Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):m1773. doi: 10.1107/S1600536811048100

cis-Aqua­bromidobis(di-2-pyridyl­amine-κ2 N,N′)manganese(II) bromide

Kwang Ha a,*
PMCID: PMC3238689  PMID: 22199566

Abstract

In the title compound, [MnBr(C10H9N3)2(H2O)]Br, the MnII ion is six-coordinated in a considerably distorted cis-N4BrO octa­hedral environment defined by four N atoms of two chelating di-2-pyridyl­amine (dpa) ligands, one Br anion and one O atom of a water ligand. As a result of the different trans effects of Br, N and O atoms, the Mn—N bond trans to the Br atom is slightly longer than the Mn—N bond trans to the N or O atoms. In the crystal, the dpa ligands are not planar, the dihedral angles between the two pyridine rings being 29.2 (4) and 28.2 (3)°. The complex cations and the Br anions are linked by inter­molecular O—H⋯Br and N—H⋯Br hydrogen bonds. Inter­molecular π–π inter­actions are present between the pyridine rings, with a centroid–centroid distance of 3.793 (4) Å.

Related literature

For the structures of related MnII complexes with a di-2-pyridyl­amine ligand, see: Bose et al. (2005).graphic file with name e-67-m1773-scheme1.jpg

Experimental

Crystal data

  • [MnBr(C10H9N3)2(H2O)]Br

  • M r = 575.18

  • Triclinic, Inline graphic

  • a = 8.3990 (15) Å

  • b = 10.0022 (18) Å

  • c = 13.613 (2) Å

  • α = 90.692 (4)°

  • β = 103.619 (4)°

  • γ = 98.556 (4)°

  • V = 1097.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.27 mm−1

  • T = 200 K

  • 0.22 × 0.21 × 0.19 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.708, T max = 1.000

  • 6807 measured reflections

  • 4215 independent reflections

  • 2569 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.174

  • S = 0.96

  • 4215 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.02 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048100/hy2487sup1.cif

e-67-m1773-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048100/hy2487Isup2.hkl

e-67-m1773-Isup2.hkl (206.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—O1 2.154 (6)
Mn1—N1 2.318 (6)
Mn1—N3 2.256 (5)
Mn1—N4 2.246 (6)
Mn1—N6 2.266 (6)
Mn1—Br1 2.6395 (13)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Br2i 0.84 2.50 3.304 (5) 160
O1—H1B⋯Br1ii 0.84 2.44 3.272 (5) 171
N2—H2N⋯Br2iii 0.92 2.62 3.472 (6) 154
N5—H5N⋯Br2iv 0.92 2.63 3.503 (6) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

supplementary crystallographic information

Comment

Cationic MnII complexes of di-2-pyridylamine (dpa; C10H9N3) ligand, such as [MnX(dpa)2(H2O)]ClO4 (X = N3-, NCO-), have been investigated previously (Bose et al., 2005).

The asymmetric unit of the title compound, [MnBr(dpa)2(H2O)]Br, consists of a cationic MnII complex and a Br- anion (Fig. 1). In the complex, the MnII ion is six-coordinated in a considerably distorted cis-N4BrO octahedral environment defined by four N atoms of two chelating dpa ligands, one Br- anion and one O atom of a water ligand. The main contribution to the distortion is the tight N—Mn—N chelating angles, which results in non-linear trans axes [N3—Mn1—N4 = 165.8 (2) and O1—Mn1—N6 = 171.6 (2)°]. But, the apical Br1—Mn1—N1 bond is almost linear with a bond angle of 177.25 (15)°. The Mn—N(dpa) bond lengths are slightly different and longer than the Mn—O(H2O) bond (Table 1). As a result of the different trans effects of Br, N and O atoms, the Mn—N bond trans to the Br atom is somewhat longer than the Mn—N bond trans to the N or O atom. In the crystal structure, the dpa ligands are not planar. The dihedral angles between the two pyridine rings of dpa are 29.2 (4) and 28.2 (3)°. The complexes are stacked in columns along the a axis, and the components are linked by intermolecular O—H···Br and N—H···Br hydrogen bonds (Fig. 2, Table 2). Intermolecular π–π interactions between the pyridine rings are present, with a centroid–centroid distance of 3.793 (4) Å.

Experimental

To a solution of MnBr2.4H2O (0.2882 g, 1.005 mmol) in EtOH (30 ml) was added di-2-pyridylamine (0.3465 g, 2.024 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration and washed with EtOH and acetone and dried at 50°C to give a white powder (0.4092 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3NO2/MeOH solution.

Refinement

C-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. N- and O-bound H atoms were located from difference Fourier maps and allowed to ride on their parent atoms in the final cycles of refinement, with N—H = 0.92, O—H = 0.84 Å and Uiso(H) = 1.5Ueq(N, O). The highest peak (1.02 e Å-3) and the deepest hole (-1.02 e Å-3) in the difference Fourier map are located 1.19 and 0.94 Å from atoms Br2 and Br1, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View of the crystal packing of the title compound. Hydrogen bonds are drawn with dashed lines.

Crystal data

[MnBr(C10H9N3)2(H2O)]Br Z = 2
Mr = 575.18 F(000) = 570
Triclinic, P1 Dx = 1.740 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3990 (15) Å Cell parameters from 2405 reflections
b = 10.0022 (18) Å θ = 2.5–25.9°
c = 13.613 (2) Å µ = 4.27 mm1
α = 90.692 (4)° T = 200 K
β = 103.619 (4)° Block, colorless
γ = 98.556 (4)° 0.22 × 0.21 × 0.19 mm
V = 1097.8 (3) Å3

Data collection

Bruker SMART 1000 CCD diffractometer 4215 independent reflections
Radiation source: fine-focus sealed tube 2569 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→9
Tmin = 0.708, Tmax = 1.000 k = −12→10
6807 measured reflections l = −13→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0886P)2] where P = (Fo2 + 2Fc2)/3
4215 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 1.02 e Å3
0 restraints Δρmin = −1.02 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.07207 (13) 0.66748 (11) 0.32514 (7) 0.0313 (3)
Br1 0.27645 (10) 0.65301 (8) 0.50321 (5) 0.0403 (3)
O1 −0.0809 (7) 0.4759 (5) 0.3301 (4) 0.0525 (15)
H1A −0.0981 0.4271 0.2769 0.079*
H1B −0.1391 0.4383 0.3674 0.079*
N1 −0.0969 (7) 0.6794 (6) 0.1652 (4) 0.0330 (14)
N2 0.1133 (7) 0.6848 (6) 0.0779 (4) 0.0372 (15)
H2N 0.1256 0.6768 0.0128 0.056*
N3 0.2136 (7) 0.5727 (6) 0.2284 (4) 0.0329 (14)
N4 −0.0788 (7) 0.7969 (6) 0.3899 (4) 0.0339 (14)
N5 −0.0214 (7) 0.9888 (6) 0.2943 (4) 0.0366 (15)
H5N −0.0951 1.0440 0.2639 0.055*
N6 0.2054 (7) 0.8730 (5) 0.2987 (4) 0.0327 (14)
C1 −0.2490 (9) 0.7091 (8) 0.1666 (5) 0.0403 (19)
H1 −0.3009 0.6705 0.2168 0.048*
C2 −0.3311 (11) 0.7904 (9) 0.1005 (6) 0.051 (2)
H2 −0.4397 0.8052 0.1018 0.062*
C3 −0.2485 (11) 0.8519 (9) 0.0298 (6) 0.053 (2)
H3 −0.2951 0.9178 −0.0128 0.064*
C4 −0.1021 (11) 0.8160 (8) 0.0235 (6) 0.047 (2)
H4 −0.0490 0.8519 −0.0270 0.057*
C5 −0.0286 (9) 0.7255 (7) 0.0914 (5) 0.0341 (17)
C6 0.2109 (9) 0.5943 (7) 0.1305 (5) 0.0319 (16)
C7 0.3075 (9) 0.5330 (8) 0.0785 (6) 0.0402 (19)
H7 0.2981 0.5444 0.0083 0.048*
C8 0.4167 (10) 0.4554 (8) 0.1323 (6) 0.050 (2)
H8 0.4865 0.4150 0.0992 0.060*
C9 0.4269 (10) 0.4354 (8) 0.2317 (6) 0.044 (2)
H9 0.5049 0.3840 0.2690 0.053*
C10 0.3202 (9) 0.4921 (7) 0.2772 (5) 0.0377 (18)
H10 0.3216 0.4738 0.3456 0.045*
C11 −0.1581 (10) 0.7396 (8) 0.4578 (5) 0.0417 (19)
H11 −0.1418 0.6507 0.4770 0.050*
C12 −0.2624 (9) 0.8039 (9) 0.5012 (6) 0.043 (2)
H12 −0.3206 0.7591 0.5464 0.052*
C13 −0.2780 (10) 0.9345 (10) 0.4761 (6) 0.050 (2)
H13 −0.3464 0.9823 0.5054 0.060*
C14 −0.1948 (8) 0.9969 (8) 0.4084 (5) 0.0361 (18)
H14 −0.2041 1.0880 0.3922 0.043*
C15 −0.0972 (8) 0.9252 (7) 0.3641 (5) 0.0322 (17)
C16 0.1330 (9) 0.9824 (7) 0.2764 (5) 0.0346 (17)
C17 0.2081 (10) 1.0955 (8) 0.2350 (5) 0.0398 (19)
H17 0.1530 1.1715 0.2185 0.048*
C18 0.3648 (10) 1.0939 (8) 0.2186 (5) 0.0429 (19)
H18 0.4179 1.1682 0.1893 0.051*
C19 0.4427 (9) 0.9823 (8) 0.2456 (5) 0.0402 (19)
H19 0.5505 0.9792 0.2360 0.048*
C20 0.3607 (9) 0.8760 (8) 0.2867 (5) 0.0376 (18)
H20 0.4161 0.8013 0.3076 0.045*
Br2 0.78643 (10) 0.23349 (8) 0.14966 (5) 0.0421 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0396 (7) 0.0264 (6) 0.0306 (6) 0.0082 (5) 0.0117 (5) 0.0025 (4)
Br1 0.0467 (5) 0.0432 (5) 0.0329 (4) 0.0121 (4) 0.0100 (3) 0.0078 (3)
O1 0.081 (4) 0.044 (3) 0.036 (3) −0.009 (3) 0.031 (3) −0.003 (2)
N1 0.036 (3) 0.031 (3) 0.031 (3) 0.001 (3) 0.008 (3) −0.003 (3)
N2 0.049 (4) 0.045 (4) 0.023 (3) 0.018 (3) 0.014 (3) 0.005 (3)
N3 0.041 (4) 0.027 (3) 0.033 (3) 0.010 (3) 0.010 (3) 0.001 (2)
N4 0.036 (3) 0.035 (4) 0.030 (3) 0.006 (3) 0.005 (3) −0.001 (3)
N5 0.032 (3) 0.040 (4) 0.039 (3) 0.014 (3) 0.007 (3) 0.010 (3)
N6 0.037 (4) 0.022 (3) 0.037 (3) 0.008 (3) 0.004 (3) 0.002 (2)
C1 0.034 (4) 0.046 (5) 0.038 (4) 0.003 (4) 0.005 (3) −0.013 (4)
C2 0.048 (5) 0.073 (7) 0.034 (4) 0.021 (5) 0.004 (4) −0.011 (4)
C3 0.063 (6) 0.055 (6) 0.043 (5) 0.034 (5) 0.001 (4) 0.004 (4)
C4 0.064 (6) 0.043 (5) 0.038 (4) 0.019 (4) 0.011 (4) −0.002 (4)
C5 0.051 (5) 0.028 (4) 0.025 (3) 0.013 (3) 0.008 (3) 0.000 (3)
C6 0.040 (4) 0.024 (4) 0.032 (4) 0.005 (3) 0.009 (3) 0.001 (3)
C7 0.041 (5) 0.045 (5) 0.036 (4) 0.006 (4) 0.012 (3) −0.008 (3)
C8 0.048 (5) 0.045 (5) 0.056 (5) 0.010 (4) 0.009 (4) −0.007 (4)
C9 0.049 (5) 0.033 (5) 0.052 (5) 0.018 (4) 0.009 (4) 0.001 (4)
C10 0.054 (5) 0.031 (4) 0.035 (4) 0.012 (4) 0.020 (4) 0.009 (3)
C11 0.053 (5) 0.041 (5) 0.031 (4) 0.010 (4) 0.008 (4) 0.001 (3)
C12 0.035 (4) 0.063 (6) 0.037 (4) 0.010 (4) 0.017 (3) −0.004 (4)
C13 0.034 (5) 0.075 (7) 0.042 (5) 0.023 (4) 0.004 (4) −0.014 (4)
C14 0.025 (4) 0.042 (5) 0.038 (4) 0.007 (3) 0.001 (3) −0.006 (3)
C15 0.030 (4) 0.030 (4) 0.033 (4) 0.009 (3) −0.001 (3) 0.000 (3)
C16 0.045 (5) 0.026 (4) 0.027 (4) 0.008 (3) −0.007 (3) 0.004 (3)
C17 0.051 (5) 0.031 (4) 0.034 (4) 0.013 (4) 0.001 (4) 0.008 (3)
C18 0.051 (5) 0.029 (4) 0.041 (4) 0.002 (4) 0.000 (4) 0.004 (3)
C19 0.031 (4) 0.056 (5) 0.032 (4) 0.002 (4) 0.007 (3) −0.004 (4)
C20 0.036 (4) 0.038 (5) 0.038 (4) 0.011 (4) 0.006 (3) 0.003 (3)
Br2 0.0507 (5) 0.0409 (5) 0.0388 (4) 0.0156 (4) 0.0133 (4) 0.0053 (3)

Geometric parameters (Å, °)

Mn1—O1 2.154 (6) C3—H3 0.9500
Mn1—N1 2.318 (6) C4—C5 1.405 (10)
Mn1—N3 2.256 (5) C4—H4 0.9500
Mn1—N4 2.246 (6) C6—C7 1.394 (10)
Mn1—N6 2.266 (6) C7—C8 1.375 (10)
Mn1—Br1 2.6395 (13) C7—H7 0.9500
O1—H1A 0.8400 C8—C9 1.354 (11)
O1—H1B 0.8400 C8—H8 0.9500
N1—C5 1.324 (9) C9—C10 1.383 (10)
N1—C1 1.358 (8) C9—H9 0.9500
N2—C5 1.366 (9) C10—H10 0.9500
N2—C6 1.403 (8) C11—C12 1.390 (10)
N2—H2N 0.9200 C11—H11 0.9500
N3—C6 1.347 (8) C12—C13 1.372 (12)
N3—C10 1.356 (9) C12—H12 0.9500
N4—C11 1.347 (10) C13—C14 1.384 (12)
N4—C15 1.356 (9) C13—H13 0.9500
N5—C15 1.375 (9) C14—C15 1.396 (10)
N5—C16 1.385 (9) C14—H14 0.9500
N5—H5N 0.9200 C16—C17 1.402 (11)
N6—C16 1.334 (8) C17—C18 1.388 (11)
N6—C20 1.348 (9) C17—H17 0.9500
C1—C2 1.356 (10) C18—C19 1.387 (10)
C1—H1 0.9500 C18—H18 0.9500
C2—C3 1.410 (12) C19—C20 1.376 (11)
C2—H2 0.9500 C19—H19 0.9500
C3—C4 1.353 (11) C20—H20 0.9500
O1—Mn1—N4 97.1 (2) N1—C5—N2 121.2 (6)
O1—Mn1—N3 91.0 (2) N1—C5—C4 120.8 (7)
N4—Mn1—N3 165.8 (2) N2—C5—C4 118.0 (7)
O1—Mn1—N6 171.6 (2) N3—C6—C7 122.5 (6)
N4—Mn1—N6 81.6 (2) N3—C6—N2 120.3 (6)
N3—Mn1—N6 88.6 (2) C7—C6—N2 117.2 (6)
O1—Mn1—N1 85.7 (2) C8—C7—C6 117.6 (7)
N4—Mn1—N1 89.9 (2) C8—C7—H7 121.2
N3—Mn1—N1 79.1 (2) C6—C7—H7 121.2
N6—Mn1—N1 86.0 (2) C9—C8—C7 121.4 (7)
O1—Mn1—Br1 95.45 (15) C9—C8—H8 119.3
N4—Mn1—Br1 92.44 (14) C7—C8—H8 119.3
N3—Mn1—Br1 98.39 (14) C8—C9—C10 118.0 (7)
N6—Mn1—Br1 92.92 (14) C8—C9—H9 121.0
N1—Mn1—Br1 177.25 (15) C10—C9—H9 121.0
Mn1—O1—H1A 112.9 N3—C10—C9 123.0 (7)
Mn1—O1—H1B 138.1 N3—C10—H10 118.5
H1A—O1—H1B 108.5 C9—C10—H10 118.5
C5—N1—C1 118.4 (6) N4—C11—C12 123.4 (8)
C5—N1—Mn1 119.0 (5) N4—C11—H11 118.3
C1—N1—Mn1 113.4 (4) C12—C11—H11 118.3
C5—N2—C6 131.1 (6) C13—C12—C11 117.4 (8)
C5—N2—H2N 117.9 C13—C12—H12 121.3
C6—N2—H2N 103.9 C11—C12—H12 121.3
C6—N3—C10 117.4 (6) C12—C13—C14 120.4 (7)
C6—N3—Mn1 127.2 (4) C12—C13—H13 119.8
C10—N3—Mn1 115.3 (4) C14—C13—H13 119.8
C11—N4—C15 118.9 (6) C13—C14—C15 119.6 (7)
C11—N4—Mn1 116.3 (5) C13—C14—H14 120.2
C15—N4—Mn1 124.8 (5) C15—C14—H14 120.2
C15—N5—C16 130.2 (6) N4—C15—N5 121.7 (6)
C15—N5—H5N 103.2 N4—C15—C14 120.4 (7)
C16—N5—H5N 126.5 N5—C15—C14 117.9 (7)
C16—N6—C20 118.2 (7) N6—C16—N5 120.6 (7)
C16—N6—Mn1 124.7 (5) N6—C16—C17 122.3 (7)
C20—N6—Mn1 115.9 (4) N5—C16—C17 117.1 (6)
C2—C1—N1 123.8 (8) C18—C17—C16 118.5 (7)
C2—C1—H1 118.1 C18—C17—H17 120.7
N1—C1—H1 118.1 C16—C17—H17 120.7
C1—C2—C3 117.2 (8) C19—C18—C17 119.0 (7)
C1—C2—H2 121.4 C19—C18—H18 120.5
C3—C2—H2 121.4 C17—C18—H18 120.5
C4—C3—C2 119.1 (8) C20—C19—C18 118.7 (7)
C4—C3—H3 120.4 C20—C19—H19 120.6
C2—C3—H3 120.4 C18—C19—H19 120.6
C3—C4—C5 120.0 (8) N6—C20—C19 123.0 (7)
C3—C4—H4 120.0 N6—C20—H20 118.5
C5—C4—H4 120.0 C19—C20—H20 118.5
O1—Mn1—N1—C5 −139.0 (5) Mn1—N1—C5—C4 −137.2 (6)
N4—Mn1—N1—C5 123.8 (5) C6—N2—C5—N1 0.7 (11)
N3—Mn1—N1—C5 −47.1 (5) C6—N2—C5—C4 −178.1 (7)
N6—Mn1—N1—C5 42.2 (5) C3—C4—C5—N1 −3.2 (11)
O1—Mn1—N1—C1 74.7 (5) C3—C4—C5—N2 175.6 (7)
N4—Mn1—N1—C1 −22.4 (5) C10—N3—C6—C7 2.7 (10)
N3—Mn1—N1—C1 166.6 (5) Mn1—N3—C6—C7 178.1 (6)
N6—Mn1—N1—C1 −104.1 (5) C10—N3—C6—N2 −175.0 (7)
O1—Mn1—N3—C6 111.4 (6) Mn1—N3—C6—N2 0.4 (10)
N4—Mn1—N3—C6 −13.8 (13) C5—N2—C6—N3 −26.7 (11)
N6—Mn1—N3—C6 −60.2 (6) C5—N2—C6—C7 155.5 (7)
N1—Mn1—N3—C6 26.0 (6) N3—C6—C7—C8 −4.5 (12)
Br1—Mn1—N3—C6 −153.0 (6) N2—C6—C7—C8 173.2 (7)
O1—Mn1—N3—C10 −73.1 (5) C6—C7—C8—C9 2.1 (13)
N4—Mn1—N3—C10 161.6 (8) C7—C8—C9—C10 1.9 (13)
N6—Mn1—N3—C10 115.3 (5) C6—N3—C10—C9 1.6 (11)
N1—Mn1—N3—C10 −158.5 (6) Mn1—N3—C10—C9 −174.3 (6)
Br1—Mn1—N3—C10 22.5 (5) C8—C9—C10—N3 −3.9 (12)
O1—Mn1—N4—C11 32.0 (5) C15—N4—C11—C12 1.9 (11)
N3—Mn1—N4—C11 156.6 (8) Mn1—N4—C11—C12 −176.9 (6)
N6—Mn1—N4—C11 −156.4 (5) N4—C11—C12—C13 −3.0 (11)
N1—Mn1—N4—C11 117.6 (5) C11—C12—C13—C14 1.4 (11)
Br1—Mn1—N4—C11 −63.8 (5) C12—C13—C14—C15 1.3 (11)
O1—Mn1—N4—C15 −146.7 (5) C11—N4—C15—N5 −179.1 (6)
N3—Mn1—N4—C15 −22.1 (12) Mn1—N4—C15—N5 −0.5 (9)
N6—Mn1—N4—C15 24.9 (5) C11—N4—C15—C14 0.9 (10)
N1—Mn1—N4—C15 −61.1 (5) Mn1—N4—C15—C14 179.6 (5)
Br1—Mn1—N4—C15 117.5 (5) C16—N5—C15—N4 −36.6 (11)
N4—Mn1—N6—C16 −33.8 (5) C16—N5—C15—C14 143.3 (7)
N3—Mn1—N6—C16 135.8 (5) C13—C14—C15—N4 −2.5 (10)
N1—Mn1—N6—C16 56.7 (5) C13—C14—C15—N5 177.6 (6)
Br1—Mn1—N6—C16 −125.8 (5) C20—N6—C16—N5 −175.2 (6)
N4—Mn1—N6—C20 158.8 (5) Mn1—N6—C16—N5 17.7 (8)
N3—Mn1—N6—C20 −31.5 (5) C20—N6—C16—C17 4.4 (10)
N1—Mn1—N6—C20 −110.7 (5) Mn1—N6—C16—C17 −162.8 (5)
Br1—Mn1—N6—C20 66.8 (5) C15—N5—C16—N6 26.8 (11)
C5—N1—C1—C2 −4.3 (10) C15—N5—C16—C17 −152.8 (7)
Mn1—N1—C1—C2 142.2 (6) N6—C16—C17—C18 −1.3 (10)
N1—C1—C2—C3 −3.1 (11) N5—C16—C17—C18 178.3 (6)
C1—C2—C3—C4 7.3 (12) C16—C17—C18—C19 −1.3 (10)
C2—C3—C4—C5 −4.4 (12) C17—C18—C19—C20 0.8 (10)
C1—N1—C5—N2 −171.3 (6) C16—N6—C20—C19 −5.0 (10)
Mn1—N1—C5—N2 44.1 (8) Mn1—N6—C20—C19 163.2 (6)
C1—N1—C5—C4 7.5 (10) C18—C19—C20—N6 2.5 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···Br2i 0.84 2.50 3.304 (5) 160
O1—H1B···Br1ii 0.84 2.44 3.272 (5) 171
N2—H2N···Br2iii 0.92 2.62 3.472 (6) 154
N5—H5N···Br2iv 0.92 2.63 3.503 (6) 159

Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2487).

References

  1. Bose, D., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 747–758.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048100/hy2487sup1.cif

e-67-m1773-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048100/hy2487Isup2.hkl

e-67-m1773-Isup2.hkl (206.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES