Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):m1790. doi: 10.1107/S1600536811048574

Dicarbon­yl(pyrazine-1,3-dithiol­ato-κ2 S,S′)bis­(trimethyl­phosphane-κP)iron(II)

Shang Gao a,*, Qian Duan a, Chun-ai An a, Da-yong Jiang a
PMCID: PMC3238701  PMID: 22199578

Abstract

The title compound, [Fe(C4H2N2S2)(C3H9P)2(CO)2], was obtained as a mononuclear by-product during the treatment of [Fe2(μ-S2C4N2H2)(CO)6] in excess trimethyl­phosphane. The Fe atom is six-coordinated by two thiol­ate S atoms, two phosphane P atoms and two carbonyl C atoms in a distorted octa­hedral geometry. The average Fe—C(O) distance (1.771 Å) is relatively shorter than that of its parent hexa­carbonyl­diiron compound, and differs by 0.511 Å from the average Fe—P(Me)3 distance. The five-membered FeC2S2 chelate ring plane is close to being perpendicular to the P/Fe/P plane [86.5 (2)°].

Related literature

For general background to iron sulfides, see: Cody et al. (2000); Georgakaki et al. (2003); Capon et al. (2005); Song (2005); Li et al. (2005); Liu & Xiao (2011). For related structures and the synthesis, see: Durgaprasad et al. (2011).graphic file with name e-67-m1790-scheme1.jpg

Experimental

Crystal data

  • [Fe(C4H2N2S2)(C3H9P)2(CO)2]

  • M r = 406.21

  • Orthorhombic, Inline graphic

  • a = 12.2078 (10) Å

  • b = 11.951 (1) Å

  • c = 25.326 (2) Å

  • V = 3694.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 273 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.711, T max = 0.793

  • 18679 measured reflections

  • 3628 independent reflections

  • 3166 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.073

  • S = 1.09

  • 3628 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048574/kp2368sup1.cif

e-67-m1790-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048574/kp2368Isup2.hkl

e-67-m1790-Isup2.hkl (178KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Fe1—C8 1.761 (2)
Fe1—C7 1.780 (2)
Fe1—P1 2.2793 (6)
Fe1—P2 2.2840 (6)
Fe1—S2 2.3058 (6)
Fe1—S1 2.3170 (6)

Acknowledgments

The authors thank the Scientific and Technological Development Project of Jilin Province (No. 201101103) and the National Natural Science Foundation of China (No. 61106050) for financial support.

supplementary crystallographic information

Comment

Recently iron sulfides have been proposed as being central to the emergence of life due to their structural resemblance to the active site of hydrogenases (Cody et al., 2000, Georgakaki et al., 2003, Capon et al., 2005). Various dinuclear complexes featured [Fe2(µ-SR)2(CO)6-γLγ] (L = CO, PR3et al., γ = 1 or 2) have been investigated as the structural and functional models for the active site of [FeFe]-hydrogenases (Song, 2005, Li et al., 2005, Liu & Xiao, 2011). [Fe2(µ-S2C4N2H2)(CO)6] (Durgaprasad et al., 2011) was prepared for the purpose to lower the reduction potentials of the iron sulfides. When we investigated the CO displacement of above complex by PMe3, a mononuclear byproduct was obtained accompanied with PMe3-disubstituted diiron compounds. Herein, we report this crystal structure.

In the title compound the central Fe atom is six-coordinated by the two thiolate-sulfur atoms, two phosphane-phosphorus atoms, and two carbonyl-carbon atoms in a distorted octahedral geometry (Fig. 1 and Table 1). The average Fe—C(O) distance (1.77 Å) is relatively shorter than that of its parent hexacarbonyl diiron compound [Fe2(µ-S2C4N2H2)(CO)6] (Durgaprasad et al., 2011), and differs by 0.51 Å from the average Fe—P(Me)3 distance, consistent with the better donating role of the tertiary phosphane ligands vs. the carbonyl groups. The two S—Fe bonds are nearly perpendicular, and S1—Fe1—S2 angle is 89.198 (19) °. The P1—Fe1—P2 angle is quasilinear [177.45 (2) °] and the deviation of the iron atom from the calculated plane of the –SC4N2H2S– bridge is 0.126 Å. The angle between the calculated rigid dithiolate bridge and the P1Fe1P2 plane deviates from 90° by 3.2° for the title compound, resulting in the asymmetric molecular structure.

Experimental

Commercially available materials, Me3NO and trimethylphosphane were reagent grade and used as received. The starting material [Fe2(µ-S2C4N2H2)(CO)6] was prepared according to the literature procedure (Durgaprasad et al., 2011). [Fe2(µ-S2C4N2H2)(CO)6] (0.42 g, 1.0 mmol) and degassed CH3CN (20 ml) was stirred in an argon-filled Schlenk flask until the salvation was completed. Me3NO (0.24 g, 2.2 mmol) was added to the above solution in one portion. The mixture was changed to dark red after 10 min. Then the trimethylphosphane (0.15 g, 2.0 mmol) was added dropwise. The solvent was allowed to evaporate on a rotary evaporator after 20 min. The crude product was purified by column chromatography on Al2O3, using CH2Cl2/hexane as eluent, yielded two bands. The coral band was collected and the crystals of the title compound suitable for X-ray study were obtained by the recrystallization in the CH2Cl2/pentane solution (yield 0.12 g, 30%).

Refinement

The H atoms attached to C were placed in geometrically calculated positions (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Crystal data

[Fe(C4H2N2S2)(C3H9P)2(CO)2] F(000) = 1680
Mr = 406.21 Dx = 1.460 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 9947 reflections
a = 12.2078 (10) Å θ = 2.3–27.5°
b = 11.951 (1) Å µ = 1.22 mm1
c = 25.326 (2) Å T = 273 K
V = 3694.9 (5) Å3 Block, orange
Z = 8 0.30 × 0.25 × 0.20 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 3628 independent reflections
Radiation source: fine-focus sealed tube 3166 reflections with I > 2σ(I)
graphite Rint = 0.025
phi and ω scans θmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −15→14
Tmin = 0.711, Tmax = 0.793 k = −14→8
18679 measured reflections l = −31→31

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0363P)2 + 1.1092P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073 (Δ/σ)max = 0.001
S = 1.09 Δρmax = 0.30 e Å3
3628 reflections Δρmin = −0.56 e Å3
190 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.374999 (19) 0.76447 (2) 0.389085 (10) 0.03519 (9)
S1 0.38945 (4) 0.57419 (4) 0.37296 (2) 0.04420 (13)
P2 0.39648 (4) 0.71975 (5) 0.47615 (2) 0.04635 (14)
S2 0.56151 (4) 0.78108 (4) 0.37704 (2) 0.05021 (14)
P1 0.35858 (4) 0.80265 (5) 0.30127 (2) 0.04756 (14)
O1 0.13778 (12) 0.74340 (14) 0.39685 (7) 0.0643 (4)
C7 0.23021 (16) 0.75098 (15) 0.39447 (7) 0.0430 (4)
C9 0.60519 (15) 0.64370 (18) 0.36700 (7) 0.0446 (4)
O2 0.38260 (15) 1.00089 (14) 0.41494 (8) 0.0817 (5)
C10 0.53051 (15) 0.55283 (16) 0.36640 (6) 0.0407 (4)
N1 0.56545 (15) 0.44788 (15) 0.36180 (6) 0.0519 (4)
C8 0.37676 (16) 0.90822 (17) 0.40424 (9) 0.0502 (5)
C12 0.74509 (18) 0.5207 (2) 0.35593 (9) 0.0667 (7)
H12A 0.8193 0.5059 0.3516 0.080*
C11 0.6742 (2) 0.4338 (2) 0.35706 (7) 0.0589 (6)
H11A 0.7018 0.3615 0.3545 0.071*
C6 0.52289 (18) 0.6505 (2) 0.49459 (9) 0.0626 (6)
H6A 0.5227 0.6361 0.5319 0.094*
H6B 0.5839 0.6978 0.4859 0.094*
H6C 0.5291 0.5811 0.4757 0.094*
N2 0.71250 (14) 0.62810 (18) 0.36084 (7) 0.0612 (5)
C2 0.2200 (2) 0.8015 (3) 0.27602 (9) 0.0830 (9)
H2B 0.2208 0.8183 0.2390 0.125*
H2C 0.1772 0.8567 0.2943 0.125*
H2D 0.1883 0.7289 0.2814 0.125*
C3 0.4080 (3) 0.9401 (3) 0.28305 (11) 0.0997 (11)
H3A 0.3988 0.9508 0.2457 0.150*
H3B 0.4842 0.9463 0.2919 0.150*
H3C 0.3671 0.9961 0.3018 0.150*
C4 0.29368 (19) 0.6241 (2) 0.50169 (9) 0.0728 (7)
H4A 0.3080 0.6093 0.5383 0.109*
H4B 0.2963 0.5552 0.4822 0.109*
H4C 0.2224 0.6571 0.4981 0.109*
C1 0.4288 (2) 0.7111 (3) 0.25558 (10) 0.0827 (8)
H1B 0.4155 0.7358 0.2201 0.124*
H1C 0.4021 0.6361 0.2598 0.124*
H1D 0.5060 0.7129 0.2626 0.124*
C5 0.3912 (3) 0.8351 (3) 0.52247 (11) 0.0983 (11)
H5A 0.4011 0.8073 0.5577 0.147*
H5B 0.3213 0.8716 0.5199 0.147*
H5C 0.4483 0.8876 0.5144 0.147*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.03369 (15) 0.03112 (15) 0.04075 (16) 0.00071 (9) −0.00012 (10) 0.00066 (10)
S1 0.0391 (2) 0.0349 (2) 0.0586 (3) −0.00252 (18) 0.00205 (19) −0.0062 (2)
P2 0.0529 (3) 0.0452 (3) 0.0409 (3) 0.0026 (2) −0.0055 (2) −0.0013 (2)
S2 0.0355 (2) 0.0422 (3) 0.0729 (3) −0.0058 (2) 0.0009 (2) 0.0035 (2)
P1 0.0472 (3) 0.0532 (3) 0.0423 (3) −0.0029 (2) −0.0002 (2) 0.0065 (2)
O1 0.0383 (8) 0.0691 (11) 0.0856 (12) 0.0028 (7) 0.0084 (7) 0.0101 (9)
C7 0.0424 (11) 0.0387 (10) 0.0479 (10) 0.0035 (8) 0.0032 (8) 0.0037 (8)
C9 0.0377 (9) 0.0518 (11) 0.0442 (10) 0.0056 (8) 0.0000 (7) 0.0026 (9)
O2 0.0976 (14) 0.0380 (9) 0.1097 (15) 0.0031 (8) −0.0022 (11) −0.0105 (9)
C10 0.0428 (10) 0.0435 (10) 0.0358 (9) 0.0075 (8) 0.0015 (7) −0.0015 (8)
N1 0.0616 (11) 0.0483 (10) 0.0458 (9) 0.0136 (8) 0.0018 (7) −0.0040 (7)
C8 0.0510 (11) 0.0384 (11) 0.0613 (12) 0.0032 (8) −0.0005 (9) 0.0009 (9)
C12 0.0460 (12) 0.0879 (19) 0.0661 (14) 0.0269 (13) 0.0043 (10) 0.0017 (13)
C11 0.0665 (14) 0.0675 (15) 0.0428 (10) 0.0308 (13) 0.0019 (9) −0.0026 (10)
C6 0.0600 (13) 0.0693 (15) 0.0584 (12) 0.0014 (11) −0.0192 (10) 0.0096 (11)
N2 0.0382 (9) 0.0730 (13) 0.0723 (12) 0.0083 (9) 0.0024 (8) 0.0048 (10)
C2 0.0597 (14) 0.135 (3) 0.0548 (13) 0.0022 (16) −0.0134 (11) 0.0142 (15)
C3 0.152 (3) 0.081 (2) 0.0660 (16) −0.043 (2) −0.0189 (17) 0.0327 (15)
C4 0.0638 (14) 0.099 (2) 0.0552 (12) −0.0068 (14) 0.0009 (11) 0.0253 (13)
C1 0.0862 (18) 0.112 (2) 0.0493 (13) 0.0191 (17) 0.0164 (12) −0.0033 (14)
C5 0.160 (3) 0.076 (2) 0.0591 (15) 0.0244 (19) −0.0146 (17) −0.0217 (14)

Geometric parameters (Å, °)

Fe1—C8 1.761 (2) C12—C11 1.352 (4)
Fe1—C7 1.780 (2) C12—H12A 0.9300
Fe1—P1 2.2793 (6) C11—H11A 0.9300
Fe1—P2 2.2840 (6) C6—H6A 0.9600
Fe1—S2 2.3058 (6) C6—H6B 0.9600
Fe1—S1 2.3170 (6) C6—H6C 0.9600
S1—C10 1.7488 (18) C2—H2B 0.9600
P2—C5 1.811 (3) C2—H2C 0.9600
P2—C6 1.812 (2) C2—H2D 0.9600
P2—C4 1.817 (2) C3—H3A 0.9600
S2—C9 1.745 (2) C3—H3B 0.9600
P1—C1 1.808 (2) C3—H3C 0.9600
P1—C2 1.809 (2) C4—H4A 0.9600
P1—C3 1.810 (3) C4—H4B 0.9600
O1—C7 1.134 (2) C4—H4C 0.9600
C9—N2 1.332 (2) C1—H1B 0.9600
C9—C10 1.418 (3) C1—H1C 0.9600
O2—C8 1.142 (3) C1—H1D 0.9600
C10—N1 1.330 (3) C5—H5A 0.9600
N1—C11 1.343 (3) C5—H5B 0.9600
C12—N2 1.349 (3) C5—H5C 0.9600
C8—Fe1—C7 94.81 (9) N1—C11—C12 122.6 (2)
C8—Fe1—P1 91.05 (7) N1—C11—H11A 118.7
C7—Fe1—P1 90.32 (6) C12—C11—H11A 118.7
C8—Fe1—P2 90.95 (7) P2—C6—H6A 109.5
C7—Fe1—P2 91.08 (6) P2—C6—H6B 109.5
P1—Fe1—P2 177.45 (2) H6A—C6—H6B 109.5
C8—Fe1—S2 86.14 (6) P2—C6—H6C 109.5
C7—Fe1—S2 176.78 (6) H6A—C6—H6C 109.5
P1—Fe1—S2 86.58 (2) H6B—C6—H6C 109.5
P2—Fe1—S2 91.98 (2) C9—N2—C12 115.7 (2)
C8—Fe1—S1 174.39 (7) P1—C2—H2B 109.5
C7—Fe1—S1 90.01 (6) P1—C2—H2C 109.5
P1—Fe1—S1 91.79 (2) H2B—C2—H2C 109.5
P2—Fe1—S1 86.09 (2) P1—C2—H2D 109.5
S2—Fe1—S1 89.198 (19) H2B—C2—H2D 109.5
C10—S1—Fe1 103.59 (7) H2C—C2—H2D 109.5
C5—P2—C6 102.18 (13) P1—C3—H3A 109.5
C5—P2—C4 102.93 (15) P1—C3—H3B 109.5
C6—P2—C4 102.08 (12) H3A—C3—H3B 109.5
C5—P2—Fe1 116.29 (10) P1—C3—H3C 109.5
C6—P2—Fe1 116.96 (8) H3A—C3—H3C 109.5
C4—P2—Fe1 114.31 (8) H3B—C3—H3C 109.5
C9—S2—Fe1 103.89 (7) P2—C4—H4A 109.5
C1—P1—C2 102.28 (13) P2—C4—H4B 109.5
C1—P1—C3 103.18 (15) H4A—C4—H4B 109.5
C2—P1—C3 103.19 (14) P2—C4—H4C 109.5
C1—P1—Fe1 117.49 (9) H4A—C4—H4C 109.5
C2—P1—Fe1 115.19 (8) H4B—C4—H4C 109.5
C3—P1—Fe1 113.66 (9) P1—C1—H1B 109.5
O1—C7—Fe1 178.51 (19) P1—C1—H1C 109.5
N2—C9—C10 121.58 (19) H1B—C1—H1C 109.5
N2—C9—S2 116.69 (17) P1—C1—H1D 109.5
C10—C9—S2 121.72 (14) H1B—C1—H1D 109.5
N1—C10—C9 121.13 (17) H1C—C1—H1D 109.5
N1—C10—S1 117.51 (15) P2—C5—H5A 109.5
C9—C10—S1 121.35 (14) P2—C5—H5B 109.5
C10—N1—C11 116.28 (19) H5A—C5—H5B 109.5
O2—C8—Fe1 176.9 (2) P2—C5—H5C 109.5
N2—C12—C11 122.7 (2) H5A—C5—H5C 109.5
N2—C12—H12A 118.7 H5B—C5—H5C 109.5
C11—C12—H12A 118.7
C8—Fe1—S1—C10 −29.4 (8) S2—Fe1—P1—C2 178.35 (12)
C7—Fe1—S1—C10 −178.74 (8) S1—Fe1—P1—C2 89.26 (12)
P1—Fe1—S1—C10 90.93 (6) C8—Fe1—P1—C3 23.20 (15)
P2—Fe1—S1—C10 −87.66 (6) C7—Fe1—P1—C3 118.01 (15)
S2—Fe1—S1—C10 4.37 (6) P2—Fe1—P1—C3 −118.6 (5)
C8—Fe1—P2—C5 6.40 (15) S2—Fe1—P1—C3 −62.87 (13)
C7—Fe1—P2—C5 −88.43 (14) S1—Fe1—P1—C3 −151.96 (13)
P1—Fe1—P2—C5 148.2 (5) C8—Fe1—C7—O1 78 (8)
S2—Fe1—P2—C5 92.57 (13) P1—Fe1—C7—O1 −13 (8)
S1—Fe1—P2—C5 −178.37 (13) P2—Fe1—C7—O1 169 (8)
C8—Fe1—P2—C6 −114.62 (11) S2—Fe1—C7—O1 −29 (9)
C7—Fe1—P2—C6 150.55 (11) S1—Fe1—C7—O1 −105 (8)
P1—Fe1—P2—C6 27.1 (5) Fe1—S2—C9—N2 −177.54 (14)
S2—Fe1—P2—C6 −28.45 (9) Fe1—S2—C9—C10 1.34 (16)
S1—Fe1—P2—C6 60.61 (9) N2—C9—C10—N1 2.8 (3)
C8—Fe1—P2—C4 126.20 (12) S2—C9—C10—N1 −176.04 (14)
C7—Fe1—P2—C4 31.37 (12) N2—C9—C10—S1 −178.48 (14)
P1—Fe1—P2—C4 −92.0 (5) S2—C9—C10—S1 2.7 (2)
S2—Fe1—P2—C4 −147.63 (10) Fe1—S1—C10—N1 173.69 (13)
S1—Fe1—P2—C4 −58.57 (10) Fe1—S1—C10—C9 −5.10 (16)
C8—Fe1—S2—C9 173.53 (10) C9—C10—N1—C11 −0.9 (3)
C7—Fe1—S2—C9 −79.2 (11) S1—C10—N1—C11 −179.71 (13)
P1—Fe1—S2—C9 −95.18 (7) C7—Fe1—C8—O2 153 (4)
P2—Fe1—S2—C9 82.72 (7) P1—Fe1—C8—O2 −117 (4)
S1—Fe1—S2—C9 −3.34 (7) P2—Fe1—C8—O2 62 (4)
C8—Fe1—P1—C1 143.77 (13) S2—Fe1—C8—O2 −30 (4)
C7—Fe1—P1—C1 −121.41 (13) S1—Fe1—C8—O2 4(5)
P2—Fe1—P1—C1 2.0 (5) C10—N1—C11—C12 −1.2 (3)
S2—Fe1—P1—C1 57.70 (12) N2—C12—C11—N1 1.8 (3)
S1—Fe1—P1—C1 −31.39 (12) C10—C9—N2—C12 −2.2 (3)
C8—Fe1—P1—C2 −95.58 (14) S2—C9—N2—C12 176.63 (16)
C7—Fe1—P1—C2 −0.76 (13) C11—C12—N2—C9 0.1 (3)
P2—Fe1—P1—C2 122.7 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2368).

References

  1. Bruker (1997). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Capon, J. F., Gloaguen, F., Schollhammer, P. & Talarmin, J. (2005). Coord. Chem. Rev. 249, 1664–1676.
  5. Cody, G. D., Boctor, N. Z., Filley, T. R., Hazen, R. M., Scott, J. H., Sharma, A. & Yoder, H. S. Jr (2000). Science, 289, 1337–1340. [DOI] [PubMed]
  6. Durgaprasad, G., Bolligarla, R. & Das, S. K. (2011). J. Organomet. Chem. 696, 3097–3105.
  7. Georgakaki, I. P., Thomson, L. M., Lyon, E. J., Hall, M. B. & Darensbourg, M. Y. (2003). Coord. Chem. Rev. 238, 255–266.
  8. Li, P., Wang, M., He, C. J., Li, G. H., Liu, X. Y., Chen, C. N., Åkermark, B. & Sun, L. C. (2005). Eur. J. Inorg. Chem. pp. 2506–2513.
  9. Liu, X. F. & Xiao, X. W. (2011). J. Organomet. Chem. 696, 2767–2771.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Song, L. C. (2005). Acc. Chem. Res. 38, 21–28. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048574/kp2368sup1.cif

e-67-m1790-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048574/kp2368Isup2.hkl

e-67-m1790-Isup2.hkl (178KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES