Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):m1744. doi: 10.1107/S1600536811046629

1-[(Ferrocen-1-yl)meth­yl]-3-(naphthalen-1-yl)thio­urea

Xia Li a,*, Wei Liu a
PMCID: PMC3238652  PMID: 22199543

Abstract

In the title compound, [Fe(C5H5)(C17H15N2S)], the cyclo­penta­dienyl (Cp) rings are almost parallel and essentially eclipsed, with a dihedral angle between the Cp ring planes of 0.807 (11)°. The Fe atom is slightly closer to the substituted cyclo­penta­dienyl ring, with an Fe–centroid distance of 1.6510 (8) Å, compared with 1.6597 (8) Å for the unsubstituted ring. The bridging unit between the substituted Cp ring and the naphthyl ring system is planar within 0.0174 Å and makes dihedral angles of 59.032 (10) and 66.02 (2)°, respectively, with these two rings. The angle between the substituted Cp ring and the naphthyl ring system is 72.094 (18)°. The H atoms of the NH groups of the thio­urea moiety are positioned anti with respect to each other. In the crystal, mol­ecules form centrosymmetric dimers via pairs of N—H⋯S hydrogen bonds.

Related literature

For applications of thio­urea in the field of medicine, see: Di Grandi et al. (2004); Suh et al. (2005); Kaymakcioglu et al. (2005); Han et al. (2006), in bioorganic chemistry, see: Rostom (2006) and in supra­molecular chemistry, see: Henderson et al. (2001); Heck & Marsura (2003).graphic file with name e-67-m1744-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C17H15N2S)]

  • M r = 400.31

  • Triclinic, Inline graphic

  • a = 7.958 (3) Å

  • b = 10.890 (5) Å

  • c = 12.357 (5) Å

  • α = 66.886 (6)°

  • β = 78.637 (8)°

  • γ = 73.306 (8)°

  • V = 939.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 296 K

  • 0.39 × 0.24 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.755, T max = 0.867

  • 5178 measured reflections

  • 3645 independent reflections

  • 2741 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.105

  • S = 1.04

  • 3645 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046629/fj2464sup1.cif

e-67-m1744-sup1.cif (28.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046629/fj2464Isup2.hkl

e-67-m1744-Isup2.hkl (178.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.90 (3) 2.45 (3) 3.326 (3) 167 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support from the Foundation of Henan Educational Committee (2011B150001) and the Foundation of Henan University of Urban Construction (2010JYB007).

supplementary crystallographic information

Comment

Thiourea and its derivatives have attracted great attention because of their potential applications in the field of medicine (Di Grandi et al., 2004; Suh et al., 2005; Kaymakcioglu et al., 2005; Han et al., 2006), bioorganic (Rostom et al., 2006) and supramolecular chemistry (Henderson et al., 2001; Heck et al., 2003). Detailed information on their molecular and crystal structures is necessary to understand their biologic activity and coordination possibility. Here we want to report the crystal structure of a new ferrocene-containing thiourea, 1-((ferroecen-1-yl)methyl)-3-(naphthalen-1-yl)thiourea.

The molecular structure of the title compound is composed of a (ferroecen-1-yl)methyl group and a naphthalen group joined by an organic thiourea spacer. The Fe—C bond distances within the ferrocene group are in the range of 2.043 (3)–2.048 (3) Å for the substituted cyclopentadienyl (Cp) ring [C1—C5] and 2.033 (3)–2.048 (3) Å for the unsubstituted Cp ring [C6—C10]. The Cp rings are almost parallel and are essentially eclipsed, and the dihedral angle between the Cp ring planes is 0.807 (11) °. The Fe atom is slightly closer to the substituted cyclopentadienyl ring, with a Fe-centroid distance of 1.6510 (8) Å, compared with 1.6597 (8) Å for the unsubstituted ring. The bridging unit between the substituted Cp ring and naphthyl rings is planar within 0.0174 Å and makes dihedral angles of 59.032 (10) ° and 66.019 (21) °, respectively, with these two rings, while the angle between the substituted Cp ring and naphthyl rings is 72.094 (18) °. The H atoms of the NH groups of thiourea are positioned anti to each other. In the crystal, the molecules form centrosymmetric dimers via intermolecular N—H···S hydrogen bonds.

Experimental

To a solution of (ferrocene-1-yl)methanamine (1.075 g, 5 mmol) in MeOH (30 ml), 1-naphthyl isothiocyanate (0.925 g, 5 mmol) was added. The reaction mixture was stirred at room temperature for 12 h. The resulting solution was concentrated to about 10 ml and then cooled at ice-bath. The yellow precipitate was collected by filtration and washed with Ether several times. The crude product was purified by recrystallization from CH2Cl2 / MeOH to give 1-((ferroecen-1-yl)methyl)-3-(naphthalen-1-yl)thiourea as yellow block crystals.

Refinement

H atoms on both the N and C atoms were positioned geometrically with N—H = 0.86 Å, C—H = 0.93 and 0.97 Å for aromatic and methyl H, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids.

Crystal data

[Fe(C5H5)(C17H15N2S)] V = 939.1 (7) Å3
Mr = 400.31 Z = 2
Triclinic, P1 F(000) = 416
Hall symbol: -P 1 Dx = 1.416 Mg m3
a = 7.958 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.890 (5) Å θ = 1.8–28.2°
c = 12.357 (5) Å µ = 0.92 mm1
α = 66.886 (6)° T = 296 K
β = 78.637 (8)° Block, orange
γ = 73.306 (8)° 0.39 × 0.24 × 0.16 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3645 independent reflections
Radiation source: fine-focus sealed tube 2741 reflections with I > 2σ(I)
graphite Rint = 0.018
phi and ω scans θmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −9→9
Tmin = 0.755, Tmax = 0.867 k = −9→13
5178 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.1883P] where P = (Fo2 + 2Fc2)/3
3645 reflections (Δ/σ)max < 0.001
241 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.28952 (5) 0.28154 (4) 0.44361 (3) 0.04797 (15)
S1 0.81798 (10) 0.59967 (7) 0.11000 (7) 0.0553 (2)
N1 0.6093 (3) 0.4257 (2) 0.2183 (2) 0.0559 (7)
N2 0.8196 (3) 0.3739 (2) 0.0768 (2) 0.0513 (6)
C1 0.4345 (4) 0.4236 (3) 0.4046 (2) 0.0500 (7)
C2 0.2684 (4) 0.4629 (3) 0.4647 (3) 0.0558 (7)
H2 0.1844 0.5443 0.4358 0.067*
C3 0.2523 (5) 0.3575 (3) 0.5759 (3) 0.0645 (8)
H3 0.1556 0.3570 0.6322 0.077*
C4 0.4083 (5) 0.2533 (4) 0.5866 (3) 0.0689 (9)
H4 0.4326 0.1721 0.6512 0.083*
C5 0.5222 (4) 0.2936 (3) 0.4814 (3) 0.0602 (8)
H5 0.6343 0.2438 0.4655 0.072*
C6 0.2304 (5) 0.2825 (4) 0.2899 (3) 0.0716 (9)
H6 0.2558 0.3436 0.2146 0.086*
C7 0.0759 (4) 0.3020 (4) 0.3636 (3) 0.0747 (10)
H7 −0.0190 0.3778 0.3458 0.090*
C8 0.0883 (6) 0.1880 (5) 0.4690 (4) 0.0851 (12)
H8 0.0040 0.1739 0.5338 0.102*
C9 0.2543 (6) 0.0979 (4) 0.4579 (4) 0.0871 (12)
H9 0.2987 0.0137 0.5147 0.104*
C10 0.3395 (5) 0.1579 (4) 0.3468 (4) 0.0780 (10)
H10 0.4501 0.1204 0.3166 0.094*
C11 0.5046 (4) 0.5097 (3) 0.2864 (3) 0.0634 (8)
H11A 0.4071 0.5746 0.2429 0.076*
H11B 0.5770 0.5615 0.2968 0.076*
C12 0.7436 (3) 0.4578 (3) 0.1373 (2) 0.0433 (6)
C13 0.7688 (3) 0.2533 (3) 0.0865 (2) 0.0445 (6)
C14 0.6119 (4) 0.2638 (3) 0.0504 (3) 0.0550 (7)
H14 0.5362 0.3497 0.0215 0.066*
C15 0.5630 (4) 0.1469 (4) 0.0563 (3) 0.0646 (9)
H15 0.4541 0.1553 0.0340 0.078*
C16 0.6750 (4) 0.0220 (4) 0.0946 (3) 0.0623 (8)
H16 0.6429 −0.0546 0.0968 0.075*
C17 0.8410 (4) 0.0057 (3) 0.1316 (2) 0.0492 (7)
C18 0.9628 (5) −0.1220 (3) 0.1691 (3) 0.0666 (9)
H18 0.9360 −0.1994 0.1686 0.080*
C19 1.1183 (5) −0.1343 (3) 0.2060 (3) 0.0779 (10)
H19 1.1966 −0.2198 0.2303 0.093*
C20 1.1618 (4) −0.0202 (4) 0.2079 (3) 0.0700 (9)
H20 1.2678 −0.0305 0.2351 0.084*
C21 1.0513 (4) 0.1059 (3) 0.1705 (3) 0.0562 (7)
H21 1.0828 0.1814 0.1714 0.067*
C22 0.8878 (3) 0.1236 (3) 0.1299 (2) 0.0426 (6)
H1A 0.577 (4) 0.357 (3) 0.230 (2) 0.051*
H2A 0.921 (4) 0.389 (3) 0.033 (2) 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0496 (2) 0.0505 (3) 0.0520 (3) −0.01930 (18) −0.00125 (18) −0.02317 (19)
S1 0.0595 (4) 0.0442 (4) 0.0712 (5) −0.0267 (3) 0.0129 (4) −0.0287 (4)
N1 0.0636 (15) 0.0482 (14) 0.0679 (16) −0.0311 (12) 0.0227 (12) −0.0341 (13)
N2 0.0472 (13) 0.0477 (14) 0.0668 (16) −0.0240 (11) 0.0165 (11) −0.0298 (12)
C1 0.0560 (16) 0.0482 (16) 0.0578 (17) −0.0207 (13) 0.0047 (13) −0.0301 (14)
C2 0.0613 (18) 0.0536 (17) 0.0584 (18) −0.0166 (14) 0.0067 (14) −0.0298 (15)
C3 0.074 (2) 0.076 (2) 0.0555 (19) −0.0343 (18) 0.0120 (16) −0.0334 (17)
C4 0.091 (3) 0.072 (2) 0.0521 (19) −0.0320 (19) −0.0182 (18) −0.0162 (17)
C5 0.0537 (17) 0.063 (2) 0.078 (2) −0.0135 (14) −0.0135 (16) −0.0362 (17)
C6 0.083 (2) 0.090 (3) 0.063 (2) −0.039 (2) −0.0065 (19) −0.036 (2)
C7 0.058 (2) 0.089 (3) 0.096 (3) −0.0177 (18) −0.0148 (19) −0.049 (2)
C8 0.087 (3) 0.119 (3) 0.081 (3) −0.069 (3) 0.015 (2) −0.048 (3)
C9 0.113 (3) 0.055 (2) 0.107 (3) −0.035 (2) −0.040 (3) −0.019 (2)
C10 0.076 (2) 0.086 (3) 0.104 (3) −0.026 (2) −0.004 (2) −0.064 (3)
C11 0.076 (2) 0.0511 (18) 0.070 (2) −0.0252 (15) 0.0233 (16) −0.0351 (16)
C12 0.0441 (14) 0.0395 (14) 0.0496 (15) −0.0149 (11) −0.0004 (12) −0.0178 (12)
C13 0.0486 (15) 0.0469 (15) 0.0494 (15) −0.0234 (12) 0.0082 (12) −0.0267 (13)
C14 0.0532 (17) 0.0577 (18) 0.0621 (18) −0.0174 (14) −0.0050 (14) −0.0269 (15)
C15 0.0611 (19) 0.088 (3) 0.068 (2) −0.0358 (18) 0.0002 (16) −0.0422 (19)
C16 0.079 (2) 0.072 (2) 0.0627 (19) −0.0482 (18) 0.0104 (16) −0.0378 (17)
C17 0.0658 (18) 0.0450 (16) 0.0458 (15) −0.0278 (14) 0.0115 (13) −0.0232 (13)
C18 0.097 (3) 0.0452 (18) 0.0589 (19) −0.0302 (17) 0.0167 (18) −0.0212 (15)
C19 0.090 (3) 0.0484 (19) 0.074 (2) −0.0020 (18) 0.003 (2) −0.0143 (17)
C20 0.0595 (19) 0.067 (2) 0.075 (2) −0.0083 (16) −0.0095 (17) −0.0198 (18)
C21 0.0570 (17) 0.0568 (18) 0.0623 (18) −0.0237 (14) 0.0004 (14) −0.0247 (15)
C22 0.0479 (15) 0.0470 (15) 0.0425 (14) −0.0238 (12) 0.0093 (12) −0.0233 (12)

Geometric parameters (Å, °)

Fe1—C9 2.033 (3) C6—H6 0.9300
Fe1—C6 2.040 (3) C7—C8 1.400 (5)
Fe1—C10 2.042 (3) C7—H7 0.9300
Fe1—C4 2.043 (3) C8—C9 1.420 (6)
Fe1—C3 2.043 (3) C8—H8 0.9300
Fe1—C1 2.044 (3) C9—C10 1.398 (5)
Fe1—C7 2.046 (3) C9—H9 0.9300
Fe1—C8 2.047 (3) C10—H10 0.9300
Fe1—C5 2.047 (3) C11—H11A 0.9700
Fe1—C2 2.048 (3) C11—H11B 0.9700
S1—C12 1.699 (3) C13—C14 1.366 (4)
N1—C12 1.336 (3) C13—C22 1.420 (4)
N1—C11 1.458 (3) C14—C15 1.407 (4)
N1—H1A 0.81 (3) C14—H14 0.9300
N2—C12 1.342 (3) C15—C16 1.354 (5)
N2—C13 1.437 (3) C15—H15 0.9300
N2—H2A 0.90 (3) C16—C17 1.423 (4)
C1—C2 1.421 (4) C16—H16 0.9300
C1—C5 1.425 (4) C17—C18 1.409 (4)
C1—C11 1.493 (4) C17—C22 1.428 (3)
C2—C3 1.414 (4) C18—C19 1.355 (5)
C2—H2 0.9300 C18—H18 0.9300
C3—C4 1.409 (5) C19—C20 1.393 (5)
C3—H3 0.9300 C19—H19 0.9300
C4—C5 1.421 (4) C20—C21 1.357 (4)
C4—H4 0.9300 C20—H20 0.9300
C5—H5 0.9300 C21—C22 1.421 (4)
C6—C10 1.380 (5) C21—H21 0.9300
C6—C7 1.396 (5)
C9—Fe1—C6 66.95 (16) C4—C5—C1 108.0 (3)
C9—Fe1—C10 40.13 (16) C4—C5—Fe1 69.49 (17)
C6—Fe1—C10 39.51 (14) C1—C5—Fe1 69.49 (16)
C9—Fe1—C4 108.65 (15) C4—C5—H5 126.0
C6—Fe1—C4 165.75 (15) C1—C5—H5 126.0
C10—Fe1—C4 128.50 (16) Fe1—C5—H5 126.6
C9—Fe1—C3 127.08 (16) C10—C6—C7 108.9 (3)
C6—Fe1—C3 153.19 (15) C10—C6—Fe1 70.3 (2)
C10—Fe1—C3 165.09 (16) C7—C6—Fe1 70.26 (19)
C4—Fe1—C3 40.33 (13) C10—C6—H6 125.6
C9—Fe1—C1 154.07 (16) C7—C6—H6 125.6
C6—Fe1—C1 109.02 (13) Fe1—C6—H6 125.4
C10—Fe1—C1 120.19 (14) C6—C7—C8 108.3 (4)
C4—Fe1—C1 68.58 (12) C6—C7—Fe1 69.80 (19)
C3—Fe1—C1 68.53 (12) C8—C7—Fe1 70.0 (2)
C9—Fe1—C7 67.36 (16) C6—C7—H7 125.8
C6—Fe1—C7 39.94 (13) C8—C7—H7 125.8
C10—Fe1—C7 67.04 (15) Fe1—C7—H7 125.9
C4—Fe1—C7 152.63 (15) C7—C8—C9 106.7 (3)
C3—Fe1—C7 118.87 (14) C7—C8—Fe1 69.98 (19)
C1—Fe1—C7 127.19 (14) C9—C8—Fe1 69.1 (2)
C9—Fe1—C8 40.73 (16) C7—C8—H8 126.6
C6—Fe1—C8 67.34 (15) C9—C8—H8 126.6
C10—Fe1—C8 67.84 (15) Fe1—C8—H8 125.8
C4—Fe1—C8 118.94 (15) C10—C9—C8 108.1 (4)
C3—Fe1—C8 107.16 (14) C10—C9—Fe1 70.29 (19)
C1—Fe1—C8 163.82 (16) C8—C9—Fe1 70.2 (2)
C7—Fe1—C8 39.99 (15) C10—C9—H9 125.9
C9—Fe1—C5 120.16 (15) C8—C9—H9 125.9
C6—Fe1—C5 128.50 (13) Fe1—C9—H9 125.2
C10—Fe1—C5 109.68 (14) C6—C10—C9 108.0 (4)
C4—Fe1—C5 40.66 (13) C6—C10—Fe1 70.17 (19)
C3—Fe1—C5 68.15 (13) C9—C10—Fe1 69.6 (2)
C1—Fe1—C5 40.76 (12) C6—C10—H10 126.0
C7—Fe1—C5 165.29 (15) C9—C10—H10 126.0
C8—Fe1—C5 153.72 (17) Fe1—C10—H10 125.8
C9—Fe1—C2 164.22 (17) N1—C11—C1 111.5 (2)
C6—Fe1—C2 120.10 (14) N1—C11—H11A 109.3
C10—Fe1—C2 153.81 (15) C1—C11—H11A 109.3
C4—Fe1—C2 67.90 (13) N1—C11—H11B 109.3
C3—Fe1—C2 40.44 (12) C1—C11—H11B 109.3
C1—Fe1—C2 40.65 (11) H11A—C11—H11B 108.0
C7—Fe1—C2 108.15 (14) N1—C12—N2 117.7 (2)
C8—Fe1—C2 126.17 (15) N1—C12—S1 122.01 (19)
C5—Fe1—C2 68.03 (12) N2—C12—S1 120.24 (19)
C12—N1—C11 125.0 (2) C14—C13—C22 120.7 (2)
C12—N1—H1A 120 (2) C14—C13—N2 120.6 (3)
C11—N1—H1A 115 (2) C22—C13—N2 118.7 (2)
C12—N2—C13 127.0 (2) C13—C14—C15 121.1 (3)
C12—N2—H2A 115.8 (17) C13—C14—H14 119.4
C13—N2—H2A 116.7 (17) C15—C14—H14 119.4
C2—C1—C5 107.2 (3) C16—C15—C14 119.8 (3)
C2—C1—C11 125.1 (3) C16—C15—H15 120.1
C5—C1—C11 127.6 (3) C14—C15—H15 120.1
C2—C1—Fe1 69.82 (16) C15—C16—C17 121.3 (3)
C5—C1—Fe1 69.75 (16) C15—C16—H16 119.4
C11—C1—Fe1 128.7 (2) C17—C16—H16 119.4
C3—C2—C1 108.5 (3) C18—C17—C16 122.9 (3)
C3—C2—Fe1 69.61 (17) C18—C17—C22 118.2 (3)
C1—C2—Fe1 69.53 (15) C16—C17—C22 119.0 (3)
C3—C2—H2 125.7 C19—C18—C17 121.4 (3)
C1—C2—H2 125.7 C19—C18—H18 119.3
Fe1—C2—H2 126.7 C17—C18—H18 119.3
C4—C3—C2 108.1 (3) C18—C19—C20 120.5 (3)
C4—C3—Fe1 69.82 (18) C18—C19—H19 119.7
C2—C3—Fe1 69.96 (16) C20—C19—H19 119.7
C4—C3—H3 126.0 C21—C20—C19 120.7 (3)
C2—C3—H3 126.0 C21—C20—H20 119.6
Fe1—C3—H3 125.8 C19—C20—H20 119.6
C3—C4—C5 108.2 (3) C20—C21—C22 120.5 (3)
C3—C4—Fe1 69.85 (18) C20—C21—H21 119.7
C5—C4—Fe1 69.85 (17) C22—C21—H21 119.7
C3—C4—H4 125.9 C13—C22—C21 123.2 (2)
C5—C4—H4 125.9 C13—C22—C17 118.1 (2)
Fe1—C4—H4 126.0 C21—C22—C17 118.6 (3)
C9—Fe1—C1—C2 −169.4 (3) C10—Fe1—C6—C7 119.6 (3)
C6—Fe1—C1—C2 114.4 (2) C4—Fe1—C6—C7 156.5 (5)
C10—Fe1—C1—C2 156.4 (2) C3—Fe1—C6—C7 −45.9 (4)
C4—Fe1—C1—C2 −80.6 (2) C1—Fe1—C6—C7 −125.7 (2)
C3—Fe1—C1—C2 −37.12 (19) C8—Fe1—C6—C7 37.4 (2)
C7—Fe1—C1—C2 73.5 (2) C5—Fe1—C6—C7 −167.2 (2)
C8—Fe1—C1—C2 40.3 (5) C2—Fe1—C6—C7 −82.4 (2)
C5—Fe1—C1—C2 −118.1 (2) C10—C6—C7—C8 0.3 (4)
C9—Fe1—C1—C5 −51.2 (4) Fe1—C6—C7—C8 −59.7 (2)
C6—Fe1—C1—C5 −127.48 (19) C10—C6—C7—Fe1 59.9 (2)
C10—Fe1—C1—C5 −85.5 (2) C9—Fe1—C7—C6 −80.6 (3)
C4—Fe1—C1—C5 37.54 (18) C10—Fe1—C7—C6 −36.9 (2)
C3—Fe1—C1—C5 81.0 (2) C4—Fe1—C7—C6 −167.7 (3)
C7—Fe1—C1—C5 −168.33 (19) C3—Fe1—C7—C6 158.3 (2)
C8—Fe1—C1—C5 158.4 (4) C1—Fe1—C7—C6 74.4 (3)
C2—Fe1—C1—C5 118.1 (2) C8—Fe1—C7—C6 −119.3 (3)
C9—Fe1—C1—C11 71.3 (4) C5—Fe1—C7—C6 43.1 (6)
C6—Fe1—C1—C11 −4.9 (3) C2—Fe1—C7—C6 115.5 (2)
C10—Fe1—C1—C11 37.0 (3) C9—Fe1—C7—C8 38.7 (2)
C4—Fe1—C1—C11 160.1 (3) C6—Fe1—C7—C8 119.3 (3)
C3—Fe1—C1—C11 −156.4 (3) C10—Fe1—C7—C8 82.4 (3)
C7—Fe1—C1—C11 −45.8 (3) C4—Fe1—C7—C8 −48.3 (4)
C8—Fe1—C1—C11 −79.0 (5) C3—Fe1—C7—C8 −82.4 (3)
C5—Fe1—C1—C11 122.5 (3) C1—Fe1—C7—C8 −166.3 (2)
C2—Fe1—C1—C11 −119.3 (3) C5—Fe1—C7—C8 162.4 (5)
C5—C1—C2—C3 −1.2 (3) C2—Fe1—C7—C8 −125.1 (2)
C11—C1—C2—C3 −177.4 (3) C6—C7—C8—C9 −0.1 (4)
Fe1—C1—C2—C3 58.9 (2) Fe1—C7—C8—C9 −59.6 (2)
C5—C1—C2—Fe1 −60.01 (18) C6—C7—C8—Fe1 59.5 (2)
C11—C1—C2—Fe1 123.7 (3) C9—Fe1—C8—C7 −117.8 (3)
C9—Fe1—C2—C3 42.7 (6) C6—Fe1—C8—C7 −37.3 (2)
C6—Fe1—C2—C3 155.5 (2) C10—Fe1—C8—C7 −80.2 (2)
C10—Fe1—C2—C3 −171.8 (3) C4—Fe1—C8—C7 156.9 (2)
C4—Fe1—C2—C3 −37.6 (2) C3—Fe1—C8—C7 114.7 (2)
C1—Fe1—C2—C3 −120.0 (3) C1—Fe1—C8—C7 42.8 (6)
C7—Fe1—C2—C3 113.5 (2) C5—Fe1—C8—C7 −170.0 (3)
C8—Fe1—C2—C3 72.9 (3) C2—Fe1—C8—C7 74.3 (3)
C5—Fe1—C2—C3 −81.6 (2) C6—Fe1—C8—C9 80.5 (3)
C9—Fe1—C2—C1 162.8 (5) C10—Fe1—C8—C9 37.6 (2)
C6—Fe1—C2—C1 −84.4 (2) C4—Fe1—C8—C9 −85.3 (3)
C10—Fe1—C2—C1 −51.8 (4) C3—Fe1—C8—C9 −127.5 (2)
C4—Fe1—C2—C1 82.4 (2) C1—Fe1—C8—C9 160.6 (4)
C3—Fe1—C2—C1 120.0 (3) C7—Fe1—C8—C9 117.8 (3)
C7—Fe1—C2—C1 −126.5 (2) C5—Fe1—C8—C9 −52.2 (4)
C8—Fe1—C2—C1 −167.1 (2) C2—Fe1—C8—C9 −167.9 (2)
C5—Fe1—C2—C1 38.38 (18) C7—C8—C9—C10 −0.1 (4)
C1—C2—C3—C4 0.8 (3) Fe1—C8—C9—C10 −60.3 (2)
Fe1—C2—C3—C4 59.6 (2) C7—C8—C9—Fe1 60.2 (2)
C1—C2—C3—Fe1 −58.80 (19) C6—Fe1—C9—C10 37.2 (2)
C9—Fe1—C3—C4 74.3 (3) C4—Fe1—C9—C10 −128.2 (2)
C6—Fe1—C3—C4 −171.7 (3) C3—Fe1—C9—C10 −169.4 (2)
C10—Fe1—C3—C4 46.7 (6) C1—Fe1—C9—C10 −49.0 (4)
C1—Fe1—C3—C4 −81.8 (2) C7—Fe1—C9—C10 80.7 (2)
C7—Fe1—C3—C4 156.6 (2) C8—Fe1—C9—C10 118.7 (3)
C8—Fe1—C3—C4 114.8 (2) C5—Fe1—C9—C10 −85.1 (3)
C5—Fe1—C3—C4 −37.76 (19) C2—Fe1—C9—C10 157.2 (5)
C2—Fe1—C3—C4 −119.1 (3) C6—Fe1—C9—C8 −81.5 (3)
C9—Fe1—C3—C2 −166.6 (2) C10—Fe1—C9—C8 −118.7 (3)
C6—Fe1—C3—C2 −52.6 (4) C4—Fe1—C9—C8 113.0 (3)
C10—Fe1—C3—C2 165.8 (5) C3—Fe1—C9—C8 71.9 (3)
C4—Fe1—C3—C2 119.1 (3) C1—Fe1—C9—C8 −167.8 (3)
C1—Fe1—C3—C2 37.31 (18) C7—Fe1—C9—C8 −38.0 (2)
C7—Fe1—C3—C2 −84.3 (2) C5—Fe1—C9—C8 156.1 (2)
C8—Fe1—C3—C2 −126.2 (2) C2—Fe1—C9—C8 38.4 (6)
C5—Fe1—C3—C2 81.3 (2) C7—C6—C10—C9 −0.4 (4)
C2—C3—C4—C5 −0.2 (3) Fe1—C6—C10—C9 59.6 (2)
Fe1—C3—C4—C5 59.5 (2) C7—C6—C10—Fe1 −59.9 (2)
C2—C3—C4—Fe1 −59.7 (2) C8—C9—C10—C6 0.3 (4)
C9—Fe1—C4—C3 −125.8 (2) Fe1—C9—C10—C6 −59.9 (2)
C6—Fe1—C4—C3 164.6 (5) C8—C9—C10—Fe1 60.2 (2)
C10—Fe1—C4—C3 −166.1 (2) C9—Fe1—C10—C6 118.9 (3)
C1—Fe1—C4—C3 81.6 (2) C4—Fe1—C10—C6 −169.1 (2)
C7—Fe1—C4—C3 −49.2 (4) C3—Fe1—C10—C6 153.9 (5)
C8—Fe1—C4—C3 −82.5 (2) C1—Fe1—C10—C6 −83.5 (2)
C5—Fe1—C4—C3 119.3 (3) C7—Fe1—C10—C6 37.3 (2)
C2—Fe1—C4—C3 37.71 (18) C8—Fe1—C10—C6 80.8 (2)
C9—Fe1—C4—C5 114.9 (2) C5—Fe1—C10—C6 −127.3 (2)
C6—Fe1—C4—C5 45.3 (6) C2—Fe1—C10—C6 −47.2 (4)
C10—Fe1—C4—C5 74.6 (2) C6—Fe1—C10—C9 −118.9 (3)
C3—Fe1—C4—C5 −119.3 (3) C4—Fe1—C10—C9 72.0 (3)
C1—Fe1—C4—C5 −37.63 (18) C3—Fe1—C10—C9 34.9 (6)
C7—Fe1—C4—C5 −168.5 (3) C1—Fe1—C10—C9 157.5 (2)
C8—Fe1—C4—C5 158.2 (2) C7—Fe1—C10—C9 −81.6 (3)
C2—Fe1—C4—C5 −81.55 (19) C8—Fe1—C10—C9 −38.1 (2)
C3—C4—C5—C1 −0.5 (3) C5—Fe1—C10—C9 113.8 (2)
Fe1—C4—C5—C1 59.01 (19) C2—Fe1—C10—C9 −166.2 (3)
C3—C4—C5—Fe1 −59.5 (2) C12—N1—C11—C1 −150.6 (3)
C2—C1—C5—C4 1.0 (3) C2—C1—C11—N1 −145.3 (3)
C11—C1—C5—C4 177.2 (3) C5—C1—C11—N1 39.2 (4)
Fe1—C1—C5—C4 −59.02 (19) Fe1—C1—C11—N1 −54.1 (4)
C2—C1—C5—Fe1 60.05 (19) C11—N1—C12—N2 −175.8 (3)
C11—C1—C5—Fe1 −123.8 (3) C11—N1—C12—S1 4.0 (4)
C9—Fe1—C5—C4 −83.8 (2) C13—N2—C12—N1 2.1 (4)
C6—Fe1—C5—C4 −167.1 (2) C13—N2—C12—S1 −177.7 (2)
C10—Fe1—C5—C4 −126.8 (2) C12—N2—C13—C14 67.5 (4)
C3—Fe1—C5—C4 37.46 (19) C12—N2—C13—C22 −115.0 (3)
C1—Fe1—C5—C4 119.5 (3) C22—C13—C14—C15 0.7 (4)
C7—Fe1—C5—C4 158.9 (5) N2—C13—C14—C15 178.1 (2)
C8—Fe1—C5—C4 −47.2 (4) C13—C14—C15—C16 −2.2 (4)
C2—Fe1—C5—C4 81.2 (2) C14—C15—C16—C17 1.3 (5)
C9—Fe1—C5—C1 156.8 (2) C15—C16—C17—C18 −178.4 (3)
C6—Fe1—C5—C1 73.5 (2) C15—C16—C17—C22 1.1 (4)
C10—Fe1—C5—C1 113.8 (2) C16—C17—C18—C19 −178.7 (3)
C4—Fe1—C5—C1 −119.5 (3) C22—C17—C18—C19 1.9 (4)
C3—Fe1—C5—C1 −82.01 (19) C17—C18—C19—C20 0.1 (5)
C7—Fe1—C5—C1 39.4 (6) C18—C19—C20—C21 −1.4 (5)
C8—Fe1—C5—C1 −166.6 (3) C19—C20—C21—C22 0.7 (5)
C2—Fe1—C5—C1 −38.27 (16) C14—C13—C22—C21 −178.9 (2)
C9—Fe1—C6—C10 −37.8 (2) N2—C13—C22—C21 3.6 (4)
C4—Fe1—C6—C10 36.9 (6) C14—C13—C22—C17 1.7 (4)
C3—Fe1—C6—C10 −165.4 (3) N2—C13—C22—C17 −175.8 (2)
C1—Fe1—C6—C10 114.7 (2) C20—C21—C22—C13 −178.2 (3)
C7—Fe1—C6—C10 −119.6 (3) C20—C21—C22—C17 1.2 (4)
C8—Fe1—C6—C10 −82.2 (3) C18—C17—C22—C13 177.0 (2)
C5—Fe1—C6—C10 73.2 (3) C16—C17—C22—C13 −2.5 (4)
C2—Fe1—C6—C10 158.0 (2) C18—C17—C22—C21 −2.5 (4)
C9—Fe1—C6—C7 81.8 (3) C16—C17—C22—C21 178.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···S1i 0.90 (3) 2.45 (3) 3.326 (3) 167 (2)

Symmetry codes: (i) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2464).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS GmbH, Karlsruhe, Germany.
  2. Di Grandi, M. J., Curran, K. J., Feigelson, G., Prashad, A., Ross, A. A., Visalli, R., Fairhurst, J., Feld, B. & Bloom, J. D. (2004). Bioorg. Med. Chem. Lett. 14, 4157–4160. [DOI] [PubMed]
  3. Han, T., Cho, J. H. & Oh, C. H. (2006). Eur. J. Med. Chem. 41, 825–832. [DOI] [PubMed]
  4. Heck, R. & Marsura, A. (2003). Tetrahedron Lett. 44, 1533–1536.
  5. Henderson, W., Nicholson, B. K. & Rickard, C. E. F. (2001). Inorg. Chim. Acta, 320, 101–109.
  6. Kaymakcioglu, B. K., Rollas, S., Korcegez, E. & Aricioglu, F. (2005). Eur. J. Pharm. Sci. 26, 97–103. [DOI] [PubMed]
  7. Rostom, S. A. F. (2006). Bioorg. Med. Chem. 14, 6475–6485. [DOI] [PubMed]
  8. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Suh et al. (2005). J. Med. Chem. 48, 5823–5836.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046629/fj2464sup1.cif

e-67-m1744-sup1.cif (28.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046629/fj2464Isup2.hkl

e-67-m1744-Isup2.hkl (178.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES