Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):m1821. doi: 10.1107/S1600536811049439

Bis(1-methyl-1H-imidazole-κN 3)bis­[2-(naphthalen-1-yl)acetato-κO]copper(II) monohydrate

Fu-Jun Yin a,*, Li-Jun Han b, Shu-Ping Yang c, Xing-You Xu d, Yu Gu e
PMCID: PMC3238723  PMID: 22199600

Abstract

In the crystal structure of the title compound, [Cu(C12H9O2)2(C4H6N2)2]·H2O, the CuII atom is coordinated by two 2-(naphthalen-1-yl)acetate anions and two 1-methyl­imidazole ligands, giving monomeric complexes with a square-planar coordination environment. Two complex mol­ecules and two water mol­ecules form a centrosymmetric ring system via O—H⋯O hydrogen bonds.

Related literature

For the pharmacological potential of metal complexes with imidazole, see: Boiani & Gonzales (2005); Parshina & Trofimov (2011). For the coordination chemistry of 1-naphthyl­acetate ligands, see: Yin et al. (2010); Chen et al. (2004); Yang et al. (2008); Tang et al. (2006); Ji et al. (2011).graphic file with name e-67-m1821-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H9O2)2(C4H6N2)2]·H2O

  • M r = 616.16

  • Triclinic, Inline graphic

  • a = 8.7213 (10) Å

  • b = 12.8689 (14) Å

  • c = 13.5787 (15) Å

  • α = 107.223 (1)°

  • β = 90.295 (2)°

  • γ = 90.931 (1)°

  • V = 1455.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.843, T max = 0.843

  • 11175 measured reflections

  • 5094 independent reflections

  • 3534 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.102

  • S = 1.03

  • 5094 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker 2007); cell refinement: SAINT (Bruker 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049439/im2340sup1.cif

e-67-m1821-sup1.cif (35KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049439/im2340Isup2.hkl

e-67-m1821-Isup2.hkl (244.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.85 1.97 2.789 (3) 163
O1W—H1WB⋯O3i 0.85 2.07 2.904 (3) 167

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Self-assembly of supramolecular architectures based on naphthalene-1-yl-acetate ligands has attracted much attention during recent decades (Yin et al., 2010; Chen et al., 2004; Yang et al., 2008; Tang et al.,2006; Ji et al., 2011). Recent studies reveal that metal complexes with substituted imidazole and carboxylate ligands are interesting for medicinal chemists who explore their various pharmacological potentials (Boiani & Gonzales, 2005; Parshina & Trofimov, 2011). The crystal structure of the title compound was determined as part of an ongoing study on the properties of copper complexes containing imidazole ligands.

In the crystal structure of the title compound [Cu(C12H9O2)2(C4H6N2)2]H2O, each copper cation is coordinated by two N atoms of different 1-methylimidazole ligands and by two carboxyl O atoms of distinct naphthalene-1-yl-acetate anions within a square planar coordination sphere (Fig. 1). The Cu—N and Cu—O bond lengths are 1.985 (3) and 1.974 (2) Å, respectively. The asymmetric unit consits of one CuII cation, two neutral imidazole ligands, two anionic carboxylate ligands and one lattic water in general positions. It is noteworthy that there exist strong hydrogen-bonding interactions (Table 1, Fig.2) involving the carboxy group oxygen atoms of 1-naphthylacetate ligands as well as water molecules. The molecules fomr centrosymmetric ring systems by O—H···O hydrogen bonds

Experimental

The title compound was synthesized by the reaction of Cu(NO3)2 × 3 H2O (72.3 mg, 0.3 mmol), naphthalene-1-yl-acetic acid (93 mg, 0.5 mmol), 1-methylimidazole (32.8 mg, 0.4 mmol) and NaOH (20 mg, 0.5 mmol) in 6 mL of a water-ethanol (2:1) mixture under solvothermal conditions. The mixture was homogenized and transferred into a sealed Teflon-lined solvothermal bomb (volume: 25 ml) and heated to 140°C for three days. After cooling green crystals of the title compound were obtained, which were washed with distilled water and absolute ethanol (yield: 38.7% based on Cu(NO3)2 × 3 H2O ).

Refinement

H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å and included in the final cycles of refinement using a riding model with Uiso(H) = 1.2Ueq(parent atom).Water H atoms were located in Fourier difference maps and refined isotropically.

Figures

Fig. 1.

Fig. 1.

Crystal structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Centrosymmetric ring system of the title compound including lattice water molecules. Hydrogen bonds are shown as dashed lines, and H atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

[Cu(C12H9O2)2(C4H6N2)2]·H2O Z = 2
Mr = 616.16 F(000) = 642
Triclinic, P1 Dx = 1.406 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.7213 (10) Å Cell parameters from 1644 reflections
b = 12.8689 (14) Å θ = 2.3–19.2°
c = 13.5787 (15) Å µ = 0.80 mm1
α = 107.223 (1)° T = 298 K
β = 90.295 (2)° Prism, green
γ = 90.931 (1)° 0.20 × 0.20 × 0.20 mm
V = 1455.4 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 5094 independent reflections
Radiation source: fine-focus sealed tube 3534 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.843, Tmax = 0.843 k = −15→15
11175 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.1784P] where P = (Fo2 + 2Fc2)/3
5094 reflections (Δ/σ)max = 0.001
381 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7153 (4) 0.7870 (3) 0.6104 (3) 0.0395 (8)
C2 0.7391 (4) 0.6657 (2) 0.5639 (3) 0.0490 (9)
H2A 0.6505 0.6333 0.5219 0.059*
H2B 0.7486 0.6320 0.6187 0.059*
C3 0.8829 (4) 0.6438 (2) 0.4976 (3) 0.0444 (8)
C4 0.8703 (4) 0.6226 (3) 0.3940 (3) 0.0500 (9)
H4 0.7735 0.6199 0.3643 0.060*
C5 0.9998 (5) 0.6045 (3) 0.3301 (3) 0.0630 (11)
H5 0.9880 0.5891 0.2590 0.076*
C6 1.1423 (5) 0.6098 (3) 0.3728 (3) 0.0587 (10)
H6 1.2279 0.5991 0.3307 0.070*
C7 1.1612 (4) 0.6314 (3) 0.4797 (3) 0.0470 (9)
C8 1.0292 (4) 0.6489 (2) 0.5452 (3) 0.0435 (8)
C9 1.0541 (4) 0.6709 (3) 0.6524 (3) 0.0479 (9)
H9 0.9703 0.6810 0.6960 0.058*
C10 1.1973 (5) 0.6777 (3) 0.6928 (3) 0.0639 (11)
H10 1.2109 0.6938 0.7637 0.077*
C11 1.3237 (5) 0.6609 (3) 0.6291 (4) 0.0746 (13)
H11 1.4216 0.6652 0.6577 0.090*
C12 1.3065 (4) 0.6384 (3) 0.5264 (4) 0.0653 (11)
H12 1.3932 0.6273 0.4852 0.078*
C13 0.7022 (4) 1.1979 (3) 0.8398 (3) 0.0435 (8)
C14 0.6624 (4) 1.3180 (2) 0.8668 (2) 0.0486 (9)
H14A 0.7555 1.3604 0.8673 0.058*
H14B 0.5946 1.3286 0.8139 0.058*
C15 0.5856 (4) 1.3596 (3) 0.9707 (3) 0.0461 (9)
C16 0.6705 (5) 1.4139 (3) 1.0546 (3) 0.0587 (10)
H16 0.7744 1.4269 1.0472 0.070*
C17 0.6043 (6) 1.4509 (3) 1.1527 (3) 0.0729 (13)
H17 0.6643 1.4883 1.2093 0.088*
C18 0.4542 (6) 1.4321 (3) 1.1650 (3) 0.0736 (13)
H18 0.4120 1.4561 1.2304 0.088*
C19 0.3595 (5) 1.3768 (3) 1.0802 (3) 0.0572 (10)
C20 0.4261 (4) 1.3412 (3) 0.9806 (3) 0.0448 (9)
C21 0.3277 (5) 1.2891 (3) 0.8967 (3) 0.0597 (10)
H21 0.3683 1.2649 0.8308 0.072*
C22 0.1773 (5) 1.2735 (4) 0.9093 (4) 0.0807 (13)
H22 0.1156 1.2400 0.8524 0.097*
C23 0.1130 (6) 1.3074 (4) 1.0074 (5) 0.0928 (16)
H23 0.0093 1.2948 1.0157 0.111*
C24 0.2010 (6) 1.3585 (4) 1.0903 (4) 0.0837 (15)
H24 0.1565 1.3820 1.1551 0.100*
C25 0.5448 (4) 0.8706 (3) 0.8592 (3) 0.0524 (9)
H25 0.6224 0.8212 0.8566 0.063*
C26 0.4117 (4) 0.8717 (3) 0.9070 (3) 0.0579 (10)
H26 0.3797 0.8238 0.9427 0.069*
C27 0.4195 (4) 1.0032 (3) 0.8372 (3) 0.0518 (9)
H27 0.3913 1.0633 0.8169 0.062*
C28 0.1776 (4) 0.9878 (4) 0.9308 (3) 0.0884 (15)
H28A 0.1519 1.0545 0.9172 0.133*
H28B 0.1746 0.9981 1.0037 0.133*
H28C 0.1050 0.9318 0.8964 0.133*
C29 0.9660 (4) 1.1131 (3) 0.6535 (3) 0.0530 (10)
H29 0.9081 1.1756 0.6656 0.064*
C30 1.1062 (4) 1.1006 (3) 0.6125 (3) 0.0574 (10)
H30 1.1621 1.1517 0.5906 0.069*
C31 1.0373 (4) 0.9532 (3) 0.6472 (3) 0.0486 (9)
H31 1.0398 0.8832 0.6536 0.058*
C32 1.2957 (4) 0.9490 (3) 0.5669 (3) 0.0702 (12)
H32A 1.2955 0.8747 0.5679 0.105*
H32B 1.3799 0.9881 0.6081 0.105*
H32C 1.3064 0.9513 0.4973 0.105*
Cu1 0.72561 (4) 0.98739 (3) 0.73588 (3) 0.03873 (15)
N1 0.5513 (3) 0.9531 (2) 0.8147 (2) 0.0434 (7)
N2 0.9208 (3) 1.0192 (2) 0.67509 (19) 0.0403 (7)
N3 0.3314 (3) 0.9560 (2) 0.8930 (2) 0.0527 (8)
N4 1.1514 (3) 0.9992 (2) 0.6089 (2) 0.0461 (7)
O1 0.6406 (3) 0.83829 (19) 0.56361 (17) 0.0543 (6)
O2 0.7793 (2) 0.83265 (16) 0.69796 (17) 0.0433 (6)
O3 0.6513 (2) 1.13568 (16) 0.75272 (17) 0.0444 (6)
O4 0.7809 (3) 1.16518 (18) 0.89921 (18) 0.0540 (6)
O1W 0.5269 (3) 0.7509 (2) 0.36319 (19) 0.0803 (9)
H1WA 0.5433 0.7839 0.4266 0.120*
H1WB 0.4770 0.7933 0.3378 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0288 (18) 0.0333 (19) 0.053 (2) 0.0010 (15) 0.0151 (17) 0.0078 (17)
C2 0.0364 (19) 0.0341 (19) 0.068 (2) 0.0010 (16) 0.0061 (17) 0.0025 (17)
C3 0.043 (2) 0.0273 (18) 0.057 (2) 0.0033 (15) 0.0049 (18) 0.0016 (16)
C4 0.050 (2) 0.0354 (19) 0.053 (2) 0.0078 (17) −0.0026 (18) −0.0050 (17)
C5 0.082 (3) 0.046 (2) 0.054 (2) 0.016 (2) 0.010 (2) 0.0012 (19)
C6 0.057 (3) 0.047 (2) 0.072 (3) 0.0129 (19) 0.023 (2) 0.016 (2)
C7 0.039 (2) 0.0324 (19) 0.072 (3) 0.0081 (16) 0.0143 (19) 0.0175 (18)
C8 0.040 (2) 0.0250 (17) 0.066 (3) 0.0041 (15) 0.0048 (18) 0.0145 (17)
C9 0.048 (2) 0.041 (2) 0.057 (2) 0.0063 (17) 0.0068 (18) 0.0174 (18)
C10 0.061 (3) 0.064 (3) 0.073 (3) 0.005 (2) −0.011 (2) 0.029 (2)
C11 0.045 (3) 0.081 (3) 0.109 (4) 0.003 (2) −0.009 (3) 0.046 (3)
C12 0.040 (2) 0.071 (3) 0.094 (3) 0.011 (2) 0.013 (2) 0.037 (3)
C13 0.049 (2) 0.038 (2) 0.045 (2) 0.0085 (17) 0.0225 (18) 0.0130 (18)
C14 0.060 (2) 0.0341 (19) 0.050 (2) 0.0078 (17) 0.0128 (18) 0.0092 (17)
C15 0.065 (3) 0.0293 (18) 0.044 (2) 0.0163 (18) 0.0044 (19) 0.0098 (17)
C16 0.069 (3) 0.039 (2) 0.063 (3) 0.0108 (19) −0.006 (2) 0.007 (2)
C17 0.110 (4) 0.048 (2) 0.051 (3) 0.023 (3) −0.017 (3) −0.001 (2)
C18 0.125 (4) 0.054 (3) 0.043 (3) 0.044 (3) 0.017 (3) 0.014 (2)
C19 0.077 (3) 0.047 (2) 0.052 (3) 0.029 (2) 0.019 (2) 0.020 (2)
C20 0.058 (2) 0.0325 (19) 0.044 (2) 0.0147 (17) 0.0094 (18) 0.0109 (16)
C21 0.062 (3) 0.049 (2) 0.065 (3) 0.009 (2) 0.000 (2) 0.010 (2)
C22 0.063 (3) 0.074 (3) 0.102 (4) 0.007 (3) −0.009 (3) 0.022 (3)
C23 0.061 (3) 0.092 (4) 0.135 (5) 0.022 (3) 0.020 (3) 0.047 (4)
C24 0.088 (4) 0.081 (3) 0.095 (4) 0.040 (3) 0.049 (3) 0.043 (3)
C25 0.060 (2) 0.048 (2) 0.055 (2) 0.0086 (19) 0.0147 (19) 0.0227 (19)
C26 0.071 (3) 0.055 (2) 0.052 (2) −0.001 (2) 0.015 (2) 0.022 (2)
C27 0.054 (2) 0.045 (2) 0.061 (2) 0.0096 (19) 0.0161 (19) 0.0212 (19)
C28 0.052 (3) 0.114 (4) 0.106 (4) 0.012 (3) 0.039 (3) 0.042 (3)
C29 0.061 (2) 0.035 (2) 0.066 (3) 0.0124 (18) 0.022 (2) 0.0186 (19)
C30 0.062 (3) 0.047 (2) 0.065 (3) −0.001 (2) 0.017 (2) 0.021 (2)
C31 0.050 (2) 0.038 (2) 0.059 (2) 0.0021 (18) 0.0131 (19) 0.0160 (18)
C32 0.047 (2) 0.068 (3) 0.097 (3) 0.014 (2) 0.023 (2) 0.025 (2)
Cu1 0.0421 (3) 0.0321 (2) 0.0417 (3) 0.00717 (17) 0.00974 (18) 0.00997 (18)
N1 0.0499 (18) 0.0345 (15) 0.0460 (17) 0.0054 (14) 0.0122 (14) 0.0116 (13)
N2 0.0433 (17) 0.0325 (15) 0.0437 (17) 0.0034 (13) 0.0083 (13) 0.0089 (13)
N3 0.0475 (18) 0.0539 (19) 0.0560 (19) 0.0007 (16) 0.0189 (15) 0.0150 (16)
N4 0.0430 (17) 0.0433 (17) 0.0508 (18) 0.0046 (14) 0.0133 (14) 0.0118 (14)
O1 0.0524 (15) 0.0514 (15) 0.0562 (16) 0.0112 (12) 0.0009 (12) 0.0111 (13)
O2 0.0456 (14) 0.0348 (13) 0.0479 (15) 0.0066 (11) 0.0114 (11) 0.0092 (11)
O3 0.0512 (14) 0.0351 (13) 0.0468 (15) 0.0091 (11) 0.0119 (11) 0.0113 (11)
O4 0.0604 (16) 0.0506 (15) 0.0530 (16) 0.0123 (13) 0.0076 (13) 0.0177 (13)
O1W 0.091 (2) 0.085 (2) 0.0606 (18) 0.0234 (17) −0.0078 (15) 0.0132 (15)

Geometric parameters (Å, °)

C1—O1 1.233 (4) C19—C20 1.423 (5)
C1—O2 1.280 (4) C20—C21 1.416 (5)
C1—C2 1.519 (4) C21—C22 1.343 (5)
C2—C3 1.528 (4) C21—H21 0.9300
C2—H2A 0.9700 C22—C23 1.396 (6)
C2—H2B 0.9700 C22—H22 0.9300
C3—C4 1.355 (4) C23—C24 1.351 (6)
C3—C8 1.419 (4) C23—H23 0.9300
C4—C5 1.408 (5) C24—H24 0.9300
C4—H4 0.9300 C25—C26 1.331 (4)
C5—C6 1.360 (5) C25—N1 1.369 (4)
C5—H5 0.9300 C25—H25 0.9300
C6—C7 1.403 (5) C26—N3 1.360 (4)
C6—H6 0.9300 C26—H26 0.9300
C7—C12 1.404 (5) C27—N1 1.319 (4)
C7—C8 1.438 (4) C27—N3 1.341 (4)
C8—C9 1.413 (4) C27—H27 0.9300
C9—C10 1.353 (4) C28—N3 1.460 (4)
C9—H9 0.9300 C28—H28A 0.9600
C10—C11 1.385 (5) C28—H28B 0.9600
C10—H10 0.9300 C28—H28C 0.9600
C11—C12 1.345 (5) C29—C30 1.338 (4)
C11—H11 0.9300 C29—N2 1.377 (4)
C12—H12 0.9300 C29—H29 0.9300
C13—O4 1.226 (4) C30—N4 1.356 (4)
C13—O3 1.288 (4) C30—H30 0.9300
C13—C14 1.525 (4) C31—N2 1.319 (4)
C14—C15 1.517 (4) C31—N4 1.334 (4)
C14—H14A 0.9700 C31—H31 0.9300
C14—H14B 0.9700 C32—N4 1.463 (4)
C15—C16 1.356 (5) C32—H32A 0.9600
C15—C20 1.421 (5) C32—H32B 0.9600
C16—C17 1.406 (5) C32—H32C 0.9600
C16—H16 0.9300 Cu1—O2 1.969 (2)
C17—C18 1.348 (6) Cu1—O3 1.974 (2)
C17—H17 0.9300 Cu1—N1 1.981 (3)
C18—C19 1.415 (5) Cu1—N2 1.985 (3)
C18—H18 0.9300 O1W—H1WA 0.8500
C19—C24 1.413 (6) O1W—H1WB 0.8501
O1—C1—O2 122.5 (3) C15—C20—C19 118.9 (3)
O1—C1—C2 120.6 (3) C22—C21—C20 122.0 (4)
O2—C1—C2 116.9 (3) C22—C21—H21 119.0
C1—C2—C3 111.2 (3) C20—C21—H21 119.0
C1—C2—H2A 109.4 C21—C22—C23 120.5 (5)
C3—C2—H2A 109.4 C21—C22—H22 119.8
C1—C2—H2B 109.4 C23—C22—H22 119.8
C3—C2—H2B 109.4 C24—C23—C22 120.3 (5)
H2A—C2—H2B 108.0 C24—C23—H23 119.9
C4—C3—C8 120.3 (3) C22—C23—H23 119.9
C4—C3—C2 119.8 (3) C23—C24—C19 121.0 (4)
C8—C3—C2 119.8 (3) C23—C24—H24 119.5
C3—C4—C5 121.9 (3) C19—C24—H24 119.5
C3—C4—H4 119.1 C26—C25—N1 110.2 (3)
C5—C4—H4 119.1 C26—C25—H25 125.0
C6—C5—C4 119.6 (4) N1—C25—H25 124.8
C6—C5—H5 120.2 C25—C26—N3 106.7 (3)
C4—C5—H5 120.2 C25—C26—H26 126.6
C5—C6—C7 120.7 (4) N3—C26—H26 126.7
C5—C6—H6 119.7 N1—C27—N3 111.1 (3)
C7—C6—H6 119.7 N1—C27—H27 124.5
C6—C7—C12 122.1 (3) N3—C27—H27 124.4
C6—C7—C8 119.9 (3) N3—C28—H28A 109.5
C12—C7—C8 118.0 (4) N3—C28—H28B 109.5
C9—C8—C3 124.6 (3) H28A—C28—H28B 109.5
C9—C8—C7 117.8 (3) N3—C28—H28C 109.5
C3—C8—C7 117.6 (3) H28A—C28—H28C 109.5
C10—C9—C8 121.4 (3) H28B—C28—H28C 109.5
C10—C9—H9 119.3 C30—C29—N2 109.5 (3)
C8—C9—H9 119.3 C30—C29—H29 125.2
C9—C10—C11 120.3 (4) N2—C29—H29 125.2
C9—C10—H10 119.8 C29—C30—N4 107.0 (3)
C11—C10—H10 119.8 C29—C30—H30 126.6
C12—C11—C10 120.8 (4) N4—C30—H30 126.4
C12—C11—H11 119.6 N2—C31—N4 111.6 (3)
C10—C11—H11 119.6 N2—C31—H31 124.2
C11—C12—C7 121.7 (4) N4—C31—H31 124.1
C11—C12—H12 119.1 N4—C32—H32A 109.5
C7—C12—H12 119.1 N4—C32—H32B 109.5
O4—C13—O3 123.2 (3) H32A—C32—H32B 109.5
O4—C13—C14 120.0 (3) N4—C32—H32C 109.5
O3—C13—C14 116.7 (3) H32A—C32—H32C 109.5
C15—C14—C13 112.8 (3) H32B—C32—H32C 109.5
C15—C14—H14A 109.0 O2—Cu1—O3 170.52 (10)
C13—C14—H14A 109.0 O2—Cu1—N1 88.15 (10)
C15—C14—H14B 109.0 O3—Cu1—N1 92.02 (10)
C13—C14—H14B 109.0 O2—Cu1—N2 89.41 (9)
H14A—C14—H14B 107.8 O3—Cu1—N2 91.82 (9)
C16—C15—C20 120.1 (3) N1—Cu1—N2 170.95 (11)
C16—C15—C14 119.5 (3) C27—N1—C25 105.1 (3)
C20—C15—C14 120.5 (3) C27—N1—Cu1 128.9 (2)
C15—C16—C17 121.1 (4) C25—N1—Cu1 126.0 (2)
C15—C16—H16 119.4 C31—N2—C29 104.9 (3)
C17—C16—H16 119.4 C31—N2—Cu1 126.5 (2)
C18—C17—C16 120.2 (4) C29—N2—Cu1 128.7 (2)
C18—C17—H17 119.9 C27—N3—C26 107.0 (3)
C16—C17—H17 119.9 C27—N3—C28 126.8 (3)
C17—C18—C19 121.2 (4) C26—N3—C28 126.2 (3)
C17—C18—H18 119.4 C31—N4—C30 107.0 (3)
C19—C18—H18 119.4 C31—N4—C32 126.9 (3)
C24—C19—C18 122.4 (4) C30—N4—C32 126.1 (3)
C24—C19—C20 119.1 (4) C1—O2—Cu1 106.53 (19)
C18—C19—C20 118.5 (4) C13—O3—Cu1 108.00 (19)
C21—C20—C15 123.9 (3) H1WA—O1W—H1WB 107.7
C21—C20—C19 117.3 (4)
O1—C1—C2—C3 89.1 (4) C20—C21—C22—C23 −0.9 (6)
O2—C1—C2—C3 −89.1 (4) C21—C22—C23—C24 1.5 (7)
C1—C2—C3—C4 −97.6 (4) C22—C23—C24—C19 −1.2 (7)
C1—C2—C3—C8 80.5 (4) C18—C19—C24—C23 178.5 (4)
C8—C3—C4—C5 0.3 (5) C20—C19—C24—C23 0.4 (6)
C2—C3—C4—C5 178.4 (3) N1—C25—C26—N3 0.1 (4)
C3—C4—C5—C6 −1.0 (5) N2—C29—C30—N4 −0.6 (4)
C4—C5—C6—C7 1.0 (5) N3—C27—N1—C25 −0.2 (4)
C5—C6—C7—C12 −179.4 (3) N3—C27—N1—Cu1 −179.4 (2)
C5—C6—C7—C8 −0.4 (5) C26—C25—N1—C27 0.1 (4)
C4—C3—C8—C9 179.7 (3) C26—C25—N1—Cu1 179.3 (2)
C2—C3—C8—C9 1.5 (5) O2—Cu1—N1—C27 −153.0 (3)
C4—C3—C8—C7 0.3 (5) O3—Cu1—N1—C27 17.5 (3)
C2—C3—C8—C7 −177.9 (3) N2—Cu1—N1—C27 132.6 (6)
C6—C7—C8—C9 −179.7 (3) O2—Cu1—N1—C25 27.9 (3)
C12—C7—C8—C9 −0.7 (4) O3—Cu1—N1—C25 −161.5 (3)
C6—C7—C8—C3 −0.2 (4) N2—Cu1—N1—C25 −46.5 (8)
C12—C7—C8—C3 178.8 (3) N4—C31—N2—C29 −0.6 (4)
C3—C8—C9—C10 −178.0 (3) N4—C31—N2—Cu1 180.0 (2)
C7—C8—C9—C10 1.4 (5) C30—C29—N2—C31 0.7 (4)
C8—C9—C10—C11 −1.3 (5) C30—C29—N2—Cu1 −179.8 (2)
C9—C10—C11—C12 0.5 (6) O2—Cu1—N2—C31 −12.6 (3)
C10—C11—C12—C7 0.2 (6) O3—Cu1—N2—C31 176.8 (3)
C6—C7—C12—C11 178.9 (4) N1—Cu1—N2—C31 61.7 (8)
C8—C7—C12—C11 −0.1 (5) O2—Cu1—N2—C29 168.0 (3)
O4—C13—C14—C15 −55.1 (4) O3—Cu1—N2—C29 −2.6 (3)
O3—C13—C14—C15 125.9 (3) N1—Cu1—N2—C29 −117.6 (7)
C13—C14—C15—C16 98.1 (4) N1—C27—N3—C26 0.2 (4)
C13—C14—C15—C20 −81.3 (4) N1—C27—N3—C28 −179.1 (3)
C20—C15—C16—C17 1.3 (5) C25—C26—N3—C27 −0.1 (4)
C14—C15—C16—C17 −178.1 (3) C25—C26—N3—C28 179.2 (4)
C15—C16—C17—C18 0.4 (6) N2—C31—N4—C30 0.2 (4)
C16—C17—C18—C19 −0.9 (6) N2—C31—N4—C32 −177.6 (3)
C17—C18—C19—C24 −178.3 (4) C29—C30—N4—C31 0.3 (4)
C17—C18—C19—C20 −0.2 (5) C29—C30—N4—C32 178.0 (3)
C16—C15—C20—C21 177.5 (3) O1—C1—O2—Cu1 2.0 (3)
C14—C15—C20—C21 −3.1 (5) C2—C1—O2—Cu1 −179.8 (2)
C16—C15—C20—C19 −2.4 (5) O3—Cu1—O2—C1 3.1 (6)
C14—C15—C20—C19 177.0 (3) N1—Cu1—O2—C1 94.28 (19)
C24—C19—C20—C21 0.1 (5) N2—Cu1—O2—C1 −94.44 (19)
C18—C19—C20—C21 −178.0 (3) O4—C13—O3—Cu1 −1.0 (4)
C24—C19—C20—C15 −179.9 (3) C14—C13—O3—Cu1 178.0 (2)
C18—C19—C20—C15 1.9 (5) O2—Cu1—O3—C13 176.3 (5)
C15—C20—C21—C22 −179.8 (3) N1—Cu1—O3—C13 85.4 (2)
C19—C20—C21—C22 0.1 (5) N2—Cu1—O3—C13 −86.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O1 0.85 1.97 2.789 (3) 163
O1W—H1WB···O3i 0.85 2.07 2.904 (3) 167

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2340).

References

  1. Boiani, M. & Gonzales, M. (2005). Mini Rev. Med. Chem. 5, 409–424. [DOI] [PubMed]
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032–m1034.
  4. Ji, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606. [DOI] [PMC free article] [PubMed]
  5. Parshina, L. N. & Trofimov, B. A. (2011). Russ. Chem. Bull. 60, 601–614.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891–1894.
  9. Yang, Y.-Q., Li, C.-H. L. W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 30, 4524–4530.
  10. Yin, F.-J., Zhao, H. & Hu, X.-L. (2010). Synth. React. Inorg. Met. Org. Nano-Metal Chem. 40, 606–612.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049439/im2340sup1.cif

e-67-m1821-sup1.cif (35KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049439/im2340Isup2.hkl

e-67-m1821-Isup2.hkl (244.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES