Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):m1764. doi: 10.1107/S160053681104671X

catena-Poly[(dichloridozinc)-μ-bis­(pyridin-3-yl)methanone-κ2 N:N′]

Fan Zhang a,*
PMCID: PMC3238669  PMID: 22199560

Abstract

In the title polymer, [ZnCl2(C11H8N2O)]n, the ZnII atom lies on a twofold rotation axis and has a distorted tetra­hedral ZnCl2N2 geometry involving two chloride donors and two N-atom donors from μ2-bridging bis­(pyridin-3-yl)methanone ligands, which also have twofold symmetry. A zigzag chain structure is formed, extending along (001). Each chain is surrounded by three others which are inter­connected through weak C=O⋯πpyrid­yl [O⋯centroid = 2.999 (3) Å] and πpyrid­yl–πpyrid­yl inter­actions [minimum ring centroid separation = 4.014 (2) Å], giving a three-dimensional framework.

Related literature

For background to the coordination chemistry of pyridyl­ketone derivatives, see: Huang et al. (2003); Wan et al. (2008). For transition metal complexes of bis­(3-pyrid­yl)ketone, see: Chen et al. (2005, 2009); Chen & Mak (2005).graphic file with name e-67-m1764-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C11H8N2O)]

  • M r = 320.46

  • Monoclinic, Inline graphic

  • a = 9.9266 (7) Å

  • b = 15.5724 (10) Å

  • c = 7.8963 (6) Å

  • β = 93.878 (4)°

  • V = 1217.82 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 296 K

  • 0.40 × 0.32 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.913, T max = 1.000

  • 3481 measured reflections

  • 1076 independent reflections

  • 1041 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.055

  • S = 1.11

  • 1076 reflections

  • 79 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104671X/zs2159sup1.cif

e-67-m1764-sup1.cif (13.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104671X/zs2159Isup2.hkl

e-67-m1764-Isup2.hkl (53.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from Beijing Municipal Education Commission.

supplementary crystallographic information

Comment

The carbonyl (C═O) group in pyridyl ketone derivatives produces versatile angular building blocks for use as ligands for the generation of various coordination supramolecular architectures (Huang et al., 2003). With two pendant pyridyl rings and the rotatable C—C σ bonds, bis(3-pyridyl)methanone functions as an excellent µ2-bridging linker to assemble various transition metal salts into diverse coordination motifs, such as one-dimensional helical and zigzag chains (Chen & Mak, 2005), two-dimensional nets (Chen et al., 2005), as well as honeycomb-like three-dimensional frameworks (Chen et al., 2009).

Reported here is the structure of a new complex of bis(3-pyridyl)methanone with ZnCl2, the title compound [ZnCl2(C5NH4)2]n. In this complex, the Zn2+ lies on a crystallographic twofold rotation axis and adopts a distorted tetrahedral stereochemistry [N1—Zn1—N1i = 96.94 (8)°; Cl1—Zn1—Cl1i = 122.25 (3)°: symmetry code (i) -x+1, -y, -z+1], with two chloride donors and two N donors from separate µ2-bridging bis(3-pyridyl)methanone ligands, in which the C═O group also lies on a twofold rotation axis (Fig. 1). This results in a zigzag chain structure extending along (001) (Fig. 2). Each helix is surrounded by three others which are interconnected through weak C6═O1···πpyridyl interactions [O1···Cg1iii 2.999 (3) Å] [symmetry code (iii) x+3/2, y+1/2, z+1) and weak πpyridyl···πpyridyl interactions [ring centroid separation Cg1···Cg1iv = 4.014 (2) Å] [symmetry code (iv) -x+3/2, y+1/2, -z+3/2] to form a three-dimensional framework (Fig. 3). For the C═O···πpyridyl contact, the O atom is embraced by two symmetry related pyridyl rings, similar to that found in [Cu(L)2(BF4)2] (Wan et al., 2008) (C═O···centroid = 2.9–3.1 Å) [L = 2,6-pyridinediyl(bis(3-pyridinyl)methanone)].

Experimental

The bis(3-pyridinyl)methanone ligand was obtained using the literature reaction procedure (Chen et al., 2005). Reaction of this compound (19.1 mg, 0.1 mmol) with ZnCl2 (14.0 mg, 0.1 mmol) in methanol gave a colorless solution which after filtration, was allowed to stand in air for two weeks, gave colourless block-like crystals (yield 20.8 mg; 65%).

Refinement

All H atoms were located in the difference electron density maps but were placed in idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The title complex showing the atom-numbering scheme, with displacement ellipsoids shown at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z.

Fig. 2.

Fig. 2.

The helical chain structure of the title compound, extending along the c axial direction. All H atoms are omitted.

Fig. 3.

Fig. 3.

The packing structure of the title compound as viewed down the c axis of the unit cell.

Crystal data

[ZnCl2(C11H8N2O)] F(000) = 640
Mr = 320.46 Dx = 1.748 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 254 reflections
a = 9.9266 (7) Å θ = 2.6–25.0°
b = 15.5724 (10) Å µ = 2.44 mm1
c = 7.8963 (6) Å T = 296 K
β = 93.878 (4)° Block, colorless
V = 1217.82 (15) Å3 0.40 × 0.32 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 1076 independent reflections
Radiation source: fine-focus sealed tube 1041 reflections with I > 2σ(I)
graphite Rint = 0.013
ω scans θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −11→11
Tmin = 0.913, Tmax = 1.000 k = −16→18
3481 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.7286P] P = (Fo2 + 2Fc2)/3
1076 reflections (Δ/σ)max < 0.001
79 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 0.296457 (17) 0.7500 0.03157 (13)
Cl1 0.35267 (5) 0.36506 (3) 0.57611 (6) 0.04896 (16)
N1 0.59607 (15) 0.20836 (9) 0.60337 (18) 0.0307 (3)
C2 0.77431 (19) 0.10656 (14) 0.5838 (3) 0.0444 (5)
H2A 0.8584 0.0862 0.6246 0.053*
C1 0.71626 (19) 0.17586 (13) 0.6597 (2) 0.0380 (4)
H1A 0.7621 0.2011 0.7535 0.046*
C3 0.7061 (2) 0.06820 (13) 0.4475 (2) 0.0411 (5)
H3A 0.7422 0.0203 0.3966 0.049*
C4 0.58196 (18) 0.10157 (11) 0.3857 (2) 0.0311 (4)
C5 0.53146 (17) 0.17218 (11) 0.4663 (2) 0.0299 (4)
H5A 0.4497 0.1955 0.4242 0.036*
C6 0.5000 0.05441 (16) 0.2500 0.0340 (5)
O1 0.5000 −0.02376 (12) 0.2500 0.0499 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0417 (2) 0.02859 (19) 0.02354 (17) 0.000 −0.00413 (12) 0.000
Cl1 0.0606 (3) 0.0468 (3) 0.0376 (3) 0.0161 (2) −0.0108 (2) 0.0043 (2)
N1 0.0368 (8) 0.0304 (8) 0.0245 (7) −0.0003 (6) −0.0006 (6) 0.0026 (5)
C2 0.0372 (10) 0.0514 (12) 0.0442 (11) 0.0107 (9) 0.0001 (8) 0.0125 (9)
C1 0.0397 (10) 0.0429 (10) 0.0307 (9) −0.0023 (8) −0.0033 (8) 0.0076 (8)
C3 0.0505 (11) 0.0366 (10) 0.0373 (10) 0.0142 (8) 0.0112 (8) 0.0071 (8)
C4 0.0428 (10) 0.0275 (9) 0.0236 (8) 0.0026 (7) 0.0057 (7) 0.0056 (6)
C5 0.0349 (9) 0.0288 (9) 0.0257 (8) 0.0025 (7) 0.0001 (7) 0.0037 (7)
C6 0.0494 (14) 0.0271 (13) 0.0268 (12) 0.000 0.0121 (10) 0.000
O1 0.0798 (15) 0.0254 (10) 0.0452 (11) 0.000 0.0094 (10) 0.000

Geometric parameters (Å, °)

Zn1—N1i 2.0692 (15) C1—H1A 0.9300
Zn1—N1 2.0692 (15) C3—C4 1.395 (3)
Zn1—Cl1i 2.2123 (5) C3—H3A 0.9300
Zn1—Cl1 2.2123 (5) C4—C5 1.382 (2)
N1—C5 1.344 (2) C4—C6 1.494 (2)
N1—C1 1.344 (2) C5—H5A 0.9300
C2—C3 1.369 (3) C6—O1 1.217 (3)
C2—C1 1.379 (3) C6—C4ii 1.494 (2)
C2—H2A 0.9300
N1i—Zn1—N1 96.94 (8) C2—C1—H1A 118.7
N1i—Zn1—Cl1i 106.45 (4) C2—C3—C4 119.40 (18)
N1—Zn1—Cl1i 110.92 (4) C2—C3—H3A 120.3
N1i—Zn1—Cl1 110.92 (4) C4—C3—H3A 120.3
N1—Zn1—Cl1 106.45 (4) C5—C4—C3 118.33 (17)
Cl1i—Zn1—Cl1 122.25 (3) C5—C4—C6 121.66 (15)
C5—N1—C1 118.25 (15) C3—C4—C6 119.56 (16)
C5—N1—Zn1 121.04 (12) N1—C5—C4 122.45 (16)
C1—N1—Zn1 119.81 (12) N1—C5—H5A 118.8
C3—C2—C1 118.92 (17) C4—C5—H5A 118.8
C3—C2—H2A 120.5 O1—C6—C4 119.45 (10)
C1—C2—H2A 120.5 O1—C6—C4ii 119.45 (10)
N1—C1—C2 122.60 (17) C4—C6—C4ii 121.1 (2)
N1—C1—H1A 118.7
N1i—Zn1—N1—C5 83.07 (13) C2—C3—C4—C5 −0.7 (3)
Cl1i—Zn1—N1—C5 −166.32 (11) C2—C3—C4—C6 −173.16 (16)
Cl1—Zn1—N1—C5 −31.20 (13) C1—N1—C5—C4 2.2 (2)
N1i—Zn1—N1—C1 −85.85 (13) Zn1—N1—C5—C4 −166.90 (12)
Cl1i—Zn1—N1—C1 24.76 (14) C3—C4—C5—N1 −1.4 (2)
Cl1—Zn1—N1—C1 159.88 (12) C6—C4—C5—N1 170.88 (15)
C5—N1—C1—C2 −0.9 (3) C5—C4—C6—O1 −136.51 (12)
Zn1—N1—C1—C2 168.33 (14) C3—C4—C6—O1 35.68 (17)
C3—C2—C1—N1 −1.2 (3) C5—C4—C6—C4ii 43.49 (12)
C1—C2—C3—C4 1.9 (3) C3—C4—C6—C4ii −144.32 (17)

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2159).

References

  1. Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766–768.
  3. Chen, X. D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1–6.
  4. Chen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518–6528. [DOI] [PubMed]
  5. Huang, W. L., Lee, J. R., Shi, S. Y. & Tsai, C. Y. (2003). Transition Met. Chem. 28, 381–388.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Wan, C. Q., Han, J. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104671X/zs2159sup1.cif

e-67-m1764-sup1.cif (13.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104671X/zs2159Isup2.hkl

e-67-m1764-Isup2.hkl (53.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES