Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):m1741–m1742. doi: 10.1107/S160053681104726X

Poly[[tetra­aqua­(μ4-imidazole-4,5-dicarboxyl­ato)(μ3-imidazole-4,5-dicarboxyl­ato)-μ3-sulfato-μ2-sulfato-cobalt(II)digadolinium(III)] monohydrate]

Li-Cai Zhu a,*
PMCID: PMC3238650  PMID: 22199541

Abstract

The asymmetric unit of the title compound, {[CoGd2(C5H2N2O4)2(SO4)2(H2O)4]·H2O}n, contains one CoII ion, two GdIII ions, two imidazole-4,5-dicarboxyl­ate ligands, two SO4 2− anions, four coordinated water mol­ecules and one uncoordinated water mol­ecule. The CoII ion is six-coordinated by two O atoms from two coordinated water mol­ecules, as well as two O atoms and two N atoms from two imidazole-4,5-dicarboxyl­ate ligands, giving a slightly distorted octa­hedral geometry. Both GdIII ions are eight-coordinated in a distorted bicapped trigonal–prismatic geometry. One GdIII ion is coordinated by four O atoms from two imidazole-4,5-dicarboxyl­ate ligands, three O atoms from three SO4 2− anions and a water O atom; the other GdIII ion is bonded to five O atoms from three imidazole-4,5-dicarboxyl­ate ligands, two O atoms from two SO4 2− anions as well as a water O atom. These metal coordination units are connected by bridging imidazole-4,5-dicarboxyl­ate and sulfate ligands, generating a heterometallic layer parallel to the ac plane. The layers are stacked along the b axis via N—H⋯O, O—H⋯O, and C—H⋯O hydrogen-bonding inter­actions, generating a three-dimensional framework.

Related literature

For applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).graphic file with name e-67-m1741-scheme1.jpg

Experimental

Crystal data

  • [CoGd2(C5H2N2O4)2(SO4)2(H2O)4]·H2O

  • M r = 963.82

  • Triclinic, Inline graphic

  • a = 9.0916 (5) Å

  • b = 10.7714 (6) Å

  • c = 12.9736 (7) Å

  • α = 93.119 (1)°

  • β = 96.416 (1)°

  • γ = 108.840 (1)°

  • V = 1189.35 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.48 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.284, T max = 0.378

  • 6174 measured reflections

  • 4208 independent reflections

  • 3790 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.054

  • S = 1.02

  • 4208 reflections

  • 397 parameters

  • 17 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104726X/hp2018sup1.cif

e-67-m1741-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104726X/hp2018Isup2.hkl

e-67-m1741-Isup2.hkl (206.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (4) 1.96 (4) 2.820 (5) 172 (5)
O1W—H1W⋯O5Wii 0.81 (4) 1.95 (3) 2.745 (5) 169 (6)
N3—H2⋯O14iii 0.87 (3) 1.93 (3) 2.787 (4) 169 (4)
O2W—H3W⋯O1i 0.80 (3) 2.09 (4) 2.878 (5) 171 (5)
O2W—H4W⋯O14i 0.81 (4) 2.04 (4) 2.842 (5) 172 (5)
O2W—H4W⋯O15i 0.81 (4) 2.52 (4) 3.035 (5) 123 (4)
O3W—H5W⋯O12iv 0.82 (3) 1.95 (4) 2.734 (4) 162 (5)
O3W—H6W⋯O14v 0.83 (3) 2.41 (4) 2.919 (4) 120 (3)
O4W—H7W⋯O3vi 0.82 (3) 2.49 (3) 3.306 (6) 174 (6)
O4W—H8W⋯O5Wiii 0.82 (5) 1.89 (5) 2.700 (6) 175 (6)
O5W—H9W⋯O12v 0.85 (4) 1.99 (4) 2.797 (6) 161 (5)
O5W—H10W⋯O1i 0.85 (5) 1.93 (5) 2.728 (5) 157 (6)
C3—H3⋯O3vii 0.93 2.44 3.193 (5) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The author acknowledges South China Normal University for supporting this work.

supplementary crystallographic information

Comment

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe(Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this artcle.

The asymmetric unite of the title compound (Fig. 1), contains one CoII ion, two GdIII ions, two imidazole-4, 5-dicarboxylate ligands, two SO42- anions, four coordinated water molecules and one uncoordinated water molecule. The CoII ion is six-coordinated with two O atoms from two coordinated water molecules, two O atoms and two N atoms from two imidazole-4, 5-dicarboxylate ligands, giving a slightly distorted octahedral geometry. Both GdIII ions are eight-coordinated in a bicapped trigonal prismatic coordination geometry. One GdIII ion is coordinated by four O atoms from two imidazole-4,5-dicarboxylate ligands, three O atoms from three SO42- anions and one water molecule; the other GdIII ion is bonded to five O atoms from three imidazole-4, 5-dicarboxylate ligands, two O atoms from two SO42- anions as well as one coordinated water molecule. These metal coordination units are connected by bridging imidazole-4, 5-dicarboxylate and sulfate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along b axis via N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions to generate the three-dimensional framework(Table 1 and Fig. 2).

Experimental

A mixture of CoSO4.7H2O(0.141 g, 0.5 mmol), Gd2O3(0.09 g, 0.25 mmol), imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and H2O(7 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Red block crystals suitable for X-ray analysis were obtained.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms and H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of N—H = 0.87 Å, O—H = 0.82 or 0.86 Å and Uiso(H) = 1.5 Ueq(N, O).

Figures

Fig. 1.

Fig. 1.

The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) 2 - x, 1 - y, 1 - z; (B) 1 - x, 1 - y, 1 - z; (C) 1 - x, 1 - y, -z.

Fig. 2.

Fig. 2.

A view of the three-dimensional structure of the title compound, the hydrogen bonding interactions showed as broken lines.

Crystal data

[CoGd2(C5H2N2O4)2(SO4)2(H2O)4]·H2O Z = 2
Mr = 963.82 F(000) = 914
Triclinic, P1 Dx = 2.691 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.0916 (5) Å Cell parameters from 4033 reflections
b = 10.7714 (6) Å θ = 2.4–27.9°
c = 12.9736 (7) Å µ = 6.48 mm1
α = 93.119 (1)° T = 296 K
β = 96.416 (1)° Block, red
γ = 108.840 (1)° 0.20 × 0.18 × 0.15 mm
V = 1189.35 (11) Å3

Data collection

Bruker APEXII area-detector diffractometer 4208 independent reflections
Radiation source: fine-focus sealed tube 3790 reflections with I > 2σ(I)
graphite Rint = 0.016
φ and ω scan θmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→8
Tmin = 0.284, Tmax = 0.378 k = −9→12
6174 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.3497P] where P = (Fo2 + 2Fc2)/3
4208 reflections (Δ/σ)max = 0.002
397 parameters Δρmax = 0.79 e Å3
17 restraints Δρmin = −0.81 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Gd1 0.90952 (2) 0.549083 (19) 0.364770 (14) 0.01526 (7)
Gd2 0.37043 (2) 0.410578 (19) 0.108204 (14) 0.01441 (7)
Co1 0.35411 (7) 0.78823 (6) 0.27426 (4) 0.01829 (13)
S1 0.92233 (13) 0.22231 (10) 0.40357 (8) 0.0196 (2)
S2 0.77447 (12) 0.42234 (10) 0.09511 (7) 0.0157 (2)
C1 0.7564 (5) 0.3980 (4) 0.5774 (3) 0.0152 (9)
C2 0.5906 (5) 0.3349 (4) 0.5377 (3) 0.0175 (9)
C3 0.3614 (5) 0.1987 (4) 0.5498 (3) 0.0224 (10)
H3 0.2790 0.1358 0.5738 0.027*
C4 0.4925 (5) 0.3440 (4) 0.4526 (3) 0.0176 (9)
C5 0.5166 (5) 0.4170 (4) 0.3574 (3) 0.0179 (9)
C6 0.5196 (5) 0.6976 (4) 0.1215 (3) 0.0183 (9)
C7 0.5717 (5) 0.8417 (4) 0.1198 (3) 0.0198 (9)
C8 0.5810 (6) 1.0356 (4) 0.1824 (3) 0.0262 (11)
H8 0.5656 1.1038 0.2221 0.031*
C9 0.6687 (5) 0.9312 (4) 0.0646 (3) 0.0212 (10)
C10 0.7527 (5) 0.9224 (4) −0.0265 (3) 0.0253 (10)
N1 0.3480 (4) 0.2571 (4) 0.4626 (3) 0.0219 (8)
N2 0.5066 (4) 0.2422 (3) 0.5971 (3) 0.0188 (8)
N3 0.6720 (5) 1.0523 (3) 0.1057 (3) 0.0251 (9)
N4 0.5169 (4) 0.9092 (3) 0.1936 (3) 0.0209 (8)
O1 1.0507 (4) 0.2115 (3) 0.3471 (2) 0.0307 (8)
O2 0.9891 (4) 0.2677 (3) 0.5141 (2) 0.0260 (7)
O3 0.7976 (4) 0.0979 (3) 0.3993 (3) 0.0429 (10)
O4 0.8622 (4) 0.3220 (3) 0.3559 (2) 0.0236 (7)
O5 0.8508 (3) 0.4831 (3) 0.5314 (2) 0.0191 (6)
O6 0.8087 (3) 0.3626 (3) 0.6615 (2) 0.0195 (6)
O7 0.6446 (3) 0.5035 (3) 0.3536 (2) 0.0227 (7)
O8 0.4026 (4) 0.3819 (3) 0.2864 (2) 0.0291 (8)
O9 0.4237 (4) 0.6481 (3) 0.1835 (2) 0.0216 (7)
O10 0.5663 (3) 0.6222 (3) 0.0648 (2) 0.0201 (7)
O11 0.7322 (4) 0.8084 (3) −0.0689 (3) 0.0373 (9)
O12 0.8336 (4) 1.0256 (3) −0.0559 (3) 0.0371 (9)
O13 0.7800 (4) 0.5049 (3) 0.0081 (2) 0.0261 (7)
O14 0.8239 (4) 0.3108 (3) 0.0655 (2) 0.0302 (8)
O15 0.8852 (4) 0.5027 (3) 0.1839 (2) 0.0315 (8)
O16 0.6158 (4) 0.3748 (3) 0.1261 (2) 0.0296 (8)
H1 0.260 (4) 0.251 (5) 0.426 (3) 0.044*
H2 0.725 (5) 1.128 (3) 0.087 (4) 0.044*
O1W 0.8720 (5) 0.7325 (3) 0.2745 (3) 0.0411 (9)
H1W 0.931 (6) 0.807 (3) 0.275 (4) 0.062*
H2W 0.843 (7) 0.703 (5) 0.216 (2) 0.062*
O2W 0.1300 (4) 0.3676 (4) 0.1756 (3) 0.0301 (8)
H3W 0.115 (5) 0.331 (5) 0.227 (2) 0.045*
H4W 0.046 (4) 0.359 (5) 0.143 (3) 0.045*
O3W 0.1637 (4) 0.7554 (3) 0.1538 (2) 0.0305 (8)
H5W 0.166 (7) 0.811 (3) 0.113 (3) 0.046*
H6W 0.131 (6) 0.686 (3) 0.114 (3) 0.046*
O4W 0.2924 (5) 0.9293 (4) 0.3611 (3) 0.0402 (9)
H7W 0.267 (6) 0.916 (6) 0.419 (2) 0.060*
H8W 0.221 (5) 0.949 (6) 0.330 (4) 0.060*
O5W 0.0564 (5) −0.0166 (4) 0.2481 (3) 0.0440 (10)
H9W 0.079 (7) −0.006 (5) 0.187 (2) 0.066*
H10W 0.028 (7) 0.046 (4) 0.271 (4) 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Gd1 0.01463 (12) 0.01957 (12) 0.01160 (11) 0.00505 (9) 0.00226 (8) 0.00460 (8)
Gd2 0.01453 (12) 0.01764 (12) 0.01186 (11) 0.00550 (9) 0.00300 (8) 0.00492 (8)
Co1 0.0212 (3) 0.0206 (3) 0.0141 (3) 0.0069 (2) 0.0050 (2) 0.0054 (2)
S1 0.0214 (6) 0.0180 (5) 0.0181 (5) 0.0053 (4) 0.0011 (4) 0.0022 (4)
S2 0.0164 (5) 0.0211 (5) 0.0111 (5) 0.0077 (4) 0.0024 (4) 0.0041 (4)
C1 0.020 (2) 0.017 (2) 0.0083 (19) 0.0053 (18) 0.0044 (17) 0.0013 (16)
C2 0.022 (2) 0.021 (2) 0.0102 (19) 0.0082 (18) 0.0032 (17) 0.0004 (17)
C3 0.021 (2) 0.024 (2) 0.020 (2) 0.0035 (19) 0.0038 (19) 0.0055 (18)
C4 0.018 (2) 0.021 (2) 0.013 (2) 0.0056 (18) 0.0011 (17) 0.0031 (17)
C5 0.017 (2) 0.029 (2) 0.010 (2) 0.0095 (19) 0.0058 (17) 0.0057 (17)
C6 0.018 (2) 0.020 (2) 0.015 (2) 0.0039 (18) −0.0011 (18) 0.0041 (18)
C7 0.023 (2) 0.018 (2) 0.018 (2) 0.0057 (18) 0.0050 (18) 0.0017 (17)
C8 0.038 (3) 0.017 (2) 0.025 (2) 0.009 (2) 0.012 (2) 0.0031 (19)
C9 0.026 (3) 0.014 (2) 0.021 (2) 0.0034 (18) 0.0045 (19) 0.0031 (18)
C10 0.027 (3) 0.024 (3) 0.023 (2) 0.003 (2) 0.010 (2) 0.005 (2)
N1 0.016 (2) 0.031 (2) 0.0177 (19) 0.0067 (17) 0.0005 (15) 0.0044 (16)
N2 0.020 (2) 0.0204 (19) 0.0142 (17) 0.0039 (15) 0.0035 (15) 0.0047 (14)
N3 0.035 (2) 0.0154 (19) 0.025 (2) 0.0043 (17) 0.0127 (18) 0.0081 (16)
N4 0.024 (2) 0.0188 (19) 0.0185 (18) 0.0050 (16) 0.0045 (16) 0.0011 (15)
O1 0.033 (2) 0.046 (2) 0.0184 (16) 0.0199 (16) 0.0057 (14) 0.0000 (15)
O2 0.037 (2) 0.0269 (17) 0.0154 (15) 0.0120 (15) 0.0022 (14) 0.0038 (13)
O3 0.031 (2) 0.0262 (19) 0.057 (2) −0.0065 (15) −0.0102 (18) 0.0148 (17)
O4 0.0266 (18) 0.0222 (16) 0.0229 (16) 0.0107 (14) −0.0012 (14) 0.0020 (13)
O5 0.0160 (16) 0.0252 (16) 0.0149 (14) 0.0041 (13) 0.0030 (12) 0.0064 (12)
O6 0.0167 (16) 0.0296 (17) 0.0125 (14) 0.0070 (13) 0.0029 (12) 0.0074 (12)
O7 0.0161 (16) 0.0295 (17) 0.0225 (16) 0.0057 (13) 0.0029 (13) 0.0122 (13)
O8 0.0191 (17) 0.048 (2) 0.0167 (16) 0.0052 (15) 0.0010 (13) 0.0133 (15)
O9 0.0276 (18) 0.0182 (15) 0.0193 (15) 0.0049 (13) 0.0105 (13) 0.0067 (12)
O10 0.0246 (17) 0.0149 (15) 0.0209 (15) 0.0048 (13) 0.0084 (13) 0.0036 (12)
O11 0.053 (2) 0.0187 (18) 0.037 (2) 0.0021 (16) 0.0258 (18) 0.0011 (15)
O12 0.050 (2) 0.0236 (18) 0.039 (2) 0.0061 (16) 0.0248 (18) 0.0103 (15)
O13 0.0230 (18) 0.042 (2) 0.0184 (16) 0.0142 (15) 0.0053 (13) 0.0170 (14)
O14 0.039 (2) 0.0200 (17) 0.0346 (18) 0.0095 (15) 0.0187 (16) 0.0038 (14)
O15 0.035 (2) 0.0346 (19) 0.0158 (16) 0.0001 (15) 0.0002 (14) −0.0013 (14)
O16 0.0236 (18) 0.045 (2) 0.0275 (17) 0.0164 (15) 0.0122 (14) 0.0208 (15)
O1W 0.053 (3) 0.029 (2) 0.035 (2) 0.0081 (18) −0.0066 (19) 0.0089 (16)
O2W 0.0199 (18) 0.049 (2) 0.0271 (18) 0.0154 (16) 0.0092 (14) 0.0182 (16)
O3W 0.035 (2) 0.0295 (18) 0.0251 (17) 0.0100 (16) −0.0016 (15) 0.0045 (14)
O4W 0.055 (3) 0.041 (2) 0.032 (2) 0.0265 (19) 0.0098 (18) 0.0015 (18)
O5W 0.063 (3) 0.040 (2) 0.043 (2) 0.028 (2) 0.026 (2) 0.0114 (18)

Geometric parameters (Å, °)

Gd1—O7 2.283 (3) C3—N2 1.314 (5)
Gd1—O2i 2.319 (3) C3—N1 1.336 (5)
Gd1—O4 2.337 (3) C3—H3 0.9300
Gd1—O15 2.343 (3) C4—N1 1.370 (5)
Gd1—O5 2.375 (3) C4—C5 1.498 (5)
Gd1—O1W 2.447 (3) C5—O7 1.242 (5)
Gd1—O6i 2.498 (3) C5—O8 1.249 (5)
Gd1—O5i 2.562 (3) C6—O9 1.263 (5)
Gd1—C1i 2.905 (4) C6—O10 1.268 (5)
Gd1—Gd1i 4.0465 (4) C6—C7 1.471 (6)
Gd2—O11ii 2.244 (3) C7—C9 1.373 (6)
Gd2—O13ii 2.338 (3) C7—N4 1.399 (5)
Gd2—O8 2.348 (3) C8—N4 1.320 (5)
Gd2—O2W 2.361 (3) C8—N3 1.347 (6)
Gd2—O16 2.373 (3) C8—H8 0.9300
Gd2—O10ii 2.414 (3) C9—N3 1.372 (5)
Gd2—O10 2.535 (3) C9—C10 1.493 (6)
Gd2—O9 2.561 (3) C10—O12 1.226 (5)
Gd2—C6 2.934 (4) C10—O11 1.265 (5)
Gd2—Gd2ii 4.0349 (4) N1—H1 0.87 (4)
Co1—N4 2.058 (4) N2—Co1iii 2.086 (3)
Co1—N2iii 2.086 (3) N3—H2 0.87 (3)
Co1—O6iii 2.096 (3) O2—Gd1i 2.319 (3)
Co1—O4W 2.097 (4) O5—Gd1i 2.562 (3)
Co1—O3W 2.122 (3) O6—Co1iii 2.096 (3)
Co1—O9 2.157 (3) O6—Gd1i 2.498 (3)
S1—O3 1.443 (3) O10—Gd2ii 2.414 (3)
S1—O1 1.478 (3) O11—Gd2ii 2.244 (3)
S1—O2 1.483 (3) O13—Gd2ii 2.338 (3)
S1—O4 1.486 (3) O1W—H1W 0.81 (4)
S2—O14 1.459 (3) O1W—H2W 0.789 (19)
S2—O15 1.469 (3) O2W—H3W 0.80 (3)
S2—O13 1.470 (3) O2W—H4W 0.81 (4)
S2—O16 1.476 (3) O3W—H5W 0.82 (3)
C1—O5 1.264 (5) O3W—H6W 0.83 (3)
C1—O6 1.269 (5) O4W—H7W 0.82 (3)
C1—C2 1.458 (6) O4W—H8W 0.82 (5)
C1—Gd1i 2.905 (4) O5W—H9W 0.85 (4)
C2—C4 1.369 (6) O5W—H10W 0.85 (5)
C2—N2 1.377 (5)
O7—Gd1—O2i 103.56 (11) O4W—Co1—O3W 93.45 (14)
O7—Gd1—O4 87.61 (10) N4—Co1—O9 78.00 (12)
O2i—Gd1—O4 139.04 (10) N2iii—Co1—O9 87.71 (13)
O7—Gd1—O15 90.06 (11) O6iii—Co1—O9 91.82 (11)
O2i—Gd1—O15 137.61 (11) O4W—Co1—O9 178.18 (14)
O4—Gd1—O15 80.42 (11) O3W—Co1—O9 87.04 (13)
O7—Gd1—O5 76.05 (10) O3—S1—O1 112.2 (2)
O2i—Gd1—O5 71.43 (10) O3—S1—O2 108.8 (2)
O4—Gd1—O5 73.46 (10) O1—S1—O2 107.78 (19)
O15—Gd1—O5 150.71 (11) O3—S1—O4 110.53 (19)
O7—Gd1—O1W 77.94 (12) O1—S1—O4 107.51 (18)
O2i—Gd1—O1W 74.57 (11) O2—S1—O4 110.02 (17)
O4—Gd1—O1W 146.18 (11) O14—S2—O15 108.6 (2)
O15—Gd1—O1W 69.33 (12) O14—S2—O13 109.56 (18)
O5—Gd1—O1W 130.26 (12) O15—S2—O13 107.94 (19)
O7—Gd1—O6i 164.37 (9) O14—S2—O16 110.07 (19)
O2i—Gd1—O6i 76.75 (10) O15—S2—O16 109.10 (19)
O4—Gd1—O6i 102.43 (10) O13—S2—O16 111.47 (17)
O15—Gd1—O6i 80.01 (10) O5—C1—O6 118.6 (4)
O5—Gd1—O6i 118.09 (9) O5—C1—C2 123.7 (3)
O1W—Gd1—O6i 87.23 (12) O6—C1—C2 117.7 (3)
O7—Gd1—O5i 144.56 (9) O5—C1—Gd1i 61.8 (2)
O2i—Gd1—O5i 75.17 (10) O6—C1—Gd1i 58.9 (2)
O4—Gd1—O5i 73.51 (10) C2—C1—Gd1i 163.6 (3)
O15—Gd1—O5i 115.09 (11) C4—C2—N2 109.0 (4)
O5—Gd1—O5i 69.99 (11) C4—C2—C1 135.5 (4)
O1W—Gd1—O5i 132.85 (11) N2—C2—C1 115.5 (3)
O6i—Gd1—O5i 50.97 (9) N2—C3—N1 110.9 (4)
O7—Gd1—C1i 168.66 (10) N2—C3—H3 124.5
O2i—Gd1—C1i 70.40 (11) N1—C3—H3 124.5
O4—Gd1—C1i 91.09 (11) C2—C4—N1 105.5 (3)
O15—Gd1—C1i 100.83 (11) C2—C4—C5 133.9 (4)
O5—Gd1—C1i 92.78 (10) N1—C4—C5 120.4 (4)
O1W—Gd1—C1i 108.73 (12) O7—C5—O8 125.4 (4)
O6i—Gd1—C1i 25.79 (9) O7—C5—C4 119.5 (4)
O5i—Gd1—C1i 25.77 (10) O8—C5—C4 115.1 (4)
O7—Gd1—Gd1i 111.99 (7) O9—C6—O10 119.1 (4)
O2i—Gd1—Gd1i 69.58 (7) O9—C6—C7 117.3 (4)
O4—Gd1—Gd1i 69.70 (7) O10—C6—C7 123.6 (4)
O15—Gd1—Gd1i 141.31 (9) O9—C6—Gd2 60.5 (2)
O5—Gd1—Gd1i 36.51 (7) O10—C6—Gd2 59.4 (2)
O1W—Gd1—Gd1i 144.09 (9) C7—C6—Gd2 171.4 (3)
O6i—Gd1—Gd1i 82.97 (6) C9—C7—N4 109.2 (4)
O5i—Gd1—Gd1i 33.48 (6) C9—C7—C6 135.5 (4)
C1i—Gd1—Gd1i 57.20 (7) N4—C7—C6 115.3 (4)
O11ii—Gd2—O13ii 104.05 (12) N4—C8—N3 110.6 (4)
O11ii—Gd2—O8 90.51 (12) N4—C8—H8 124.7
O13ii—Gd2—O8 138.78 (11) N3—C8—H8 124.7
O11ii—Gd2—O2W 79.70 (13) N3—C9—C7 105.2 (4)
O13ii—Gd2—O2W 75.63 (11) N3—C9—C10 119.4 (4)
O8—Gd2—O2W 69.29 (11) C7—C9—C10 135.2 (4)
O11ii—Gd2—O16 85.00 (13) O12—C10—O11 125.0 (4)
O13ii—Gd2—O16 139.36 (10) O12—C10—C9 117.9 (4)
O8—Gd2—O16 79.29 (11) O11—C10—C9 117.1 (4)
O2W—Gd2—O16 144.68 (10) C3—N1—C4 108.3 (3)
O11ii—Gd2—O10ii 76.41 (10) C3—N1—H1 125 (4)
O13ii—Gd2—O10ii 71.52 (10) C4—N1—H1 126 (4)
O8—Gd2—O10ii 149.64 (11) C3—N2—C2 106.3 (3)
O2W—Gd2—O10ii 132.68 (11) C3—N2—Co1iii 140.8 (3)
O16—Gd2—O10ii 72.45 (10) C2—N2—Co1iii 112.8 (3)
O11ii—Gd2—O10 145.26 (11) C8—N3—C9 109.0 (4)
O13ii—Gd2—O10 76.33 (10) C8—N3—H2 125 (4)
O8—Gd2—O10 112.31 (10) C9—N3—H2 126 (4)
O2W—Gd2—O10 131.93 (11) C8—N4—C7 106.0 (4)
O16—Gd2—O10 74.61 (10) C8—N4—Co1 139.7 (3)
O10ii—Gd2—O10 70.80 (11) C7—N4—Co1 114.0 (3)
O11ii—Gd2—O9 163.85 (11) S1—O2—Gd1i 144.35 (18)
O13ii—Gd2—O9 74.78 (10) S1—O4—Gd1 141.43 (18)
O8—Gd2—O9 80.86 (10) C1—O5—Gd1 143.6 (3)
O2W—Gd2—O9 84.47 (11) C1—O5—Gd1i 92.4 (2)
O16—Gd2—O9 106.54 (11) Gd1—O5—Gd1i 110.01 (11)
O10ii—Gd2—O9 117.44 (9) C1—O6—Co1iii 115.4 (3)
O10—Gd2—O9 50.71 (9) C1—O6—Gd1i 95.3 (2)
O11ii—Gd2—C6 169.70 (11) Co1iii—O6—Gd1i 143.17 (13)
O13ii—Gd2—C6 71.59 (11) C5—O7—Gd1 145.3 (3)
O8—Gd2—C6 98.84 (11) C5—O8—Gd2 134.4 (3)
O2W—Gd2—C6 107.59 (12) C6—O9—Co1 115.0 (3)
O16—Gd2—C6 92.46 (12) C6—O9—Gd2 94.1 (2)
O10ii—Gd2—C6 93.30 (11) Co1—O9—Gd2 149.36 (13)
O10—Gd2—C6 25.50 (10) C6—O10—Gd2ii 142.3 (3)
O9—Gd2—C6 25.43 (10) C6—O10—Gd2 95.1 (2)
O11ii—Gd2—Gd2ii 112.07 (8) Gd2ii—O10—Gd2 109.20 (11)
O13ii—Gd2—Gd2ii 70.24 (7) C10—O11—Gd2ii 159.9 (3)
O8—Gd2—Gd2ii 139.01 (7) S2—O13—Gd2ii 144.17 (19)
O2W—Gd2—Gd2ii 145.64 (8) S2—O15—Gd1 141.6 (2)
O16—Gd2—Gd2ii 69.68 (7) S2—O16—Gd2 142.69 (18)
O10ii—Gd2—Gd2ii 36.40 (6) Gd1—O1W—H1W 130 (4)
O10—Gd2—Gd2ii 34.41 (6) Gd1—O1W—H2W 104 (4)
O9—Gd2—Gd2ii 82.98 (6) H1W—O1W—H2W 108 (3)
C6—Gd2—Gd2ii 57.82 (8) Gd2—O2W—H3W 122 (4)
N4—Co1—N2iii 102.68 (14) Gd2—O2W—H4W 127 (3)
N4—Co1—O6iii 169.67 (13) H3W—O2W—H4W 108 (3)
N2iii—Co1—O6iii 78.43 (12) Co1—O3W—H5W 120 (4)
N4—Co1—O4W 100.20 (15) Co1—O3W—H6W 121 (4)
N2iii—Co1—O4W 92.40 (14) H5W—O3W—H6W 102 (3)
O6iii—Co1—O4W 89.98 (14) Co1—O4W—H7W 121 (4)
N4—Co1—O3W 94.51 (14) Co1—O4W—H8W 113 (4)
N2iii—Co1—O3W 160.56 (13) H7W—O4W—H8W 104 (3)
O6iii—Co1—O3W 83.04 (12) H9W—O5W—H10W 110 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1iv 0.87 (4) 1.96 (4) 2.820 (5) 172 (5)
O1W—H1W···O5Wv 0.81 (4) 1.95 (3) 2.745 (5) 169 (6)
N3—H2···O14vi 0.87 (3) 1.93 (3) 2.787 (4) 169 (4)
O2W—H3W···O1iv 0.80 (3) 2.09 (4) 2.878 (5) 171 (5)
O2W—H4W···O14iv 0.81 (4) 2.04 (4) 2.842 (5) 172 (5)
O2W—H4W···O15iv 0.81 (4) 2.52 (4) 3.035 (5) 123 (4)
O3W—H5W···O12vii 0.82 (3) 1.95 (4) 2.734 (4) 162 (5)
O3W—H6W···O14ii 0.83 (3) 2.41 (4) 2.919 (4) 120 (3)
O4W—H7W···O3iii 0.82 (3) 2.49 (3) 3.306 (6) 174 (6)
O4W—H8W···O5Wvi 0.82 (5) 1.89 (5) 2.700 (6) 175 (6)
O5W—H9W···O12ii 0.85 (4) 1.99 (4) 2.797 (6) 161 (5)
O5W—H10W···O1iv 0.85 (5) 1.93 (5) 2.728 (5) 157 (6)
C3—H3···O3viii 0.93 2.44 3.193 (5) 138.

Symmetry codes: (iv) x−1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) −x+1, −y+2, −z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (viii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2018).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.
  3. Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702. [DOI] [PubMed]
  7. Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299–1303.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104726X/hp2018sup1.cif

e-67-m1741-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104726X/hp2018Isup2.hkl

e-67-m1741-Isup2.hkl (206.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES