 C35—H35A 0.9800
C14—H14A 0.9800 C35—H35B 0.9800
C14—H14B 0.9800 C35—H35C 0.9800
C14—H14C 0.9800 C36—H36A 0.9800
C15—C18 1.490 (6) C36—H36B 0.9800
C15—C16 1.504 (6) C36—H36C 0.9800
O3—Mo1—O2 106.53 (10) C18—C15—C17 105.9 (4)
O3—Mo1—O1 100.49 (9) C16—C15—C17 107.4 (4)
O2—Mo1—O1 101.02 (9) C8—C15—C17 107.5 (3)
O3—Mo1—N2 91.51 (9) C15—C16—H16A 109.5
O2—Mo1—N2 158.31 (9) C15—C16—H16B 109.5
O1—Mo1—N2 87.03 (8) H16A—C16—H16B 109.5
O3—Mo1—N1 159.54 (9) C15—C16—H16C 109.5
O2—Mo1—N1 91.52 (9) H16A—C16—H16C 109.5
O1—Mo1—N1 85.02 (8) H16B—C16—H16C 109.5
N2—Mo1—N1 68.95 (8) C15—C17—H17A 109.5
O3—Mo1—Cl1 92.21 (8) C15—C17—H17B 109.5
O2—Mo1—Cl1 90.71 (7) H17A—C17—H17B 109.5
O1—Mo1—Cl1 159.37 (6) C15—C17—H17C 109.5
N2—Mo1—Cl1 76.36 (6) H17A—C17—H17C 109.5
N1—Mo1—Cl1 77.70 (6) H17B—C17—H17C 109.5
O5—Mo2—O4 107.35 (10) C15—C18—H18A 109.5
O5—Mo2—O1 100.46 (10) C15—C18—H18B 109.5
O4—Mo2—O1 99.73 (9) H18A—C18—H18B 109.5
O5—Mo2—N4 159.56 (9) C15—C18—H18C 109.5
O4—Mo2—N4 92.48 (9) H18A—C18—H18C 109.5
O1—Mo2—N4 80.46 (8) H18B—C18—H18C 109.5
O5—Mo2—N3 90.52 (9) N3—C19—C20 122.7 (3)
O4—Mo2—N3 160.69 (9) N3—C19—H19 118.7
O1—Mo2—N3 83.69 (8) C20—C19—H19 118.7
N4—Mo2—N3 69.21 (8) C19—C20—C21 120.7 (3)
O5—Mo2—Cl2 94.77 (8) C19—C20—H20 119.7
O4—Mo2—Cl2 91.29 (7) C21—C20—H20 119.7
O1—Mo2—Cl2 157.51 (6) C20—C21—C22 116.2 (3)
N4—Mo2—Cl2 79.53 (6) C20—C21—C29 123.0 (3)
N3—Mo2—Cl2 79.71 (6) C22—C21—C29 120.8 (3)
C1—N1—C5 117.1 (2) C21—C22—C23 121.1 (3)
C1—N1—Mo1 121.85 (18) C21—C22—H22 119.4
C5—N1—Mo1 119.91 (18) C23—C22—H22 119.4
C10—N2—C6 118.2 (2) N3—C23—C22 121.3 (3)
C10—N2—Mo1 121.46 (19) N3—C23—C24 115.0 (2)
C6—N2—Mo1 120.28 (18) C22—C23—C24 123.6 (3)
C19—N3—C23 117.9 (2) N4—C24—C25 121.7 (2)
C19—N3—Mo2 122.4 (2) N4—C24—C23 115.1 (2)
C23—N3—Mo2 119.71 (17) C25—C24—C23 123.2 (2)
C28—N4—C24 117.8 (2) C24—C25—C26 120.9 (2)
C28—N4—Mo2 121.53 (18) C24—C25—H25 119.6
C24—N4—Mo2 120.46 (18) C26—C25—H25 119.6
Mo1—O1—Mo2 143.50 (10) C27—C26—C25 116.2 (3)
N1—C1—C2 123.7 (3) C27—C26—C33 123.6 (2)
N1—C1—H1 118.2 C25—C26—C33 120.1 (2)
C2—C1—H1 118.2 C28—C27—C26 120.1 (3)
C1—C2—C3 119.9 (3) C28—C27—H27 119.9
C1—C2—H2 120.0 C26—C27—H27 119.9
C3—C2—H2 120.0 N4—C28—C27 123.3 (3)
C2—C3—C4 116.0 (3) N4—C28—H28 118.4
C2—C3—C11 124.3 (3) C27—C28—H28 118.4
C4—C3—C11 119.6 (3) C31—C29—C32 109.0 (3)
C5—C4—C3 121.2 (3) C31—C29—C30 109.2 (3)
C5—C4—H4 119.4 C32—C29—C30 109.2 (3)
C3—C4—H4 119.4 C31—C29—C21 111.2 (3)
N1—C5—C4 121.8 (3) C32—C29—C21 110.2 (3)
N1—C5—C6 114.9 (2) C30—C29—C21 108.1 (2)
C4—C5—C6 123.0 (3) C29—C30—H30A 109.5
N2—C6—C7 121.4 (3) C29—C30—H30B 109.5
N2—C6—C5 115.4 (2) H30A—C30—H30B 109.5
C7—C6—C5 123.1 (3) C29—C30—H30C 109.5
C6—C7—C8 120.3 (3) H30A—C30—H30C 109.5
C6—C7—H7 119.8 H30B—C30—H30C 109.5
C8—C7—H7 119.8 C29—C31—H31A 109.5
C9—C8—C7 117.0 (3) C29—C31—H31B 109.5
C9—C8—C15 123.1 (3) H31A—C31—H31B 109.5
C7—C8—C15 119.9 (3) C29—C31—H31C 109.5
C8—C9—C10 120.0 (3) H31A—C31—H31C 109.5
C8—C9—H9 120.0 H31B—C31—H31C 109.5
C10—C9—H9 120.0 C29—C32—H32A 109.5
N2—C10—C9 123.0 (3) C29—C32—H32B 109.5
N2—C10—H10 118.5 H32A—C32—H32B 109.5
C9—C10—H10 118.5 C29—C32—H32C 109.5
C14—C11—C3 111.8 (3) H32A—C32—H32C 109.5
C14—C11—C13 109.9 (3) H32B—C32—H32C 109.5
C3—C11—C13 108.6 (3) C34—C33—C26 108.7 (3)
C14—C11—C12 108.4 (3) C34—C33—C35 108.2 (3)
C3—C11—C12 108.5 (3) C26—C33—C35 112.2 (2)
C13—C11—C12 109.8 (3) C34—C33—C36 110.4 (3)
C11—C12—H12A 109.5 C26—C33—C36 108.5 (3)
C11—C12—H12B 109.5 C35—C33—C36 108.8 (3)
H12A—C12—H12B 109.5 C33—C34—H34A 109.5
C11—C12—H12C 109.5 C33—C34—H34B 109.5
H12A—C12—H12C 109.5 H34A—C34—H34B 109.5
H12B—C12—H12C 109.5 C33—C34—H34C 109.5
C11—C13—H13A 109.5 H34A—C34—H34C 109.5
C11—C13—H13B 109.5 H34B—C34—H34C 109.5
H13A—C13—H13B 109.5 C33—C35—H35A 109.5
C11—C13—H13C 109.5 C33—C35—H35B 109.5
H13A—C13—H13C 109.5 H35A—C35—H35B 109.5
H13B—C13—H13C 109.5 C33—C35—H35C 109.5
C11—C14—H14A 109.5 H35A—C35—H35C 109.5
C11—C14—H14B 109.5 H35B—C35—H35C 109.5
H14A—C14—H14B 109.5 C33—C36—H36A 109.5
C11—C14—H14C 109.5 C33—C36—H36B 109.5
H14A—C14—H14C 109.5 H36A—C36—H36B 109.5
H14B—C14—H14C 109.5 C33—C36—H36C 109.5
C18—C15—C16 114.4 (4) H36A—C36—H36C 109.5
C18—C15—C8 110.3 (3) H36B—C36—H36C 109.5
C16—C15—C8 110.9 (3)
O3—Mo1—N1—C1 −154.4 (3) N1—C5—C6—N2 −8.0 (4)
O2—Mo1—N1—C1 −2.2 (2) C4—C5—C6—N2 166.9 (3)
O1—Mo1—N1—C1 98.8 (2) N1—C5—C6—C7 174.8 (3)
N2—Mo1—N1—C1 −172.5 (2) C4—C5—C6—C7 −10.3 (5)
Cl1—Mo1—N1—C1 −92.6 (2) N2—C6—C7—C8 −3.5 (5)
O3—Mo1—N1—C5 13.1 (4) C5—C6—C7—C8 173.5 (3)
O2—Mo1—N1—C5 165.3 (2) C6—C7—C8—C9 1.2 (5)
O1—Mo1—N1—C5 −93.7 (2) C6—C7—C8—C15 −179.8 (3)
N2—Mo1—N1—C5 −5.0 (2) C7—C8—C9—C10 0.8 (5)
Cl1—Mo1—N1—C5 74.9 (2) C15—C8—C9—C10 −178.2 (3)
O3—Mo1—N2—C10 3.8 (2) C6—N2—C10—C9 −1.7 (4)
O2—Mo1—N2—C10 150.5 (3) Mo1—N2—C10—C9 −179.0 (2)
O1—Mo1—N2—C10 −96.7 (2) C8—C9—C10—N2 −0.6 (5)
N1—Mo1—N2—C10 177.5 (2) C2—C3—C11—C14 5.6 (5)
Cl1—Mo1—N2—C10 95.7 (2) C4—C3—C11—C14 −171.7 (3)
O3—Mo1—N2—C6 −173.5 (2) C2—C3—C11—C13 −115.8 (4)
O2—Mo1—N2—C6 −26.7 (4) C4—C3—C11—C13 67.0 (4)
O1—Mo1—N2—C6 86.1 (2) C2—C3—C11—C12 125.0 (4)
N1—Mo1—N2—C6 0.3 (2) C4—C3—C11—C12 −52.2 (4)
Cl1—Mo1—N2—C6 −81.6 (2) C9—C8—C15—C18 −138.6 (4)
O5—Mo2—N3—C19 −1.0 (2) C7—C8—C15—C18 42.5 (5)
O4—Mo2—N3—C19 157.1 (3) C9—C8—C15—C16 −10.8 (5)
O1—Mo2—N3—C19 −101.5 (2) C7—C8—C15—C16 170.3 (4)
N4—Mo2—N3—C19 176.4 (2) C9—C8—C15—C17 106.4 (4)
Cl2—Mo2—N3—C19 93.7 (2) C7—C8—C15—C17 −72.6 (4)
O5—Mo2—N3—C23 179.7 (2) C23—N3—C19—C20 2.2 (4)
O4—Mo2—N3—C23 −22.2 (4) Mo2—N3—C19—C20 −177.1 (2)
O1—Mo2—N3—C23 79.2 (2) N3—C19—C20—C21 0.1 (5)
N4—Mo2—N3—C23 −3.0 (2) C19—C20—C21—C22 −2.8 (4)
Cl2—Mo2—N3—C23 −85.6 (2) C19—C20—C21—C29 177.6 (3)
O5—Mo2—N4—C28 −171.6 (3) C20—C21—C22—C23 3.2 (4)
O4—Mo2—N4—C28 −5.4 (2) C29—C21—C22—C23 −177.2 (3)
O1—Mo2—N4—C28 94.0 (2) C19—N3—C23—C22 −1.8 (4)
N3—Mo2—N4—C28 −179.2 (2) Mo2—N3—C23—C22 177.6 (2)
Cl2—Mo2—N4—C28 −96.3 (2) C19—N3—C23—C24 −179.5 (3)
O5—Mo2—N4—C24 13.8 (4) Mo2—N3—C23—C24 −0.1 (3)
O4—Mo2—N4—C24 179.9 (2) C21—C22—C23—N3 −1.0 (4)
O1—Mo2—N4—C24 −80.6 (2) C21—C22—C23—C24 176.5 (3)
N3—Mo2—N4—C24 6.2 (2) C28—N4—C24—C25 −2.3 (4)
Cl2—Mo2—N4—C24 89.1 (2) Mo2—N4—C24—C25 172.5 (2)
O3—Mo1—O1—Mo2 60.75 (19) C28—N4—C24—C23 176.7 (2)
O2—Mo1—O1—Mo2 −48.57 (19) Mo2—N4—C24—C23 −8.5 (3)
N2—Mo1—O1—Mo2 151.74 (18) N3—C23—C24—N4 5.4 (4)
N1—Mo1—O1—Mo2 −139.15 (18) C22—C23—C24—N4 −172.2 (3)
Cl1—Mo1—O1—Mo2 −172.16 (6) N3—C23—C24—C25 −175.6 (3)
O5—Mo2—O1—Mo1 −40.34 (19) C22—C23—C24—C25 6.8 (4)
O4—Mo2—O1—Mo1 −150.18 (18) N4—C24—C25—C26 2.1 (4)
N4—Mo2—O1—Mo1 118.93 (18) C23—C24—C25—C26 −176.8 (3)
N3—Mo2—O1—Mo1 49.02 (18) C24—C25—C26—C27 −0.1 (4)
Cl2—Mo2—O1—Mo1 91.5 (2) C24—C25—C26—C33 179.6 (3)
C5—N1—C1—C2 −3.3 (4) C25—C26—C27—C28 −1.7 (4)
Mo1—N1—C1—C2 164.5 (2) C33—C26—C27—C28 178.7 (3)
N1—C1—C2—C3 0.4 (5) C24—N4—C28—C27 0.5 (4)
C1—C2—C3—C4 3.8 (4) Mo2—N4—C28—C27 −174.3 (2)
C1—C2—C3—C11 −173.6 (3) C26—C27—C28—N4 1.5 (5)
C2—C3—C4—C5 −5.2 (5) C20—C21—C29—C31 −18.8 (4)
C11—C3—C4—C5 172.3 (3) C22—C21—C29—C31 161.6 (3)
C1—N1—C5—C4 1.8 (4) C20—C21—C29—C32 −139.8 (3)
Mo1—N1—C5—C4 −166.3 (2) C22—C21—C29—C32 40.6 (4)
C1—N1—C5—C6 176.7 (2) C20—C21—C29—C30 101.0 (4)
Mo1—N1—C5—C6 8.6 (3) C22—C21—C29—C30 −78.6 (4)
C3—C4—C5—N1 2.6 (5) C27—C26—C33—C34 −117.4 (3)
C3—C4—C5—C6 −172.0 (3) C25—C26—C33—C34 62.9 (3)
C10—N2—C6—C7 3.7 (4) C27—C26—C33—C35 2.2 (4)
Mo1—N2—C6—C7 −178.9 (2) C25—C26—C33—C35 −177.4 (3)
C10—N2—C6—C5 −173.5 (2) C27—C26—C33—C36 122.4 (3)
Mo1—N2—C6—C5 3.8 (3) C25—C26—C33—C36 −57.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C27—H27···O1i 0.95 2.52 3.341 (3) 145
C34—H34A···Cl1ii 0.98 2.77 3.748 (4) 174
C35—H35A···O4i 0.98 2.54 3.421 (4) 149
C12—H12C···O1W 0.98 2.69 3.641 (16) 163
C18—H18B···O1W 0.98 2.10 2.970 (18) 147
O1W—···.Cl2i . . 3.573 (18) .
O1W—···.O5iii . . 3.236 (17) .

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x−1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5013).

References

  1. Arzoumanian, H., Bakhtchadjian, R., Agrifoglio, G., Atencio, R. & Briceno, A. (2006). Transition Met. Chem. 31, 681–689.
  2. Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2005). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Coelho, A. C., Nolasco, M., Balula, S. S., Antunes, M. M., Pereira, C. C. L., Paz, F. A. A., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Klinowski, J. & Gonçalves, I. S. (2011). Inorg. Chem. 50, 525–538. [DOI] [PubMed]
  6. Fernandes, J. A., Almeida Paz, F. A. & Romão, C. C. (2011). Acta Cryst. E67, m288–m289. [DOI] [PMC free article] [PubMed]
  7. Fernandes, J. A., Gomes, A. C., Figueiredo, S., Gago, S., Lopes, A. D., Pillinger, M., Ribeiro-Claro, P. J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2010a). Acta Cryst. E66, m1005–m1006. [DOI] [PMC free article] [PubMed]
  8. Fernandes, J. A., Gomes, A. C., Figueiredo, S., Gago, S., Ribeiro-Claro, P. J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2010b). Acta Cryst. E66, m862–m863. [DOI] [PMC free article] [PubMed]
  9. Gago, S., Neves, P., Monteiro, B., Pessêgo, M., Lopes, A. D., Valente, A. A., Paz, F. A. A., Pillinger, M., Moreira, J., Silva, C. M. & Gonçalves, I. S. (2009). Eur. J. Inorg. Chem. pp. 4528–4537.
  10. Jeyakumar, K. & Chand, D. K. (2009). J. Chem. Sci. 121, 111–123.
  11. Kühn, F. E., Groarke, M., Bencze, E., Herdtweck, E., Prazeres, A., Santos, A. M., Calhorda, M. J., Romão, C. C., Gonçalves, I. S., Lopes, A. D. & Pillinger, M. (2002). Chem. Eur. J. 8, 2370–2383. [DOI] [PubMed]
  12. Nunes, C. D., Valente, A. A., Pillinger, M., Rocha, J. & Gonçalves, I. S. (2003). Chem. Eur. J. 9, 4380–4390. [DOI] [PubMed]
  13. Pereira, C. C. L., Balula, S. S., Paz, F. A. A., Valente, A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2007). Inorg. Chem. 46, 8508–8510. [DOI] [PubMed]
  14. Rodrigues, C. W., Limberg, C. & Pritzkow, H. (2004). Chem. Commun. pp. 2734–2735. [DOI] [PubMed]
  15. Sheldrick, G. M. (1997). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046952/tk5013sup1.cif

e-67-m1738-sup1.cif (33.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046952/tk5013Isup2.hkl

e-67-m1738-Isup2.hkl (517.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES