Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):m1752. doi: 10.1107/S1600536811046915

Tetra­aqua­bis­[N,N′-bis­(pyridin-3-yl­methyl­idene)benzene-1,4-diamine]­zinc dinitrate 1.49-hydrate

Li Kong a, Haihui Yu b,*, Jibo Zhang a, Weiyi Cui a
PMCID: PMC3238659  PMID: 22199550

Abstract

In the title compound, [Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2O, the ZnII atom, lying on an inversion center, is coordinated by two N atoms from two N,N′-bis­(pyridin-3-yl­methyl­idene)benzene-1,4-diamine ligands and four water mol­ecules in a distorted octa­hedral geometry. The nitrate anion is disordered over two sets of sites, with an occupancy ratio of 0.744 (4):0.256 (4). The uncoordinated water mol­ecule is also disordered with an occupancy factor of 0.744 (4). O—H⋯O and O—H⋯N hydrogen bonds link the complex cations, nitrate anions and uncoordinated water mol­ecules into a supra­molecular layer parallel to (102).

Related literature

For background to the design and synthesis of zinc complexes with Schiff-base ligands and their potential applications as fluorescent probes, see: Su et al. (1999); Ye et al. (2005). For the synthesis of the ligand, see: Ye et al. (2004).graphic file with name e-67-m1752-scheme1.jpg

Experimental

Crystal data

  • [Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2O

  • M r = 860.95

  • Triclinic, Inline graphic

  • a = 8.5664 (17) Å

  • b = 9.928 (2) Å

  • c = 12.496 (3) Å

  • α = 81.47 (3)°

  • β = 71.55 (3)°

  • γ = 78.78 (3)°

  • V = 984.6 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 295 K

  • 0.48 × 0.28 × 0.18 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.731, T max = 0.885

  • 9721 measured reflections

  • 4462 independent reflections

  • 3908 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.141

  • S = 1.14

  • 4462 reflections

  • 305 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046915/hy2483sup1.cif

e-67-m1752-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046915/hy2483Isup2.hkl

e-67-m1752-Isup2.hkl (218.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O4i 0.87 1.87 2.725 (4) 170
O1W—H1A⋯O4′i 0.87 2.23 3.035 (13) 154
O1W—H1B⋯O3W 0.86 2.03 2.859 (13) 161
O1W—H1B⋯O3′ 0.86 1.82 2.65 (3) 161
O2W—H2A⋯N4ii 0.85 1.92 2.706 (3) 152
O2W—H2B⋯O3iii 0.86 1.96 2.761 (3) 155
O3W—H3A⋯O3iv 0.88 2.36 3.073 (12) 139
O3W—H3A⋯O5iv 0.88 2.38 3.112 (13) 142
O3W—H3B⋯O4 0.88 1.95 2.824 (13) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported financially by the Natural Science Foundation of Jilin Province (grant Nos. 2010178 and 2011073).

supplementary crystallographic information

Comment

Bipyridine-type ligands have been extensively investigated in recent years, owing to their simple structures, readily availabilities and predictable formation of network structures. Moreover, when introduced in double Schiff-base, a great deal of metal–organic frameworks with unusual network patterns and novel properties can be achieved due to the specific geometry including the different relative orientation of N-donors and the zigzag conformation of the space moiety between the two terminal coordination groups. For background to the design and syntheses of zinc complexes with Schiff-base and their potential applications as fluorescent probes, see: Su et al. (1999); Ye et al. (2005).

In the title compound (Fig. 1), the ZnII ion lies on an inversion center and is coordinated in a distorted octahedral geometry by two N atoms from two N,N'-bis(3-pyridylmethylene)-p-phenylenediamine (L) ligands in the axial positions and four O atoms of four coordinated water molecules in the equatorial positions. The Zn—O distances are 2.0705 (17) and 2.1691 (19) Å and the Zn—N distance is 2.1462 (19) Å. As shown in Fig. 2, the complex cations, nitrate anions and uncoordinated water molecules are connected by O—H···O hydrogen bonds (Table 1), forming a layer structure.

Experimental

The ligand L was prepared according to the previous method (Ye et al., 2004). 1,4-Diaminobenzene (2.14 mg, 10 mmol) was dissolved in methanol (20 ml), followed by addition of 3-pyridinecarboxaldehyde (4.24 mg, 40 mmol). The mixture was stirred at room temperature for 2 h and then filtered. The resulting yellow crystalline solid was washed with methanol several times and dried in air. A solution of Zn(NO3)2 (35.9 mg, 0.2 mmol) in acetonitrile (10 ml) was slowly layered onto a solution of L (117 mg, 0.625 mmol) in methylene chloride (12 ml). Diffusion between the two phases over two weeks produced colorless crystals of the title compound.

Refinement

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The water H atoms were located from difference Fourier maps and refined as riding atoms, with Uiso(H) = 1.5Ueq(O). The nitrate anion is disordered over two sets of sites. The occupancy factors were refined to a ratio of 0.744 (4):0.256 (4). The uncoordinated water molecule is also disordered with an occupancy factor of 0.744 (4).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, -y, 1 - z.]

Fig. 2.

Fig. 2.

A view of the layer structure in the title compound. Dashed lines denote hydrogen bonds. H atoms and minor disordered nitrate are omitted for clarity.

Crystal data

[Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2O Z = 1
Mr = 860.95 F(000) = 447
Triclinic, P1 Dx = 1.452 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5664 (17) Å Cell parameters from 3864 reflections
b = 9.928 (2) Å θ = 3.0–27.5°
c = 12.496 (3) Å µ = 0.70 mm1
α = 81.47 (3)° T = 295 K
β = 71.55 (3)° Block, colorless
γ = 78.78 (3)° 0.48 × 0.28 × 0.18 mm
V = 984.6 (4) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 4462 independent reflections
Radiation source: rotation anode 3908 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scan θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −10→11
Tmin = 0.731, Tmax = 0.885 k = −12→12
9721 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0912P)2 + 0.1378P] where P = (Fo2 + 2Fc2)/3
4462 reflections (Δ/σ)max = 0.001
305 parameters Δρmax = 0.70 e Å3
0 restraints Δρmin = −0.45 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.5000 0.0000 0.5000 0.03476 (14)
O1W 0.4583 (2) −0.21267 (19) 0.52697 (18) 0.0542 (5)
H1A 0.5380 −0.2798 0.5318 0.081*
H1B 0.3719 −0.2483 0.5325 0.081*
O2W 0.27473 (19) 0.06743 (19) 0.46591 (14) 0.0442 (4)
H2A 0.1756 0.0542 0.5011 0.066*
H2B 0.2754 0.1495 0.4331 0.066*
N1 0.3790 (2) 0.0222 (2) 0.67673 (15) 0.0366 (4)
N2 −0.0343 (3) 0.2800 (2) 0.95880 (17) 0.0434 (4)
N3 −0.5097 (3) 0.7453 (2) 1.10197 (19) 0.0440 (5)
N4 −0.9932 (2) 0.9640 (2) 1.36277 (19) 0.0471 (5)
C1 0.4027 (3) −0.0800 (2) 0.7552 (2) 0.0424 (5)
H1 0.4803 −0.1575 0.7319 0.051*
C2 0.3184 (3) −0.0765 (3) 0.8683 (2) 0.0483 (6)
H2 0.3395 −0.1497 0.9202 0.058*
C3 0.2017 (3) 0.0377 (3) 0.9038 (2) 0.0446 (5)
H3 0.1406 0.0412 0.9798 0.054*
C4 0.1767 (3) 0.1469 (2) 0.82479 (19) 0.0363 (4)
C5 0.2690 (3) 0.1342 (2) 0.71269 (19) 0.0375 (5)
H5 0.2539 0.2074 0.6593 0.045*
C6 0.0548 (3) 0.2709 (2) 0.8576 (2) 0.0408 (5)
H6 0.0432 0.3437 0.8031 0.049*
C7 −0.1540 (3) 0.3988 (2) 0.9907 (2) 0.0399 (5)
C8 −0.2182 (3) 0.4937 (3) 0.9165 (2) 0.0458 (5)
H8 −0.1824 0.4822 0.8395 0.055*
C9 −0.3352 (3) 0.6051 (3) 0.9566 (2) 0.0458 (5)
H9 −0.3769 0.6686 0.9059 0.055*
C10 −0.3921 (3) 0.6249 (2) 1.0708 (2) 0.0400 (5)
C11 −0.3289 (3) 0.5300 (3) 1.1453 (2) 0.0474 (6)
H11 −0.3652 0.5418 1.2222 0.057*
C12 −0.2112 (3) 0.4169 (3) 1.1054 (2) 0.0477 (6)
H12 −0.1704 0.3526 1.1562 0.057*
C13 −0.6147 (3) 0.7459 (3) 1.1989 (2) 0.0454 (5)
H13 −0.6136 0.6676 1.2499 0.054*
C14 −0.7385 (3) 0.8685 (2) 1.2324 (2) 0.0391 (5)
C15 −0.7352 (3) 0.9931 (3) 1.1659 (2) 0.0443 (5)
H15 −0.6479 1.0040 1.1000 0.053*
C16 −0.8622 (3) 1.1002 (3) 1.1987 (3) 0.0511 (6)
H16 −0.8623 1.1849 1.1554 0.061*
C17 −0.9892 (3) 1.0806 (3) 1.2962 (2) 0.0473 (6)
H17 −1.0768 1.1528 1.3164 0.057*
C18 −0.8701 (3) 0.8603 (3) 1.3314 (2) 0.0458 (5)
H18 −0.8719 0.7780 1.3780 0.055*
O3 0.1857 (5) −0.6809 (2) 0.3557 (3) 0.0680 (9) 0.744 (4)
O4 0.3062 (5) −0.5772 (4) 0.4302 (5) 0.1089 (17) 0.744 (4)
O5 0.1009 (5) −0.4680 (3) 0.3743 (3) 0.0796 (10) 0.744 (4)
N5 0.1921 (5) −0.5781 (4) 0.3878 (3) 0.0653 (10) 0.744 (4)
O3' 0.205 (2) −0.352 (3) 0.587 (3) 0.063 (4) 0.256 (4)
O4' 0.3410 (16) −0.4995 (13) 0.4725 (14) 0.109 (5) 0.256 (4)
O5' 0.1218 (17) −0.5612 (10) 0.5901 (10) 0.091 (4) 0.256 (4)
N5' 0.2171 (12) −0.4742 (8) 0.5525 (8) 0.050 (2) 0.256 (4)
O3W 0.1962 (15) −0.3745 (12) 0.5856 (14) 0.108 (4) 0.744 (4)
H3A 0.0988 −0.3961 0.6259 0.162* 0.744 (4)
H3B 0.2440 −0.4359 0.5361 0.162* 0.744 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02806 (19) 0.0387 (2) 0.0302 (2) 0.00313 (13) −0.00152 (13) −0.00763 (13)
O1W 0.0454 (10) 0.0420 (9) 0.0700 (13) −0.0046 (8) −0.0107 (9) −0.0064 (8)
O2W 0.0275 (7) 0.0564 (10) 0.0400 (9) 0.0010 (7) −0.0030 (6) −0.0030 (7)
N1 0.0319 (8) 0.0402 (9) 0.0307 (9) 0.0030 (7) −0.0031 (7) −0.0066 (7)
N2 0.0399 (10) 0.0426 (10) 0.0383 (10) 0.0044 (8) −0.0015 (8) −0.0109 (8)
N3 0.0373 (10) 0.0410 (10) 0.0473 (11) 0.0046 (8) −0.0056 (9) −0.0138 (9)
N4 0.0330 (9) 0.0576 (12) 0.0448 (11) −0.0024 (9) −0.0009 (8) −0.0164 (10)
C1 0.0356 (11) 0.0429 (11) 0.0392 (12) 0.0066 (9) −0.0045 (9) −0.0062 (9)
C2 0.0481 (13) 0.0498 (13) 0.0366 (12) 0.0048 (11) −0.0082 (10) 0.0020 (10)
C3 0.0405 (12) 0.0538 (13) 0.0302 (11) 0.0032 (10) −0.0025 (9) −0.0065 (10)
C4 0.0303 (10) 0.0408 (11) 0.0331 (11) 0.0005 (9) −0.0035 (8) −0.0098 (9)
C5 0.0334 (10) 0.0390 (11) 0.0339 (11) 0.0023 (9) −0.0054 (8) −0.0055 (9)
C6 0.0380 (11) 0.0404 (11) 0.0372 (11) 0.0023 (9) −0.0042 (9) −0.0094 (9)
C7 0.0342 (10) 0.0392 (11) 0.0387 (12) 0.0015 (9) −0.0017 (9) −0.0101 (9)
C8 0.0437 (12) 0.0512 (13) 0.0331 (11) 0.0026 (11) −0.0020 (10) −0.0090 (10)
C9 0.0405 (12) 0.0474 (12) 0.0414 (13) 0.0039 (10) −0.0069 (10) −0.0049 (10)
C10 0.0314 (10) 0.0376 (11) 0.0445 (12) 0.0002 (9) −0.0028 (9) −0.0096 (9)
C11 0.0468 (13) 0.0498 (13) 0.0378 (12) 0.0052 (11) −0.0048 (10) −0.0144 (10)
C12 0.0477 (13) 0.0480 (13) 0.0368 (12) 0.0082 (11) −0.0054 (10) −0.0082 (10)
C13 0.0371 (11) 0.0412 (12) 0.0501 (14) 0.0006 (10) −0.0048 (10) −0.0069 (10)
C14 0.0297 (10) 0.0430 (11) 0.0412 (12) 0.0007 (9) −0.0056 (9) −0.0126 (9)
C15 0.0384 (11) 0.0486 (13) 0.0405 (12) −0.0059 (10) −0.0020 (10) −0.0104 (10)
C16 0.0504 (14) 0.0402 (12) 0.0574 (16) −0.0018 (11) −0.0100 (12) −0.0083 (11)
C17 0.0357 (11) 0.0463 (12) 0.0556 (15) 0.0028 (10) −0.0066 (10) −0.0192 (11)
C18 0.0371 (11) 0.0501 (13) 0.0424 (13) −0.0031 (10) −0.0032 (10) −0.0040 (10)
O3 0.117 (3) 0.0299 (12) 0.0700 (19) 0.0042 (14) −0.0529 (19) −0.0107 (11)
O4 0.087 (3) 0.077 (3) 0.184 (5) 0.014 (2) −0.074 (3) −0.039 (3)
O5 0.096 (2) 0.0527 (16) 0.082 (2) 0.0106 (16) −0.031 (2) −0.0014 (15)
N5 0.071 (2) 0.056 (2) 0.065 (2) −0.0079 (17) −0.0215 (18) 0.0064 (16)
O3' 0.046 (6) 0.033 (5) 0.112 (12) −0.003 (5) −0.012 (6) −0.040 (6)
O4' 0.085 (8) 0.088 (8) 0.147 (12) −0.017 (6) −0.003 (8) −0.055 (8)
O5' 0.132 (10) 0.050 (5) 0.087 (8) −0.030 (6) −0.022 (7) 0.002 (5)
N5' 0.067 (6) 0.022 (4) 0.058 (5) 0.013 (4) −0.022 (5) −0.012 (3)
O3W 0.118 (6) 0.082 (7) 0.137 (6) −0.035 (4) −0.028 (4) −0.043 (5)

Geometric parameters (Å, °)

Zn1—N1 2.1462 (19) C8—C9 1.376 (3)
Zn1—O1W 2.1691 (19) C8—H8 0.9300
Zn1—O2W 2.0705 (17) C9—C10 1.385 (4)
O1W—H1A 0.8670 C9—H9 0.9300
O1W—H1B 0.8608 C10—C11 1.381 (4)
O2W—H2A 0.8497 C11—C12 1.391 (3)
O2W—H2B 0.8565 C11—H11 0.9300
N1—C1 1.335 (3) C12—H12 0.9300
N1—C5 1.341 (3) C13—C14 1.466 (3)
N2—C6 1.259 (3) C13—H13 0.9300
N2—C7 1.418 (3) C14—C15 1.384 (4)
N3—C13 1.259 (3) C14—C18 1.389 (3)
N3—C10 1.420 (3) C15—C16 1.372 (3)
N4—C17 1.321 (4) C15—H15 0.9300
N4—C18 1.328 (3) C16—C17 1.371 (4)
C1—C2 1.371 (3) C16—H16 0.9300
C1—H1 0.9300 C17—H17 0.9300
C2—C3 1.382 (3) C18—H18 0.9300
C2—H2 0.9300 O3—N5 1.167 (4)
C3—C4 1.386 (3) O4—N5 1.252 (5)
C3—H3 0.9300 O5—N5 1.237 (5)
C4—C5 1.384 (3) O3'—N5' 1.32 (3)
C4—C6 1.468 (3) O4'—N5' 1.220 (15)
C5—H5 0.9300 O5'—N5' 1.243 (14)
C6—H6 0.9300 O3W—H3A 0.8756
C7—C8 1.383 (4) O3W—H3B 0.8812
C7—C12 1.388 (3)
O2W—Zn1—O2Wi 180.0 C4—C6—H6 119.6
O2W—Zn1—N1 90.18 (7) C8—C7—C12 119.0 (2)
O2Wi—Zn1—N1 89.82 (7) C8—C7—N2 124.7 (2)
O2W—Zn1—N1i 89.82 (7) C12—C7—N2 116.3 (2)
O2Wi—Zn1—N1i 90.18 (7) C9—C8—C7 120.0 (2)
N1—Zn1—N1i 180.0 C9—C8—H8 120.0
O2W—Zn1—O1Wi 88.56 (8) C7—C8—H8 120.0
O2Wi—Zn1—O1Wi 91.44 (8) C8—C9—C10 121.5 (2)
N1—Zn1—O1Wi 90.24 (8) C8—C9—H9 119.3
N1i—Zn1—O1Wi 89.76 (8) C10—C9—H9 119.3
O2W—Zn1—O1W 91.44 (8) C11—C10—C9 118.7 (2)
O2Wi—Zn1—O1W 88.56 (8) C11—C10—N3 124.8 (2)
N1—Zn1—O1W 89.76 (8) C9—C10—N3 116.5 (2)
N1i—Zn1—O1W 90.24 (8) C10—C11—C12 120.1 (2)
O1Wi—Zn1—O1W 180.0 C10—C11—H11 119.9
Zn1—O1W—H1A 120.9 C12—C11—H11 119.9
Zn1—O1W—H1B 131.5 C7—C12—C11 120.7 (2)
H1A—O1W—H1B 107.6 C7—C12—H12 119.7
Zn1—O2W—H2A 133.0 C11—C12—H12 119.7
Zn1—O2W—H2B 108.5 N3—C13—C14 120.9 (2)
H2A—O2W—H2B 110.5 N3—C13—H13 119.6
C1—N1—C5 117.18 (19) C14—C13—H13 119.6
C1—N1—Zn1 120.75 (15) C15—C14—C18 117.5 (2)
C5—N1—Zn1 121.93 (15) C15—C14—C13 122.4 (2)
C6—N2—C7 121.0 (2) C18—C14—C13 120.0 (2)
C13—N3—C10 120.0 (2) C16—C15—C14 119.1 (2)
C17—N4—C18 117.9 (2) C16—C15—H15 120.4
N1—C1—C2 123.4 (2) C14—C15—H15 120.4
N1—C1—H1 118.3 C17—C16—C15 119.0 (2)
C2—C1—H1 118.3 C17—C16—H16 120.5
C1—C2—C3 118.8 (2) C15—C16—H16 120.5
C1—C2—H2 120.6 N4—C17—C16 123.2 (2)
C3—C2—H2 120.6 N4—C17—H17 118.4
C2—C3—C4 119.2 (2) C16—C17—H17 118.4
C2—C3—H3 120.4 N4—C18—C14 123.3 (2)
C4—C3—H3 120.4 N4—C18—H18 118.4
C5—C4—C3 117.6 (2) C14—C18—H18 118.4
C5—C4—C6 120.7 (2) O3—N5—O5 123.6 (4)
C3—C4—C6 121.6 (2) O3—N5—O4 117.9 (4)
N1—C5—C4 123.7 (2) O5—N5—O4 118.3 (4)
N1—C5—H5 118.2 O4'—N5'—O5' 118.7 (10)
C4—C5—H5 118.2 O4'—N5'—O3' 112.3 (15)
N2—C6—C4 120.8 (2) O5'—N5'—O3' 129.0 (15)
N2—C6—H6 119.6 H3A—O3W—H3B 107.9

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1A···O4ii 0.87 1.87 2.725 (4) 170
O1W—H1A···O4'ii 0.87 2.23 3.035 (13) 154
O1W—H1B···O3W 0.86 2.03 2.859 (13) 161
O1W—H1B···O3' 0.86 1.82 2.65 (3) 161
O2W—H2A···N4iii 0.85 1.92 2.706 (3) 152
O2W—H2B···O3iv 0.86 1.96 2.761 (3) 155
O3W—H3A···O3v 0.88 2.36 3.073 (12) 139
O3W—H3A···O5v 0.88 2.38 3.112 (13) 142
O3W—H3B···O4 0.88 1.95 2.824 (13) 169

Symmetry codes: (ii) −x+1, −y−1, −z+1; (iii) −x−1, −y+1, −z+2; (iv) x, y+1, z; (v) −x, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2483).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  3. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  4. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Su, C.-Y., Yang, X.-P., Liao, S., Mak, T. C. W. & Kang, B.-S. (1999). Inorg. Chem. Commun. 2, 383–385.
  7. Ye, K.-Q., Kong, J.-F., Jiang, S.-M., Ye, L. & Wang, Y. (2004). J. Mol. Sci. (Chin.), 20, 1–4.
  8. Ye, K.-Q., Wu, Y., Guo, J.-H., Sun, Y.-H. & Wang, Y. (2005). Chem. J. Chin. Univ. 26, 93–96.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046915/hy2483sup1.cif

e-67-m1752-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046915/hy2483Isup2.hkl

e-67-m1752-Isup2.hkl (218.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES