Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):m1785–m1786. doi: 10.1107/S1600536811047477

Acetonitrile­trichloridobis(cyclo­hexyl­diphenyl­phosphane)rhodium(III) acetonitrile disolvate

Theunis J Muller a,*, Hendrik G Visser a, Andreas Roodt a
PMCID: PMC3238697  PMID: 22199574

Abstract

In the title compound, [RhCl3(CH3CN)(C18H21P)2]·2CH3CN, the complex mol­ecule lies on a twofold rotation axis that passes through the RhIII atom, one Cl atom, and the C and N atoms of the coordinated acetonitrile mol­ecule. The RhIII atom is coordinated by two P atoms in trans positions, three Cl atoms and an acetonitrile mol­ecule in a distorted octa­hedral geometry. Intra­molecular C—H⋯Cl inter­actions are observed. The uncoordinated acetonitrile mol­ecule is disordered over two sites with occupancies of 0.588 (4) and 0.412 (4).

Related literature

For background to the catalytic activity of rhodium–phosphane adducts, see: Brink et al. (2010); Marko & Heil (1974); Nagy-Magos et al. (1978); Oro et al. (1978); Roodt et al. (2003). For related structures, see: Archer et al. (1993); Aslanov et al. (1970); Clegg et al. (2002); Drew et al. (1970).graphic file with name e-67-m1785-scheme1.jpg

Experimental

Crystal data

  • [RhCl3(C2H3N)(C18H21P)2]·2C2H3N

  • M r = 869.06

  • Monoclinic, Inline graphic

  • a = 24.995 (1) Å

  • b = 10.041 (1) Å

  • c = 16.258 (1) Å

  • β = 96.763 (1)°

  • V = 4052.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 100 K

  • 0.32 × 0.25 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.797, T max = 0.889

  • 33882 measured reflections

  • 5038 independent reflections

  • 4615 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.055

  • S = 1.04

  • 5038 reflections

  • 264 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811047477/is2783sup1.cif

e-67-m1785-sup1.cif (28.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047477/is2783Isup2.hkl

e-67-m1785-Isup2.hkl (241.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Rh1—N1 1.9978 (17)
Rh1—Cl2 2.3297 (5)
Rh1—Cl1 2.3486 (3)
Rh1—P1 2.4013 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cl2 0.95 2.59 3.4452 (14) 150
C20—H20B⋯Cl2 0.99 2.72 3.4797 (14) 134

Acknowledgments

The University of the Free State and Inkaba are gratefully acknowledged for financial support.

supplementary crystallographic information

Comment

Rhodium catalysts formed in situ from RhCl3xH2O and phosphanes have been used for the hydrogenation (Marko & Heil, 1974; Nagy-Magos et al., 1978) and hydroformylation (Oro et al., 1978) of olefins. The catalytic activity is determined by the electronic and steric effects of the phosphane ligand (Roodt et al., 2003; Brink et al., 2010).

The title compound (Fig. 1) crystallizes in the monoclinic space group C2/c. The RhIII atom is situated on a twofold rotation axis, which passes atoms Cl2, N1 and C2. Two cyclohexyldiphenylphosphane ligands are positioned trans to each other, with the other four coordination sites occupied by three mer-chloroligands and one molecule of the acetonitrile solvent. In contrast to the structure reported by Clegg et al. (2002) the solvent molecule lies opposite the shortest Rh—Cl2 bond [2.3297 (5) Å] in the complex. Deviations from ideal octahedral geometry are minor (Table 1). The Rh—P1 bond length is 2.4013 (5) Å, while the Rh—Cl1 bond length is 2.3486 (6) Å. The P1—Rh—P1i angle is 176.462 (17)° which is close to the Cl1—Rh—Cl1i at 176.185 (18)° [symmetry code: (i) -x, y, -z + 1/2]. This complex is therefore structurally related to trans-ReCl3(PMe2Ph)3 (Aslanov et al., 1970) and ReCl3(PPh3)2MeCN (Drew et al., 1970), and other metal halide derivatives of this type (Archer et al., 1993). The uncoordinated acetonitrile molecule is disordered over two positions with occupancies of 0.588 (4) and 0.412 (4). The molecular structure of the complex is stabilized by intramolecular C—H···Cl interactions (Table 2).

Experimental

RhCl3.H2O (20 mg, 9.557×10 -5 mol) was added to acetonitrile (5 ml) and heated to reflux. Cyclohexyldiphenylphosphane (2 eq, 1.911×10 -4 mol, 51,2 mg) was added to the solution. The solution was refluxed for 15 min before it was cooled to room temperature. Crystals suitable for X-ray analysis was grown overnight by the slow evaporation of acetonitrile at room temperature (yield 0.0750 g, 89%)

Refinement

H atoms were positioned geometrically (C—H = 0.93–9.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(phenyl C) or 1.5Ueq(methyl and methylene C). The distance restraints [1.45 (1) Å] were applied for C21A—C22A and C21B—C22B.

Figures

Fig. 1.

Fig. 1.

Diamond representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).

Crystal data

[RhCl3(C2H3N)(C18H21P)2]·2C2H3N F(000) = 1800
Mr = 869.06 Dx = 1.425 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 24.995 (1) Å Cell parameters from 9837 reflections
b = 10.041 (1) Å θ = 2.5–28.3°
c = 16.258 (1) Å µ = 0.73 mm1
β = 96.763 (1)° T = 100 K
V = 4052.0 (5) Å3 Cuboid, red
Z = 4 0.32 × 0.25 × 0.16 mm

Data collection

Bruker APEXII CCD diffractometer 4615 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −33→33
Tmin = 0.797, Tmax = 0.889 k = −13→13
33882 measured reflections l = −21→19
5038 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0236P)2 + 4.9122P] where P = (Fo2 + 2Fc2)/3
5038 reflections (Δ/σ)max = 0.001
264 parameters Δρmax = 0.37 e Å3
2 restraints Δρmin = −0.63 e Å3

Special details

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 20 s/frame. A total of 1963 frames were collected with a frame width of 0.5° covering up to θ = 28.35° with 99.6% completeness accomplished
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Rh1 0 0.145288 (14) 0.25 0.01099 (5)
Cl1 −0.053994 (13) 0.13750 (3) 0.35876 (2) 0.01819 (7)
Cl2 0 0.37731 (4) 0.25 0.01635 (9)
P1 0.079330 (13) 0.13791 (3) 0.34878 (2) 0.01236 (7)
N1 0 −0.05368 (17) 0.25 0.0166 (3)
C15 0.07347 (5) 0.20332 (14) 0.45392 (8) 0.0160 (3)
H15 0.0418 0.1572 0.4734 0.019*
C11 0.18508 (6) 0.40163 (15) 0.26099 (10) 0.0230 (3)
H11 0.1831 0.479 0.2271 0.028*
C2 0 −0.3095 (2) 0.25 0.0238 (4)
H2A 0.019 −0.3421 0.2046 0.036* 0.5
H2B −0.0372 −0.3421 0.2426 0.036* 0.5
H2C 0.0182 −0.3421 0.3029 0.036* 0.5
C5 0.14501 (6) −0.23233 (15) 0.32610 (10) 0.0228 (3)
H5 0.1671 −0.2744 0.29 0.027*
C4 0.13087 (6) −0.09925 (15) 0.31407 (9) 0.0186 (3)
H4 0.1431 −0.0512 0.2696 0.022*
C18 0.10192 (7) 0.36857 (16) 0.60247 (9) 0.0242 (3)
H18A 0.1342 0.4175 0.5893 0.029*
H18B 0.0942 0.3966 0.6582 0.029*
C3 0.09890 (5) −0.03580 (13) 0.36674 (8) 0.0151 (3)
C8 0.07948 (6) −0.10963 (15) 0.42960 (9) 0.0197 (3)
H8 0.0562 −0.069 0.4644 0.024*
C16 0.12161 (6) 0.17108 (15) 0.51730 (9) 0.0217 (3)
H16A 0.1273 0.0735 0.5193 0.026*
H16B 0.1544 0.2129 0.5 0.026*
C10 0.13773 (6) 0.33469 (15) 0.27481 (9) 0.0205 (3)
H10 0.1037 0.369 0.2525 0.025*
C7 0.09408 (7) −0.24283 (15) 0.44145 (10) 0.0250 (3)
H7 0.0812 −0.2921 0.485 0.03*
C19 0.05461 (6) 0.40325 (16) 0.53948 (9) 0.0220 (3)
H19A 0.0505 0.5013 0.537 0.026*
H19B 0.0214 0.3657 0.5579 0.026*
C14 0.19135 (6) 0.17214 (15) 0.35757 (10) 0.0209 (3)
H14 0.1936 0.0956 0.3922 0.025*
C9 0.14076 (5) 0.21728 (14) 0.32148 (9) 0.0166 (3)
C13 0.23812 (6) 0.23857 (16) 0.34300 (10) 0.0243 (3)
H13 0.2723 0.2043 0.3647 0.029*
C20 0.06056 (6) 0.35127 (14) 0.45333 (9) 0.0201 (3)
H20A 0.0897 0.4009 0.4305 0.024*
H20B 0.0267 0.3673 0.4167 0.024*
C17 0.11302 (6) 0.22091 (16) 0.60265 (9) 0.0214 (3)
H17A 0.0823 0.1728 0.6221 0.026*
H17B 0.1455 0.2016 0.6418 0.026*
C6 0.12719 (6) −0.30370 (15) 0.39021 (10) 0.0253 (3)
H6 0.1376 −0.394 0.3991 0.03*
C12 0.23475 (6) 0.35541 (17) 0.29659 (11) 0.0281 (4)
H12 0.2666 0.4036 0.2893 0.034*
C1 0 −0.1644 (2) 0.25 0.0199 (4)
N2A 0.22420 (12) 0.4183 (3) 0.0550 (2) 0.0384 (8) 0.588 (4)
C21A 0.2017 (4) 0.1790 (4) 0.1017 (6) 0.0345 (17) 0.588 (4)
H21A 0.1631 0.173 0.1067 0.052* 0.588 (4)
H21B 0.2223 0.1594 0.1554 0.052* 0.588 (4)
H21C 0.211 0.1144 0.0605 0.052* 0.588 (4)
C22A 0.21444 (12) 0.3123 (3) 0.07576 (19) 0.0331 (8) 0.588 (4)
N2B 0.2558 (2) 0.0458 (6) −0.0078 (4) 0.0611 (16) 0.412 (4)
C21B 0.2042 (7) 0.1588 (10) 0.1007 (9) 0.060 (4) 0.412 (4)
H21D 0.2034 0.2552 0.0914 0.09* 0.412 (4)
H21E 0.2224 0.1399 0.1563 0.09* 0.412 (4)
H21F 0.1673 0.1243 0.096 0.09* 0.412 (4)
C22B 0.2333 (2) 0.0950 (6) 0.0394 (4) 0.0523 (17) 0.412 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.01107 (7) 0.00977 (7) 0.01209 (7) 0 0.00121 (5) 0
Cl1 0.01540 (15) 0.02406 (18) 0.01562 (16) −0.00089 (12) 0.00398 (12) 0.00129 (12)
Cl2 0.0172 (2) 0.0117 (2) 0.0195 (2) 0 −0.00028 (17) 0
P1 0.01149 (15) 0.01268 (16) 0.01287 (16) −0.00007 (12) 0.00121 (12) 0.00040 (12)
N1 0.0136 (7) 0.0180 (9) 0.0173 (8) 0 −0.0018 (6) 0
C15 0.0154 (6) 0.0181 (7) 0.0141 (6) 0.0006 (5) 0.0003 (5) −0.0021 (5)
C11 0.0214 (7) 0.0184 (7) 0.0299 (8) −0.0017 (6) 0.0054 (6) 0.0036 (6)
C2 0.0263 (11) 0.0165 (10) 0.0285 (11) 0 0.0033 (9) 0
C5 0.0222 (7) 0.0179 (7) 0.0278 (8) 0.0047 (6) 0.0007 (6) −0.0026 (6)
C4 0.0168 (6) 0.0190 (7) 0.0199 (7) 0.0011 (5) 0.0018 (5) 0.0012 (6)
C18 0.0279 (8) 0.0275 (8) 0.0170 (7) −0.0023 (6) 0.0019 (6) −0.0044 (6)
C3 0.0144 (6) 0.0146 (6) 0.0154 (6) −0.0001 (5) −0.0016 (5) 0.0009 (5)
C8 0.0219 (7) 0.0187 (7) 0.0185 (7) −0.0024 (5) 0.0022 (5) 0.0010 (5)
C16 0.0238 (7) 0.0224 (7) 0.0178 (7) 0.0031 (6) −0.0026 (6) −0.0019 (6)
C10 0.0154 (6) 0.0212 (7) 0.0250 (7) 0.0004 (5) 0.0022 (5) 0.0044 (6)
C7 0.0322 (8) 0.0196 (7) 0.0222 (8) −0.0048 (6) −0.0006 (6) 0.0060 (6)
C19 0.0246 (7) 0.0207 (7) 0.0201 (7) 0.0025 (6) 0.0004 (6) −0.0046 (6)
C14 0.0161 (6) 0.0217 (7) 0.0247 (7) 0.0002 (5) 0.0014 (5) 0.0038 (6)
C9 0.0138 (6) 0.0177 (7) 0.0185 (7) −0.0020 (5) 0.0025 (5) −0.0004 (5)
C13 0.0147 (6) 0.0283 (8) 0.0295 (8) −0.0003 (6) 0.0007 (6) 0.0013 (6)
C20 0.0251 (7) 0.0184 (7) 0.0165 (7) 0.0033 (6) 0.0014 (5) −0.0010 (5)
C17 0.0191 (7) 0.0275 (8) 0.0168 (7) −0.0026 (6) −0.0020 (5) −0.0011 (6)
C6 0.0302 (8) 0.0152 (7) 0.0285 (8) 0.0014 (6) −0.0051 (6) 0.0020 (6)
C12 0.0166 (7) 0.0297 (9) 0.0390 (9) −0.0052 (6) 0.0073 (6) 0.0039 (7)
C1 0.0174 (9) 0.0200 (11) 0.0217 (10) 0 −0.0004 (7) 0
N2A 0.0365 (16) 0.0417 (17) 0.0367 (17) −0.0067 (12) 0.0033 (12) −0.0085 (13)
C21A 0.027 (3) 0.040 (3) 0.037 (4) −0.005 (2) 0.007 (2) −0.007 (2)
C22A 0.0247 (14) 0.0420 (19) 0.0323 (16) −0.0032 (13) 0.0020 (11) −0.0101 (14)
N2B 0.063 (3) 0.066 (4) 0.052 (3) −0.027 (3) −0.002 (3) −0.014 (3)
C21B 0.073 (8) 0.047 (4) 0.055 (8) −0.014 (5) −0.021 (5) 0.009 (5)
C22B 0.056 (4) 0.049 (3) 0.046 (3) −0.023 (3) −0.017 (3) 0.000 (3)

Geometric parameters (Å, °)

Rh1—N1 1.9978 (17) C16—C17 1.514 (2)
Rh1—Cl2 2.3297 (5) C16—H16A 0.99
Rh1—Cl1 2.3486 (3) C16—H16B 0.99
Rh1—Cl1i 2.3486 (3) C10—C9 1.399 (2)
Rh1—P1 2.4013 (3) C10—H10 0.95
Rh1—P1i 2.4013 (3) C7—C6 1.384 (2)
P1—C3 1.8257 (14) C7—H7 0.95
P1—C9 1.8304 (14) C19—C20 1.518 (2)
P1—C15 1.8529 (14) C19—H19A 0.99
N1—C1 1.112 (3) C19—H19B 0.99
C15—C20 1.520 (2) C14—C13 1.390 (2)
C15—C16 1.5240 (18) C14—C9 1.4049 (19)
C15—H15 1 C14—H14 0.95
C11—C12 1.387 (2) C13—C12 1.392 (2)
C11—C10 1.402 (2) C13—H13 0.95
C11—H11 0.95 C20—H20A 0.99
C2—C1 1.457 (3) C20—H20B 0.99
C2—H2A 0.98 C17—H17A 0.99
C2—H2B 0.98 C17—H17B 0.99
C2—H2C 0.98 C6—H6 0.95
C5—C6 1.381 (2) C12—H12 0.95
C5—C4 1.390 (2) N2A—C22A 1.151 (5)
C5—H5 0.95 C21A—C22A 1.4501 (10)
C4—C3 1.392 (2) C21A—H21A 0.98
C4—H4 0.95 C21A—H21B 0.98
C18—C17 1.508 (2) C21A—H21C 0.98
C18—C19 1.511 (2) N2B—C22B 1.119 (9)
C18—H18A 0.99 C21B—C22B 1.4498 (10)
C18—H18B 0.99 C21B—H21D 0.98
C3—C8 1.395 (2) C21B—H21E 0.98
C8—C7 1.394 (2) C21B—H21F 0.98
C8—H8 0.95
N1—Rh1—Cl2 180 C17—C16—C15 111.33 (12)
N1—Rh1—Cl1 88.093 (9) C17—C16—H16A 109.4
Cl2—Rh1—Cl1 91.907 (9) C15—C16—H16A 109.4
N1—Rh1—Cl1i 88.093 (9) C17—C16—H16B 109.4
Cl2—Rh1—Cl1i 91.907 (9) C15—C16—H16B 109.4
Cl1—Rh1—Cl1i 176.185 (18) H16A—C16—H16B 108
N1—Rh1—P1 88.231 (9) C9—C10—C11 119.86 (13)
Cl2—Rh1—P1 91.769 (9) C9—C10—H10 120.1
Cl1—Rh1—P1 89.879 (12) C11—C10—H10 120.1
Cl1i—Rh1—P1 90.003 (12) C6—C7—C8 120.40 (15)
N1—Rh1—P1i 88.231 (9) C6—C7—H7 119.8
Cl2—Rh1—P1i 91.769 (9) C8—C7—H7 119.8
Cl1—Rh1—P1i 90.003 (12) C18—C19—C20 113.09 (13)
Cl1i—Rh1—P1i 89.879 (12) C18—C19—H19A 109
P1—Rh1—P1i 176.463 (17) C20—C19—H19A 109
C3—P1—C9 103.78 (6) C18—C19—H19B 109
C3—P1—C15 103.88 (6) C20—C19—H19B 109
C9—P1—C15 103.24 (6) H19A—C19—H19B 107.8
C3—P1—Rh1 108.72 (4) C13—C14—C9 120.50 (14)
C9—P1—Rh1 118.33 (5) C13—C14—H14 119.8
C15—P1—Rh1 117.21 (4) C9—C14—H14 119.8
C1—N1—Rh1 180 C10—C9—C14 119.15 (13)
C20—C15—C16 111.22 (12) C10—C9—P1 120.32 (10)
C20—C15—P1 112.36 (10) C14—C9—P1 119.84 (11)
C16—C15—P1 113.99 (10) C14—C13—C12 119.89 (14)
C20—C15—H15 106.2 C14—C13—H13 120.1
C16—C15—H15 106.2 C12—C13—H13 120.1
P1—C15—H15 106.2 C19—C20—C15 111.96 (12)
C12—C11—C10 120.26 (14) C19—C20—H20A 109.2
C12—C11—H11 119.9 C15—C20—H20A 109.2
C10—C11—H11 119.9 C19—C20—H20B 109.2
C1—C2—H2A 109.5 C15—C20—H20B 109.2
C1—C2—H2B 109.5 H20A—C20—H20B 107.9
H2A—C2—H2B 109.5 C18—C17—C16 111.65 (13)
C1—C2—H2C 109.5 C18—C17—H17A 109.3
H2A—C2—H2C 109.5 C16—C17—H17A 109.3
H2B—C2—H2C 109.5 C18—C17—H17B 109.3
C6—C5—C4 120.38 (15) C16—C17—H17B 109.3
C6—C5—H5 119.8 H17A—C17—H17B 108
C4—C5—H5 119.8 C5—C6—C7 119.61 (14)
C5—C4—C3 120.53 (14) C5—C6—H6 120.2
C5—C4—H4 119.7 C7—C6—H6 120.2
C3—C4—H4 119.7 C11—C12—C13 120.15 (14)
C17—C18—C19 110.91 (12) C11—C12—H12 119.9
C17—C18—H18A 109.5 C13—C12—H12 119.9
C19—C18—H18A 109.5 N1—C1—C2 180
C17—C18—H18B 109.5 N2A—C22A—C21A 179.5 (5)
C19—C18—H18B 109.5 C22B—C21B—H21D 109.5
H18A—C18—H18B 108 C22B—C21B—H21E 109.5
C4—C3—C8 118.80 (13) H21D—C21B—H21E 109.5
C4—C3—P1 120.07 (11) C22B—C21B—H21F 109.5
C8—C3—P1 121.00 (11) H21D—C21B—H21F 109.5
C7—C8—C3 120.21 (14) H21E—C21B—H21F 109.5
C7—C8—H8 119.9 N2B—C22B—C21B 179.9 (11)
C3—C8—H8 119.9

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···Cl2 0.95 2.59 3.4452 (14) 150.
C20—H20B···Cl2 0.99 2.72 3.4797 (14) 134.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2783).

References

  1. Archer, C. M., Dilworth, J. R., Thompson, R. M., McPartlin, M., Povey, D. C. & Kelly, J. D. (1993). J. Chem. Soc. Dalton Trans. pp. 461–466.
  2. Aslanov, L., Mason, R., Wheeler, A. G. & Whimp, P. O. (1970). J. Chem. Soc. Chem. Commun. pp. 30–31.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Brink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). J. Chem. Soc. Dalton Trans. 39, 5572—5578. [DOI] [PubMed]
  5. Bruker (2008). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Clegg, W., Scott, A. J., Norman, N. C., Robins, E. G. & Whittell, G. R. (2002). Acta Cryst. E58, m410–m411.
  7. Drew, M. G. B., Tisley, D. G. & Walton, R. A. (1970). J. Chem. Soc. Chem. Commun. pp. 600–601.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Marko, L. & Heil, B. (1974). Catal. Rev. 8, 269–293.
  10. Nagy-Magos, Z., Vastag, S., Heil, B. & Marko, L. (1978). Transition Met. Chem. 3, 123–126.
  11. Oro, L. A., Manrique, A. & Royo, M. (1978). Transition Met. Chem. 3, 383–384.
  12. Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811047477/is2783sup1.cif

e-67-m1785-sup1.cif (28.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047477/is2783Isup2.hkl

e-67-m1785-Isup2.hkl (241.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES