Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):m1771. doi: 10.1107/S1600536811047842

catena-Poly[[(triaqua­cadmium)-μ-1,4-phenyl­enediacetato-κ4 O,O′:O′′,O′′′] dihydrate]

Jacob W Uebler a, Robert L LaDuca a,*
PMCID: PMC3238673  PMID: 22199564

Abstract

In the title compound, {[Cd(C10H8O4)(H2O)3]·2H2O}n, penta­gonal–bipyramidally coordinated CdII ions on a twofold rotation axis are linked by tethering 1,4-phenyl­enediacetate (1,4-phda) ligands into [Cd(1,4-phda)(H2O)3]n coordination polymer chains. The chain motifs are oriented parallel to the c-axis direction. Individual chains are connected into a supra­molecular network via O—H⋯O hydrogen bonding involving the aqua ligands.

Related literature

For other cadmium coordination polymers containing 1,4-phda ligands, see: Wang & LaDuca (2010); Farnum et al. (2011).graphic file with name e-67-m1771-scheme1.jpg

Experimental

Crystal data

  • [Cd(C10H8O4)(H2O)3]·2H2O

  • M r = 394.64

  • Monoclinic, Inline graphic

  • a = 7.6878 (7) Å

  • b = 8.2295 (8) Å

  • c = 22.735 (2) Å

  • β = 95.752 (1)°

  • V = 1431.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 173 K

  • 0.34 × 0.32 × 0.29 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.621, T max = 0.659

  • 11122 measured reflections

  • 1307 independent reflections

  • 1296 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.013

  • wR(F 2) = 0.031

  • S = 1.19

  • 1307 reflections

  • 107 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047842/ds2153sup1.cif

e-67-m1771-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047842/ds2153Isup2.hkl

e-67-m1771-Isup2.hkl (64.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.84 (1) 1.96 (1) 2.8029 (15) 178 (2)
O1W—H1WA⋯O2 0.84 (2) 1.86 (2) 2.6934 (17) 172 (2)
O4—H4A⋯O1Wii 0.83 (1) 1.89 (2) 2.7004 (17) 167 (2)
O4—H4B⋯O3i 0.84 (1) 1.84 (2) 2.6706 (16) 175 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

supplementary crystallographic information

Comment

Recently we have been investigating conformationally flexible phenylenediacetate ligands, especially 1,4-phenylenediacetate (1,4-phda), towards the construction of cadmium coordination polymers in tandem with dipodal nitrogen-base ligands (Wang & LaDuca, 2010; Farnum, et al., 2011). The title compound was obtained upon an attempt to prepare a cadmium 1,4-phda coordination polymer incorporating 4,4'-trimethylenedipiperidine.

The asymmetric unit of the title compound contains a CdII ion and an aqua ligand on a 2-fold crystallographic rotation axis, an additional aqua ligand, half of a 1,4-phda ligand whose centroid lies on a crystallographic inversion center, and one water molecule of crystallization. The CdII ion is pentagonal bipyramidally coordinated, with its apical positions occupied by aqua ligands. Its equatorial positions contain a third aqua ligand and two chelating carboxylate groups from two 1,4-phda ligands (Fig. 1).

[Cd(H2O)3]2+ fragments are connected by exobidentate 1,4-phda ligands via a bis(chelating) binding mode, generating one-dimensional [Cd(1,4-phda)(H2O)3]n coordination polymer chains (Fig. 2). Within the chain, the Cd···Cd contact distances measure 11.889 (6) Å. The chain motifs are all oriented parallel to the c crystal direction. Each individual [Cd(1,4-phda)(H2O)3]n chain is anchored to four others via O—H···O hydrogen bonding mechanisms between aqua ligands in neighboring chains, and between aqua ligands and ligated 1,4-phda carboxylate oxygen atoms. In this manner, the supramolecular crystal structure of the title compound is constructed (Fig. 3).Water molecules of crystallization are held between coordination polymer chains through additional O—H···O hydrogen bonding interactions.

Experimental

All starting materials were obtained commercially. A mixture of cadmium nitrate tetrahydrate (88 mg, 0.29 mmol), 1,4-phenylenediacetic acid (52 mg, 0.27 mmol), 4,4'-trimethylenedipiperidine (58 mg, 0.28 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 48 h. Colourless blocks of the title compound (57 mg, 0.14 mmol, 53% yield) were isolated after washing with distilled water and acetone, and drying in air.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to the aqua ligand O atom were found in a difference Fourier map, restrained with with O—H = 0.85 Å and refined with Uiso = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

The coordination environment of the title compound, showing 50% probability ellipsoids and partial atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: violet Cd, red bound O, orange unligated O, black C. Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x, -y, -z.

Fig. 2.

Fig. 2.

A single [Cd(1,4-phda)(H2O)3]n chain coordination polymer chain.

Fig. 3.

Fig. 3.

Supramolecular aggregation of [Cd(1,4-phda)(H2O)3]n chains. O—H···O hydrogen bonding is shown as dashed lines.

Crystal data

[Cd(C10H8O4)(H2O)3]·2H2O F(000) = 792
Mr = 394.64 Dx = 1.832 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 9928 reflections
a = 7.6878 (7) Å θ = 2.7–25.3°
b = 8.2295 (8) Å µ = 1.57 mm1
c = 22.735 (2) Å T = 173 K
β = 95.752 (1)° Block, colourless
V = 1431.1 (2) Å3 0.34 × 0.32 × 0.29 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1307 independent reflections
Radiation source: fine-focus sealed tube 1296 reflections with I > 2σ(I)
graphite Rint = 0.025
ω–φ scans θmax = 25.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.621, Tmax = 0.659 k = −9→9
11122 measured reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.031 H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0098P)2 + 1.4668P] where P = (Fo2 + 2Fc2)/3
1307 reflections (Δ/σ)max < 0.001
107 parameters Δρmax = 0.27 e Å3
9 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.0000 0.211515 (18) 0.2500 0.01614 (6)
O1 0.0000 0.4900 (2) 0.2500 0.0296 (4)
H1 0.070 (2) 0.552 (2) 0.2346 (8) 0.036*
O1W 0.21682 (17) 0.51653 (15) 0.09931 (5) 0.0252 (3)
H1WA 0.199 (3) 0.430 (2) 0.1171 (8) 0.030*
H1WB 0.307 (2) 0.506 (2) 0.0844 (8) 0.030*
O2 0.14213 (18) 0.25529 (14) 0.16357 (5) 0.0290 (3)
O3 0.09896 (14) 0.00183 (13) 0.18665 (5) 0.0208 (2)
O4 0.27315 (15) 0.20049 (14) 0.30205 (5) 0.0200 (2)
H4A 0.273 (2) 0.158 (2) 0.3350 (7) 0.024*
H4B 0.318 (2) 0.2927 (18) 0.3066 (8) 0.024*
C1 0.1256 (2) 0.0255 (2) 0.04864 (6) 0.0195 (3)
C2 0.2569 (2) 0.0525 (2) 0.10213 (7) 0.0215 (3)
H2A 0.3421 0.1368 0.0931 0.026*
H2B 0.3217 −0.0494 0.1121 0.026*
C3 0.0777 (2) −0.1308 (2) 0.03026 (7) 0.0216 (3)
H3 0.1305 −0.2215 0.0508 0.026*
C4 −0.0466 (2) −0.1567 (2) −0.01772 (7) 0.0217 (3)
H4 −0.0777 −0.2644 −0.0295 0.026*
C5 0.1617 (2) 0.10626 (19) 0.15438 (6) 0.0177 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.01982 (9) 0.01563 (9) 0.01342 (9) 0.000 0.00393 (6) 0.000
O1 0.0287 (10) 0.0159 (8) 0.0478 (11) 0.000 0.0214 (8) 0.000
O1W 0.0298 (7) 0.0207 (6) 0.0263 (6) −0.0005 (5) 0.0085 (5) 0.0015 (5)
O2 0.0469 (8) 0.0178 (6) 0.0247 (6) 0.0008 (5) 0.0153 (6) −0.0004 (5)
O3 0.0239 (6) 0.0196 (6) 0.0198 (6) 0.0015 (5) 0.0075 (5) 0.0010 (4)
O4 0.0242 (6) 0.0161 (6) 0.0199 (6) −0.0012 (5) 0.0025 (5) 0.0003 (5)
C1 0.0212 (8) 0.0247 (8) 0.0139 (7) 0.0016 (7) 0.0080 (6) −0.0005 (6)
C2 0.0205 (8) 0.0273 (9) 0.0174 (8) 0.0022 (7) 0.0055 (6) −0.0010 (6)
C3 0.0275 (9) 0.0207 (8) 0.0173 (8) 0.0051 (7) 0.0059 (7) 0.0032 (6)
C4 0.0284 (9) 0.0188 (8) 0.0188 (8) 0.0002 (7) 0.0074 (7) −0.0019 (6)
C5 0.0184 (8) 0.0216 (8) 0.0127 (7) 0.0015 (6) −0.0012 (6) −0.0005 (6)

Geometric parameters (Å, °)

Cd1—O1 2.2917 (17) O4—H4A 0.827 (14)
Cd1—O4 2.3066 (12) O4—H4B 0.836 (14)
Cd1—O4i 2.3066 (12) C1—C3 1.391 (2)
Cd1—O2 2.3695 (12) C1—C4ii 1.394 (2)
Cd1—O2i 2.3695 (12) C1—C2 1.517 (2)
Cd1—O3 2.4187 (11) C2—C5 1.522 (2)
Cd1—O3i 2.4187 (11) C2—H2A 0.9900
O1—H1 0.842 (11) C2—H2B 0.9900
O1W—H1WA 0.835 (15) C3—C4 1.392 (2)
O1W—H1WB 0.810 (15) C3—H3 0.9500
O2—C5 1.256 (2) C4—C1ii 1.394 (2)
O3—C5 1.2571 (19) C4—H4 0.9500
O1—Cd1—O4 92.25 (3) Cd1—O4—H4A 113.4 (13)
O1—Cd1—O4i 92.25 (3) Cd1—O4—H4B 111.8 (13)
O4—Cd1—O4i 175.49 (6) H4A—O4—H4B 108.1 (18)
O1—Cd1—O2 81.25 (3) C3—C1—C4ii 118.40 (15)
O4—Cd1—O2 87.69 (4) C3—C1—C2 120.78 (15)
O4i—Cd1—O2 93.00 (4) C4ii—C1—C2 120.79 (15)
O1—Cd1—O2i 81.25 (3) C1—C2—C5 109.59 (13)
O4—Cd1—O2i 93.00 (4) C1—C2—H2A 109.8
O4i—Cd1—O2i 87.69 (4) C5—C2—H2A 109.8
O2—Cd1—O2i 162.51 (6) C1—C2—H2B 109.8
O1—Cd1—O3 135.51 (3) C5—C2—H2B 109.8
O4—Cd1—O3 87.30 (4) H2A—C2—H2B 108.2
O4i—Cd1—O3 89.48 (4) C1—C3—C4 121.14 (15)
O2—Cd1—O3 54.27 (4) C1—C3—H3 119.4
O2i—Cd1—O3 143.22 (4) C4—C3—H3 119.4
O1—Cd1—O3i 135.51 (3) C3—C4—C1ii 120.47 (16)
O4—Cd1—O3i 89.48 (4) C3—C4—H4 119.8
O4i—Cd1—O3i 87.30 (4) C1ii—C4—H4 119.8
O2—Cd1—O3i 143.22 (4) O2—C5—O3 120.75 (14)
O2i—Cd1—O3i 54.27 (4) O2—C5—C2 119.26 (14)
O3—Cd1—O3i 88.97 (5) O3—C5—C2 119.96 (14)
Cd1—O1—H1 127.1 (12) O2—C5—Cd1 59.31 (8)
H1WA—O1W—H1WB 107.7 (19) O3—C5—Cd1 61.56 (8)
C5—O2—Cd1 93.58 (9) C2—C5—Cd1 177.81 (11)
C5—O3—Cd1 91.25 (9)
O1—Cd1—O2—C5 178.70 (10) Cd1—O2—C5—O3 4.15 (16)
O4—Cd1—O2—C5 86.06 (10) Cd1—O2—C5—C2 −178.08 (12)
O4i—Cd1—O2—C5 −89.48 (10) Cd1—O3—C5—O2 −4.05 (15)
O2i—Cd1—O2—C5 178.70 (10) Cd1—O3—C5—C2 178.19 (12)
O3—Cd1—O2—C5 −2.28 (9) C1—C2—C5—O2 −92.22 (18)
O3i—Cd1—O2—C5 0.02 (14) C1—C2—C5—O3 85.57 (18)
O1—Cd1—O3—C5 3.65 (11) O1—Cd1—C5—O2 −1.36 (10)
O4—Cd1—O3—C5 −86.82 (9) O4—Cd1—C5—O2 −92.46 (10)
O4i—Cd1—O3—C5 96.34 (9) O4i—Cd1—C5—O2 91.83 (10)
O2—Cd1—O3—C5 2.27 (9) O3—Cd1—C5—O2 175.95 (15)
O2i—Cd1—O3—C5 −178.22 (9) O3i—Cd1—C5—O2 −179.99 (9)
O3i—Cd1—O3—C5 −176.35 (11) C5i—Cd1—C5—O2 178.64 (10)
C5i—Cd1—O3—C5 −178.21 (5) O1—Cd1—C5—O3 −177.31 (8)
C3—C1—C2—C5 −104.15 (17) O4—Cd1—C5—O3 91.60 (9)
C4ii—C1—C2—C5 74.03 (18) O4i—Cd1—C5—O3 −84.12 (9)
C4ii—C1—C3—C4 −0.2 (3) O2—Cd1—C5—O3 −175.95 (15)
C2—C1—C3—C4 178.06 (14) O3i—Cd1—C5—O3 4.07 (12)
C1—C3—C4—C1ii 0.2 (3) C5i—Cd1—C5—O3 2.70 (8)

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O4iii 0.84 (1) 1.96 (1) 2.8029 (15) 178 (2)
O1W—H1WA···O2 0.84 (2) 1.86 (2) 2.6934 (17) 172.(2)
O4—H4A···O1Wiv 0.83 (1) 1.89 (2) 2.7004 (17) 167.(2)
O4—H4B···O3iii 0.84 (1) 1.84 (2) 2.6706 (16) 175 (2)

Symmetry codes: (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2153).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Farnum, G. A., Wang, C. Y., Gandolfo, C. M. & LaDuca, R. L. (2011). J. Mol. Struct. 998, 62–68.
  3. Palmer, D. (2007). Crystal Maker CrystalMaker Software Ltd, Bicester, England.
  4. Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, C. Y. & LaDuca, R. L. (2010). J. Mol. Struct. 983, 162–168.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047842/ds2153sup1.cif

e-67-m1771-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047842/ds2153Isup2.hkl

e-67-m1771-Isup2.hkl (64.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES