Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):m1780. doi: 10.1107/S1600536811048124

Tetra­kis[diamminesilver(I)] bis­(2-hy­droxy-5-methyl­benzene-1,3-disulfonate) monohydrate

Li-Wei Zhang a, Shan Gao a, Seik Weng Ng b,c,*
PMCID: PMC3238693  PMID: 22199570

Abstract

In the crystal structure of the title salt, [Ag(NH3)2]4(C7H6O7S2)2·H2O, the four independent AgI complex cations all lie on special positions of m site symmetry, as do the two independent 2-hy­droxy-5-methyl­benzene-1,3-disulfonate anions. The AgI cations exist in an almost linear coordination geometry [N—Ag—N = 175.2 (2), 178.08 (16), 175.8 (2) and 178.20 (19)°]. The water mol­ecule is disordered about a mirror plane. Two independent complex cations are linked by an Ag⋯Ag inter­action of 3.3151 (1) Å, furnishing a linear [Ag(NH3)2]n polycationic chain running along b. The free complex cations, polycationic chain and 2-hy­droxy-5-methyl­benzene-1,3-disulfonate anions inter­act via N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For background literature, see: Deng et al. (2011). For the synthesis of disulfonic acid, see: Lambrechts et al. (1985). graphic file with name e-67-m1780-scheme1.jpg

Experimental

Crystal data

  • [Ag(NH3)2]4(C7H6O7S2)2·H2O

  • M r = 1118.24

  • Monoclinic, Inline graphic

  • a = 21.6379 (8) Å

  • b = 6.5889 (2) Å

  • c = 24.7793 (8) Å

  • β = 108.015 (1)°

  • V = 3359.59 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.62 mm−1

  • T = 293 K

  • 0.19 × 0.13 × 0.11 mm

Data collection

  • Rigaku RAXIS-RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.636, T max = 0.762

  • 16616 measured reflections

  • 4169 independent reflections

  • 3613 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.104

  • S = 1.05

  • 4169 reflections

  • 274 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 1.48 e Å−3

  • Δρmin = −1.14 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048124/xu5387sup1.cif

e-67-m1780-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048124/xu5387Isup2.hkl

e-67-m1780-Isup2.hkl (204.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H12⋯O10 0.88 2.12 2.977 (4) 166
N2—H21⋯O1w 0.88 2.20 2.955 (9) 143
N7—H72⋯O10i 0.88 2.33 3.135 (5) 152
N8—H82⋯O4ii 0.88 2.21 3.064 (4) 164
O3—H3⋯O2 0.84 1.90 2.582 (5) 138
O9—H9⋯O7 0.84 1.95 2.612 (6) 134
O1w—H1w1⋯O11iii 0.84 1.91 2.720 (8) 160
O1w—H1w2⋯O6iv 0.84 1.94 2.762 (11) 166
O1w—H1w2⋯O8v 0.84 1.94 2.716 (11) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

supplementary crystallographic information

Comment

The silver derivative of hydroxy-5-methylbenzene-1,3-disulfonic acid as well as that of other o-hydroxy arenesulfonic acids are coordination polymers that exhibit luminescence; these feature silver–sulfonate covalent bonds (Deng et al., 2011). A variation of the synthesis yielded the title salt (Scheme I) in which the sulfonate dianion interacts with the metal atom indirectly, in an outer-sphere type of coordination. The AgI atoms in the salt, 2[Ag(NH3)2]+ (C7H6O7S2)2-.0.5H2O, exist in a linear coordination geometry. The four independent cations all lie on mirror planes, as do the two independent anions. The lattice water molecule is disordered about a mirror plane (Fig. 1). Two independent cations are linked by an Ag···Ag interaction of 3.3151 (1) Å to furnish a linear polycation [Ag(NH3)2]n chain running along b. The free cations, polycationic chain and anions interact by N–H···O and O–H···O hydrogen bonds to form a three-dimensional network (Table 1).

Experimental

Silver nitrate (2 mmol) and 2-hydroxy-5-methylbenzene-1,3-disulfonic acid (1 mmol) were mixed in water (15 ml); the pH value was adjusted to ca 6 by the addition of ammonium hydroxide. The solution was filtered; colorless crystals were isolated from the solution, which was kept away from light, after several days.

Refinement

Carbon-bound H-atoms were generated geometrically and were included in the riding model approximation for the aromatic ones only; the methyl ones were placed in calculated positions [C–H 0.93–0.98 Å, U(H) 1.2–1.5Ueq(C)]. The amino and water H-atoms were similarly placed [N–H 0.88 and O–H 0.84 Å, U(H) 1.2–1.5Ueq(N,O)].

The O atoms of one –SO3 groups were allowed to refine off the mirror plane. The S–O distances were restrained to within ±0.01 Å of each other, as were the O···O distances. Their anisotropic temperature factors were restrained to be nearly isotropic.

The largest peak was 0.92 Å from Ag1 and deepest hole 0.66 Å from Ag1.

Omitted because of bad disagreement were -1 1 1 and 1 1 2 reflections.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of 4[Ag(NH3)2]+(C7H6O7S2)22-.H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry-related atoms are not labeled.

Crystal data

4(AgH6N2+)·2(C7H6O7S22)·H2O F(000) = 2200
Mr = 1118.24 Dx = 2.211 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2y Cell parameters from 13532 reflections
a = 21.6379 (8) Å θ = 3.0–27.5°
b = 6.5889 (2) Å µ = 2.62 mm1
c = 24.7793 (8) Å T = 293 K
β = 108.015 (1)° Prism, colorless
V = 3359.59 (19) Å3 0.19 × 0.13 × 0.11 mm
Z = 4

Data collection

Rigaku RAXIS-RAPID IP diffractometer 4169 independent reflections
Radiation source: fine-focus sealed tube 3613 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scan θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −28→28
Tmin = 0.636, Tmax = 0.762 k = −7→8
16616 measured reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0669P)2 + 3.482P] where P = (Fo2 + 2Fc2)/3
4169 reflections (Δ/σ)max = 0.001
274 parameters Δρmax = 1.48 e Å3
30 restraints Δρmin = −1.14 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ag1 0.34683 (2) 1.0000 0.380433 (17) 0.05373 (13)
Ag2 0.15158 (2) 0.5000 0.079762 (18) 0.04880 (13)
Ag3 0.006423 (19) 0.5000 0.239383 (18) 0.05088 (13)
Ag4 0.017750 (18) 0.0000 0.254010 (17) 0.04835 (13)
S1 0.05853 (5) 1.0000 0.09757 (5) 0.0374 (2)
S2 0.32892 (5) 1.0000 0.15613 (4) 0.0338 (2)
S3 0.45119 (6) 0.5000 0.38736 (6) 0.0533 (3)
S4 0.18163 (6) 0.5000 0.30777 (5) 0.0452 (3)
O1 0.02468 (13) 0.8174 (4) 0.07320 (13) 0.0606 (7)
O2 0.07766 (17) 1.0000 0.15926 (15) 0.0723 (14)
O3 0.20199 (15) 1.0000 0.17880 (12) 0.0414 (7)
H3 0.1695 1.0000 0.1905 0.062*
O4 0.33304 (11) 0.8183 (4) 0.18995 (11) 0.0487 (6)
O5 0.37405 (16) 1.0000 0.12320 (15) 0.0514 (9)
O6 0.4888 (4) 0.6529 (10) 0.4256 (3) 0.073 (2) 0.50
O7 0.4393 (3) 0.5594 (10) 0.3290 (2) 0.079 (3) 0.50
O8 0.4777 (5) 0.3031 (10) 0.4000 (3) 0.080 (3) 0.50
O9 0.31379 (17) 0.5000 0.29697 (14) 0.0512 (9)
H9 0.3483 0.5000 0.2882 0.077*
O10 0.18069 (14) 0.6822 (5) 0.27464 (12) 0.0616 (7)
O11 0.13145 (19) 0.5000 0.33504 (19) 0.0742 (13)
O1w 0.4062 (4) 1.1079 (14) 0.5739 (3) 0.105 (3) 0.50
H1w1 0.3988 1.1011 0.6053 0.157* 0.50
H1w2 0.4342 1.1975 0.5752 0.157* 0.50
N1 0.2833 (2) 1.0000 0.29685 (18) 0.0546 (11)
H11 0.3060 1.0000 0.2729 0.082*
H12 0.2587 0.8909 0.2913 0.082*
N2 0.4171 (3) 1.0000 0.4614 (2) 0.0697 (14)
H21 0.3975 1.0000 0.4877 0.104*
H22 0.4415 1.1091 0.4652 0.104*
N3 0.2209 (2) 0.5000 0.16227 (19) 0.0509 (10)
H31 0.2604 0.5000 0.1593 0.076*
H32 0.2155 0.3909 0.1808 0.076*
N4 0.0841 (2) 0.5000 −0.0049 (2) 0.0495 (10)
H41 0.0441 0.5000 −0.0032 0.074*
H42 0.0903 0.3909 −0.0231 0.074*
N5 0.0525 (3) 0.5000 0.1760 (2) 0.0629 (13)
H51 0.0230 0.5000 0.1424 0.094*
H52 0.0770 0.3909 0.1796 0.094*
N6 −0.0463 (3) 0.5000 0.2980 (2) 0.0766 (17)
H61 −0.0882 0.5000 0.2796 0.115*
H62 −0.0364 0.6091 0.3194 0.115*
N7 0.1036 (2) 0.0000 0.3228 (2) 0.0601 (12)
H71 0.0938 0.0000 0.3548 0.090*
H72 0.1265 −0.1091 0.3213 0.090*
N8 −0.0663 (2) 0.0000 0.1835 (2) 0.0584 (11)
H81 −0.0552 0.0000 0.1522 0.088*
H82 −0.0894 0.1091 0.1843 0.088*
C1 0.13312 (19) 1.0000 0.08124 (17) 0.0287 (8)
C6 0.1288 (2) 1.0000 0.02360 (17) 0.0318 (8)
H6 0.0881 1.0000 −0.0037 0.038*
C5 0.1838 (2) 1.0000 0.00656 (17) 0.0338 (8)
C4 0.2439 (2) 1.0000 0.04819 (18) 0.0337 (8)
H4 0.2814 1.0000 0.0373 0.040*
C3 0.24984 (18) 1.0000 0.10525 (17) 0.0287 (7)
C2 0.19375 (18) 1.0000 0.12287 (16) 0.0267 (7)
C7 0.1787 (3) 1.0000 −0.05577 (19) 0.0491 (12)
H7D 0.1338 1.0000 −0.0783 0.074*
H7E 0.1996 0.8810 −0.0643 0.074* 0.50
H7F 0.1996 1.1190 −0.0643 0.074* 0.50
C8 0.2568 (2) 0.5000 0.36432 (19) 0.0369 (9)
C9 0.3165 (2) 0.5000 0.35254 (19) 0.0363 (9)
C10 0.3735 (2) 0.5000 0.3979 (2) 0.0384 (9)
C11 0.3718 (3) 0.5000 0.4540 (2) 0.0453 (11)
H11A 0.4104 0.5000 0.4839 0.054*
C12 0.3132 (3) 0.5000 0.4652 (2) 0.0504 (12)
C13 0.2559 (3) 0.5000 0.4194 (2) 0.0473 (11)
H13 0.2161 0.5000 0.4264 0.057*
C14 0.3111 (4) 0.5000 0.5256 (2) 0.091 (3)
H14A 0.3546 0.5000 0.5514 0.136*
H14B 0.2886 0.3810 0.5320 0.136* 0.50
H14C 0.2886 0.6190 0.5320 0.136* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0562 (3) 0.0543 (2) 0.0451 (2) 0.000 0.00751 (18) 0.000
Ag2 0.0520 (2) 0.0438 (2) 0.0534 (2) 0.000 0.02034 (18) 0.000
Ag3 0.0450 (2) 0.0570 (3) 0.0545 (2) 0.000 0.02104 (18) 0.000
Ag4 0.0376 (2) 0.0523 (2) 0.0505 (2) 0.000 0.00692 (16) 0.000
S1 0.0219 (5) 0.0500 (6) 0.0398 (5) 0.000 0.0086 (4) 0.000
S2 0.0215 (4) 0.0427 (5) 0.0343 (5) 0.000 0.0042 (4) 0.000
S3 0.0344 (6) 0.0615 (8) 0.0669 (8) 0.000 0.0199 (6) 0.000
S4 0.0327 (6) 0.0611 (7) 0.0408 (6) 0.000 0.0099 (5) 0.000
O1 0.0402 (14) 0.0579 (15) 0.085 (2) −0.0170 (12) 0.0207 (13) −0.0071 (15)
O2 0.0343 (19) 0.145 (5) 0.043 (2) 0.000 0.0202 (16) 0.000
O3 0.0281 (15) 0.071 (2) 0.0256 (13) 0.000 0.0088 (11) 0.000
O4 0.0351 (12) 0.0492 (13) 0.0538 (14) 0.0031 (10) 0.0019 (10) 0.0137 (12)
O5 0.0266 (16) 0.080 (2) 0.0496 (18) 0.000 0.0147 (14) 0.000
O6 0.047 (4) 0.082 (5) 0.089 (5) −0.019 (4) 0.018 (4) −0.008 (4)
O7 0.054 (3) 0.121 (7) 0.071 (3) −0.008 (3) 0.035 (3) 0.015 (4)
O8 0.070 (5) 0.064 (4) 0.116 (6) 0.017 (4) 0.044 (5) −0.010 (4)
O9 0.046 (2) 0.077 (2) 0.0361 (16) 0.000 0.0204 (15) 0.000
O10 0.0518 (16) 0.0666 (17) 0.0573 (15) 0.0055 (14) 0.0038 (12) 0.0122 (14)
O11 0.0331 (19) 0.131 (4) 0.061 (2) 0.000 0.0171 (17) 0.000
O1w 0.087 (5) 0.143 (6) 0.087 (5) −0.028 (4) 0.033 (4) 0.007 (4)
N1 0.051 (3) 0.065 (3) 0.040 (2) 0.000 0.0036 (18) 0.000
N2 0.076 (4) 0.058 (3) 0.059 (3) 0.000 −0.002 (3) 0.000
N3 0.058 (3) 0.049 (2) 0.051 (2) 0.000 0.024 (2) 0.000
N4 0.038 (2) 0.043 (2) 0.067 (3) 0.000 0.014 (2) 0.000
N5 0.067 (3) 0.073 (3) 0.055 (3) 0.000 0.029 (2) 0.000
N6 0.051 (3) 0.123 (5) 0.061 (3) 0.000 0.024 (2) 0.000
N7 0.053 (3) 0.067 (3) 0.051 (3) 0.000 0.003 (2) 0.000
N8 0.043 (2) 0.068 (3) 0.054 (3) 0.000 0.000 (2) 0.000
C1 0.0235 (18) 0.0303 (18) 0.0313 (18) 0.000 0.0071 (14) 0.000
C6 0.031 (2) 0.0316 (19) 0.0271 (18) 0.000 0.0002 (15) 0.000
C5 0.035 (2) 0.036 (2) 0.0281 (18) 0.000 0.0058 (16) 0.000
C4 0.032 (2) 0.037 (2) 0.034 (2) 0.000 0.0132 (16) 0.000
C3 0.0203 (17) 0.0318 (18) 0.0315 (18) 0.000 0.0046 (14) 0.000
C2 0.0255 (18) 0.0287 (17) 0.0255 (17) 0.000 0.0073 (14) 0.000
C7 0.057 (3) 0.061 (3) 0.030 (2) 0.000 0.014 (2) 0.000
C8 0.034 (2) 0.044 (2) 0.035 (2) 0.000 0.0126 (17) 0.000
C9 0.037 (2) 0.039 (2) 0.036 (2) 0.000 0.0157 (18) 0.000
C10 0.032 (2) 0.039 (2) 0.046 (2) 0.000 0.0137 (19) 0.000
C11 0.044 (3) 0.049 (3) 0.039 (2) 0.000 0.006 (2) 0.000
C12 0.052 (3) 0.068 (3) 0.033 (2) 0.000 0.014 (2) 0.000
C13 0.044 (3) 0.062 (3) 0.041 (2) 0.000 0.021 (2) 0.000
C14 0.091 (5) 0.150 (8) 0.033 (3) 0.000 0.023 (3) 0.000

Geometric parameters (Å, °)

Ag3—Ag4 3.3151 (1) N2—H22 0.8800
Ag1—N1 2.102 (4) N3—H31 0.8800
Ag1—N2 2.110 (5) N3—H32 0.8800
Ag2—N3 2.129 (5) N4—H41 0.8800
Ag2—N4 2.154 (5) N4—H42 0.8800
Ag3—N5 2.105 (4) N5—H51 0.8800
Ag3—N6 2.107 (5) N5—H52 0.8800
Ag4—N8 2.096 (4) N6—H61 0.8800
Ag4—N7 2.097 (5) N6—H62 0.8800
S1—O1 1.441 (3) N7—H71 0.8800
S1—O1i 1.441 (3) N7—H72 0.8800
S1—O2 1.455 (4) N8—H81 0.8800
S1—C1 1.781 (4) N8—H82 0.8800
S2—O4i 1.448 (2) C1—C2 1.396 (5)
S2—O4 1.448 (2) C1—C6 1.402 (6)
S2—O5 1.453 (3) C6—C5 1.380 (6)
S2—C3 1.784 (4) C6—H6 0.9300
S3—O8ii 1.414 (6) C5—C4 1.388 (6)
S3—O8 1.414 (6) C5—C7 1.514 (6)
S3—O7 1.442 (5) C4—C3 1.380 (6)
S3—O7ii 1.442 (5) C4—H4 0.9300
S3—O6 1.448 (6) C3—C2 1.411 (5)
S3—O6ii 1.448 (5) C7—H7D 0.9600
S3—C10 1.778 (5) C7—H7E 0.9600
S4—O11 1.446 (4) C7—H7F 0.9600
S4—O10ii 1.451 (3) C8—C13 1.370 (6)
S4—O10 1.451 (3) C8—C9 1.408 (6)
S4—C8 1.789 (5) C9—C10 1.389 (7)
O3—C2 1.342 (5) C10—C11 1.402 (7)
O3—H3 0.8400 C11—C12 1.379 (7)
O9—C9 1.360 (5) C11—H11A 0.9300
O9—H9 0.8400 C12—C13 1.398 (7)
O1w—H1w1 0.8430 C12—C14 1.514 (7)
O1w—H1w2 0.8400 C13—H13 0.9300
N1—H11 0.8800 C14—H14A 0.9600
N1—H12 0.8800 C14—H14B 0.9600
N2—H21 0.8800 C14—H14C 0.9600
N1—Ag1—N2 175.2 (2) Ag3—N6—H62 109.5
N3—Ag2—N4 178.08 (16) H61—N6—H62 109.5
N5—Ag3—N6 175.8 (2) Ag4—N7—H71 109.5
N5—Ag3—Ag4iii 92.607 (18) Ag4—N7—H72 109.5
N6—Ag3—Ag4iii 87.830 (19) H71—N7—H72 109.5
N5—Ag3—Ag4 92.607 (18) Ag4—N8—H81 109.5
N6—Ag3—Ag4 87.830 (19) Ag4—N8—H82 109.5
Ag4iii—Ag3—Ag4 167.20 (2) H81—N8—H82 109.5
N8—Ag4—N7 178.20 (19) C2—C1—C6 120.2 (4)
N8—Ag4—Ag3iv 83.864 (11) C2—C1—S1 122.9 (3)
N7—Ag4—Ag3iv 96.076 (11) C6—C1—S1 116.9 (3)
N8—Ag4—Ag3 83.864 (11) C5—C6—C1 121.3 (4)
N7—Ag4—Ag3 96.076 (11) C5—C6—H6 119.3
Ag3iv—Ag4—Ag3 167.20 (2) C1—C6—H6 119.3
O1—S1—O1i 113.3 (3) C6—C5—C4 118.1 (4)
O1—S1—O2 112.52 (15) C6—C5—C7 121.0 (4)
O1i—S1—O2 112.52 (15) C4—C5—C7 120.9 (4)
O1—S1—C1 106.48 (13) C3—C4—C5 122.0 (4)
O1i—S1—C1 106.48 (13) C3—C4—H4 119.0
O2—S1—C1 104.8 (2) C5—C4—H4 119.0
O4i—S2—O4 111.5 (2) C4—C3—C2 120.1 (4)
O4i—S2—O5 113.14 (13) C4—C3—S2 119.3 (3)
O4—S2—O5 113.14 (13) C2—C3—S2 120.7 (3)
O4i—S2—C3 106.43 (12) O3—C2—C1 123.9 (3)
O4—S2—C3 106.43 (12) O3—C2—C3 117.9 (3)
O5—S2—C3 105.5 (2) C1—C2—C3 118.2 (3)
O8—S3—O7 114.0 (4) C5—C7—H7D 109.5
O8—S3—O6 112.7 (4) C5—C7—H7E 109.5
O7—S3—O6 110.9 (4) H7D—C7—H7E 109.5
O8—S3—C10 107.7 (5) C5—C7—H7F 109.5
O7—S3—C10 105.2 (3) H7D—C7—H7F 109.5
O6—S3—C10 105.7 (4) H7E—C7—H7F 109.5
O11—S4—O10ii 112.54 (15) C13—C8—C9 120.2 (4)
O11—S4—O10 112.54 (15) C13—C8—S4 119.4 (4)
O10ii—S4—O10 111.7 (3) C9—C8—S4 120.5 (3)
O11—S4—C8 105.5 (2) O9—C9—C10 124.6 (4)
O10ii—S4—C8 107.06 (14) O9—C9—C8 117.1 (4)
O10—S4—C8 107.06 (14) C10—C9—C8 118.4 (4)
C2—O3—H3 120.0 C9—C10—C11 120.8 (4)
C9—O9—H9 120.0 C9—C10—S3 121.7 (4)
H1w1—O1w—H1w2 110.0 C11—C10—S3 117.5 (4)
Ag1—N1—H11 109.5 C12—C11—C10 120.5 (5)
Ag1—N1—H12 109.5 C12—C11—H11A 119.7
H11—N1—H12 109.5 C10—C11—H11A 119.7
Ag1—N2—H21 109.5 C11—C12—C13 118.4 (4)
Ag1—N2—H22 109.5 C11—C12—C14 120.7 (5)
H21—N2—H22 109.5 C13—C12—C14 120.8 (5)
Ag2—N3—H31 109.5 C8—C13—C12 121.7 (4)
Ag2—N3—H32 109.5 C8—C13—H13 119.1
H31—N3—H32 109.5 C12—C13—H13 119.1
Ag2—N4—H41 109.5 C12—C14—H14A 109.5
Ag2—N4—H42 109.5 C12—C14—H14B 109.5
H41—N4—H42 109.5 H14A—C14—H14B 109.5
Ag3—N5—H51 109.5 C12—C14—H14C 109.5
Ag3—N5—H52 109.5 H14A—C14—H14C 109.5
H51—N5—H52 109.5 H14B—C14—H14C 109.5
Ag3—N6—H61 109.5
O1—S1—C1—C2 −119.42 (14) O11—S4—C8—C9 180.0
O1i—S1—C1—C2 119.42 (14) O10ii—S4—C8—C9 59.94 (14)
O2—S1—C1—C2 0.0 O10—S4—C8—C9 −59.94 (14)
O1—S1—C1—C6 60.58 (14) C13—C8—C9—O9 180.0
O1i—S1—C1—C6 −60.58 (14) S4—C8—C9—O9 0.0
O2—S1—C1—C6 180.0 C13—C8—C9—C10 0.000 (1)
C2—C1—C6—C5 0.0 S4—C8—C9—C10 180.0
S1—C1—C6—C5 180.0 O9—C9—C10—C11 180.000 (1)
C1—C6—C5—C4 0.0 C8—C9—C10—C11 0.000 (1)
C1—C6—C5—C7 180.0 O9—C9—C10—S3 0.0
C6—C5—C4—C3 0.0 C8—C9—C10—S3 180.0
C7—C5—C4—C3 180.0 O8ii—S3—C10—C9 105.6 (3)
C5—C4—C3—C2 0.0 O8—S3—C10—C9 −105.6 (3)
C5—C4—C3—S2 180.0 O7—S3—C10—C9 16.3 (3)
O4i—S2—C3—C4 120.47 (12) O7ii—S3—C10—C9 −16.3 (3)
O4—S2—C3—C4 −120.47 (12) O6—S3—C10—C9 133.8 (3)
O5—S2—C3—C4 0.0 O6ii—S3—C10—C9 −133.8 (3)
O4i—S2—C3—C2 −59.53 (12) O8ii—S3—C10—C11 −74.4 (3)
O4—S2—C3—C2 59.53 (12) O8—S3—C10—C11 74.4 (3)
O5—S2—C3—C2 180.0 O7—S3—C10—C11 −163.7 (3)
C6—C1—C2—O3 180.0 O7ii—S3—C10—C11 163.7 (3)
S1—C1—C2—O3 0.0 O6—S3—C10—C11 −46.2 (3)
C6—C1—C2—C3 0.0 O6ii—S3—C10—C11 46.2 (3)
S1—C1—C2—C3 180.0 C9—C10—C11—C12 0.000 (1)
C4—C3—C2—O3 180.0 S3—C10—C11—C12 180.000 (1)
S2—C3—C2—O3 0.0 C10—C11—C12—C13 0.000 (1)
C4—C3—C2—C1 0.0 C10—C11—C12—C14 180.000 (2)
S2—C3—C2—C1 180.0 C9—C8—C13—C12 0.0
O11—S4—C8—C13 0.0 S4—C8—C13—C12 180.0
O10ii—S4—C8—C13 −120.06 (14) C11—C12—C13—C8 0.000 (1)
O10—S4—C8—C13 120.06 (14) C14—C12—C13—C8 180.000 (1)

Symmetry codes: (i) x, −y+2, z; (ii) x, −y+1, z; (iii) x, y+1, z; (iv) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H12···O10 0.88 2.12 2.977 (4) 166
N2—H21···O1w 0.88 2.20 2.955 (9) 143
N7—H72···O10iv 0.88 2.33 3.135 (5) 152
N8—H82···O4v 0.88 2.21 3.064 (4) 164
O3—H3···O2 0.84 1.90 2.582 (5) 138
O9—H9···O7 0.84 1.95 2.612 (6) 134
O1w—H1w1···O11vi 0.84 1.91 2.720 (8) 160
O1w—H1w2···O6vii 0.84 1.94 2.762 (11) 166
O1w—H1w2···O8viii 0.84 1.94 2.716 (11) 153

Symmetry codes: (iv) x, y−1, z; (v) x−1/2, y−1/2, z; (vi) −x+1/2, −y+3/2, −z+1; (vii) −x+1, −y+2, −z+1; (viii) −x+1, y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5387).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Deng, Z.-P., Huo, L.-H., Li, M.-S., Zhang, L.-W., Zhu, Z.-B., Zhao, H. & Gao, S. (2011). Cryst. Growth Des. 11, 3090–3100.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Lambrechts, H. J. A., Schaasberg-Nienhuis, Z. R. H. & Cerfontain, H. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 669–675.
  5. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048124/xu5387sup1.cif

e-67-m1780-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048124/xu5387Isup2.hkl

e-67-m1780-Isup2.hkl (204.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES