Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):m1845. doi: 10.1107/S1600536811050100

Bis[(1-vinyl-1H-imidazol-2-yl-κN 3)methanamine-κN]copper(II) bis­(hexa­fluoridophosphate)

Alexander Schiller a,*, Rosario Scopelliti b, Wolfgang Imhof a
PMCID: PMC3238741  PMID: 22199618

Abstract

In the title compound, [Cu(C6H9N3)2](PF6)2, the Cu atom is located on a crystallographic center of inversion. The coordination environment of the Cu atom is square-planar with two amino and two imidazole N atoms bonded to the metal in a trans configuration.

Related literature

For the title ligand as a building block for tripodal tetra­amine ligands, see: Blackman (2005). For catalytic activity of copper(II) complexes with similar mulidendate N-donor ligands, see: Schiller et al. (2005, 2006).graphic file with name e-67-m1845-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H9N3)2](PF6)2

  • M r = 599.80

  • Monoclinic, Inline graphic

  • a = 11.543 (2) Å

  • b = 12.282 (2) Å

  • c = 8.2793 (14) Å

  • β = 96.476 (15)°

  • V = 1166.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 140 K

  • 0.24 × 0.20 × 0.16 mm

Data collection

  • Oxford Diffraction KM-4/Sapphire CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.657, T max = 1.000

  • 6439 measured reflections

  • 1955 independent reflections

  • 1396 reflections with I > 2σ(I)

  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.123

  • S = 0.97

  • 1955 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: ORTEP-3 (Farrugia, 1997).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811050100/fi2116sup1.cif

e-67-m1845-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050100/fi2116Isup2.hkl

e-67-m1845-Isup2.hkl (96.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AS thanks the Carl–Zeiss foundation for a Junior Professor Fellowship.

supplementary crystallographic information

Comment

The described ligand has been used as a building block for the synthesis of the chelate ligand tris[(1-vinylimidazole-2-yl)methyl]amine (L). The complexes [Zn(L)Cl]PF6 and [Cu(L)Cl]PF6 were obtained upon reaction with L and immobilized by co-polymerization with ethylene glycol dimethacrylate. The supported complexes were found to be efficient heterogenous catalysts for the hydrolysis of bis(p-nitrophenyl)phosphate (Schiller et al., 2006).

The structure of the title compound feature Cu on an inversion centre (Wyckoff position 2a). Two ligands coordinate to it in a trans fashion (Fig. 1).

Experimental

Synthesis of the metal complex. Anhydrous copper(II) chloride (25.0 mg, 0.186 mmol) was added to a solution of (1-vinyl-1H-imidazol-2-yl)-methylamine (45.8 mg, 0.372 mmol) in ethanol (4 ml). NH4PF6 (60.6 mg, 0.372 mmol) was added and pink crystals were formed after 2 h. The product was isolated, washed with ethanol, and dried in a vacuum (yield: 83.7 mg, 75%). IR: ν (cm-1) = 3368/3314/3205 (w, NH), 1652 (vs, CH=CH2), 822 (vs, PF6).

Refinement

Hydrogen atoms have been placed in calculated positions with C–H distances of 0.99Å for the methylene group and 0.95Å for all other hydrogen atoms bonded to carbon and 0.92Å for the amino function. Refinement was performed using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Second ligand is created by (i): -x, -y, -z. Ellipsoids are depicted on the 50% probability level.

Crystal data

[Cu(C6H9N3)2](PF6)2 F(000) = 598
Mr = 599.80 Dx = 1.708 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3520 reflections
a = 11.543 (2) Å θ = 2.4–26.6°
b = 12.282 (2) Å µ = 1.18 mm1
c = 8.2793 (14) Å T = 140 K
β = 96.476 (15)° Prismatic, pink
V = 1166.3 (4) Å3 0.24 × 0.20 × 0.16 mm
Z = 2

Data collection

Oxford Diffraction KM-4/Sapphire CCD diffractometer 1955 independent reflections
Radiation source: fine-focus sealed tube 1396 reflections with I > 2σ(I)
graphite Rint = 0.088
φ and ω scans θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (Blessing, 1995) h = −13→13
Tmin = 0.657, Tmax = 1.000 k = −14→14
6439 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0677P)2] where P = (Fo2 + 2Fc2)/3
1955 reflections (Δ/σ)max < 0.001
151 parameters Δρmax = 0.91 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.0000 0.0000 0.0000 0.0228 (2)
N1 0.1254 (3) 0.1059 (2) −0.0384 (4) 0.0259 (8)
N2 0.3038 (3) 0.1375 (2) −0.1192 (4) 0.0274 (8)
N3 0.1108 (3) −0.1091 (2) −0.0966 (4) 0.0266 (8)
H3A 0.1138 −0.1725 −0.0370 0.032*
H3B 0.0811 −0.1258 −0.2015 0.032*
C1 0.2219 (3) 0.0595 (3) −0.0873 (5) 0.0222 (9)
C2 0.2538 (4) 0.2409 (3) −0.0848 (6) 0.0315 (11)
H2 0.2886 0.3104 −0.0940 0.038*
C3 0.1460 (4) 0.2200 (3) −0.0360 (5) 0.0296 (10)
H3 0.0933 0.2736 −0.0054 0.036*
C4 0.4149 (4) 0.1189 (3) −0.1822 (5) 0.0316 (10)
H4 0.4311 0.0471 −0.2160 0.038*
C5 0.4952 (4) 0.1947 (4) −0.1960 (7) 0.0474 (14)
H5A 0.4821 0.2675 −0.1634 0.057*
H5B 0.5658 0.1763 −0.2383 0.057*
C6 0.2332 (3) −0.0645 (3) −0.0967 (5) 0.0227 (9)
H6A 0.2661 −0.0860 −0.1974 0.027*
H6B 0.2847 −0.0924 −0.0021 0.027*
P1 0.19988 (10) 0.57233 (7) 0.90769 (13) 0.0244 (3)
F1 0.0883 (2) 0.51137 (19) 0.8082 (3) 0.0463 (8)
F2 0.2875 (2) 0.50369 (17) 0.8029 (3) 0.0392 (7)
F3 0.1923 (3) 0.66853 (17) 0.7698 (3) 0.0472 (8)
F4 0.3113 (2) 0.6338 (2) 1.0077 (3) 0.0531 (8)
F5 0.1112 (2) 0.64221 (17) 1.0131 (3) 0.0396 (7)
F6 0.2065 (2) 0.47717 (17) 1.0447 (3) 0.0365 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0264 (4) 0.0165 (3) 0.0261 (5) 0.0009 (3) 0.0056 (3) 0.0002 (3)
N1 0.029 (2) 0.0210 (15) 0.028 (2) 0.0045 (14) 0.0070 (16) −0.0020 (14)
N2 0.0282 (19) 0.0216 (16) 0.034 (2) −0.0003 (14) 0.0092 (17) −0.0042 (14)
N3 0.031 (2) 0.0185 (15) 0.031 (2) −0.0002 (14) 0.0089 (17) 0.0000 (14)
C1 0.025 (2) 0.0223 (19) 0.020 (2) −0.0004 (16) 0.0026 (19) 0.0021 (16)
C2 0.037 (3) 0.0180 (19) 0.041 (3) −0.0049 (17) 0.010 (2) −0.0024 (18)
C3 0.033 (2) 0.0182 (18) 0.039 (3) 0.0005 (17) 0.010 (2) −0.0044 (17)
C4 0.029 (2) 0.032 (2) 0.035 (3) 0.0010 (19) 0.009 (2) −0.0055 (19)
C5 0.031 (3) 0.043 (3) 0.070 (4) −0.001 (2) 0.016 (3) −0.008 (3)
C6 0.024 (2) 0.0181 (19) 0.027 (2) 0.0029 (15) 0.0081 (19) 0.0022 (16)
P1 0.0330 (6) 0.0177 (5) 0.0230 (6) −0.0002 (4) 0.0053 (5) −0.0003 (4)
F1 0.0429 (17) 0.0558 (17) 0.0388 (18) −0.0141 (13) −0.0018 (14) −0.0081 (13)
F2 0.0548 (18) 0.0329 (13) 0.0336 (16) 0.0120 (12) 0.0212 (14) −0.0019 (11)
F3 0.084 (2) 0.0240 (12) 0.0376 (17) 0.0114 (13) 0.0255 (15) 0.0086 (11)
F4 0.0495 (17) 0.0613 (17) 0.050 (2) −0.0274 (14) 0.0112 (15) −0.0192 (14)
F5 0.0579 (17) 0.0311 (12) 0.0329 (16) 0.0117 (12) 0.0193 (13) −0.0003 (11)
F6 0.0568 (18) 0.0257 (12) 0.0277 (15) 0.0051 (11) 0.0080 (14) 0.0052 (10)

Geometric parameters (Å, °)

Cu1—N1 1.998 (3) C2—H2 0.9500
Cu1—N1i 1.998 (3) C3—H3 0.9500
Cu1—N3 2.074 (3) C4—C5 1.328 (6)
Cu1—N3i 2.074 (3) C4—H4 0.9500
N1—C1 1.352 (5) C5—H5A 0.9500
N1—C3 1.421 (4) C5—H5B 0.9500
N2—C1 1.392 (5) C6—H6A 0.9900
N2—C2 1.436 (5) C6—H6B 0.9900
N2—C4 1.456 (5) P1—F6 1.625 (2)
N3—C6 1.516 (5) P1—F1 1.631 (3)
N3—H3A 0.9200 P1—F4 1.634 (3)
N3—H3B 0.9200 P1—F2 1.638 (3)
C1—C6 1.531 (5) P1—F3 1.638 (3)
C2—C3 1.375 (6) P1—F5 1.658 (3)
N1—Cu1—N1i 180.00 (13) C5—C4—N2 124.9 (4)
N1—Cu1—N3 82.53 (13) C5—C4—H4 117.6
N1i—Cu1—N3 97.47 (13) N2—C4—H4 117.6
N1—Cu1—N3i 97.47 (13) C4—C5—H5A 120.0
N1i—Cu1—N3i 82.53 (13) C4—C5—H5B 120.0
N3—Cu1—N3i 180.0 H5A—C5—H5B 120.0
C1—N1—C3 106.1 (3) N3—C6—C1 106.0 (3)
C1—N1—Cu1 114.2 (2) N3—C6—H6A 110.5
C3—N1—Cu1 139.7 (3) C1—C6—H6A 110.5
C1—N2—C2 105.9 (3) N3—C6—H6B 110.5
C1—N2—C4 127.2 (3) C1—C6—H6B 110.5
C2—N2—C4 126.8 (3) H6A—C6—H6B 108.7
C6—N3—Cu1 112.4 (2) F6—P1—F1 89.70 (14)
C6—N3—H3A 109.1 F6—P1—F4 90.34 (15)
Cu1—N3—H3A 109.1 F1—P1—F4 179.76 (17)
C6—N3—H3B 109.1 F6—P1—F2 90.94 (13)
Cu1—N3—H3B 109.1 F1—P1—F2 89.76 (15)
H3A—N3—H3B 107.8 F4—P1—F2 90.48 (15)
N1—C1—N2 111.5 (3) F6—P1—F3 179.61 (16)
N1—C1—C6 120.8 (3) F1—P1—F3 90.11 (15)
N2—C1—C6 127.7 (3) F4—P1—F3 89.84 (15)
C3—C2—N2 106.8 (3) F2—P1—F3 89.41 (13)
C3—C2—H2 126.6 F6—P1—F5 89.31 (13)
N2—C2—H2 126.6 F1—P1—F5 90.23 (15)
C2—C3—N1 109.6 (4) F4—P1—F5 89.53 (14)
C2—C3—H3 125.2 F2—P1—F5 179.75 (14)
N1—C3—H3 125.2 F3—P1—F5 90.34 (13)
N1i—Cu1—N1—C1 −64.0 (4) C4—N2—C1—N1 −176.5 (4)
N3—Cu1—N1—C1 −6.8 (3) C2—N2—C1—C6 −177.1 (4)
N3i—Cu1—N1—C1 173.2 (3) C4—N2—C1—C6 5.6 (6)
N1i—Cu1—N1—C3 113.2 (6) C1—N2—C2—C3 −0.4 (4)
N3—Cu1—N1—C3 170.4 (4) C4—N2—C2—C3 176.9 (4)
N3i—Cu1—N1—C3 −9.6 (4) N2—C2—C3—N1 −0.1 (5)
N1—Cu1—N3—C6 16.6 (3) C1—N1—C3—C2 0.6 (5)
N1i—Cu1—N3—C6 −163.4 (3) Cu1—N1—C3—C2 −176.8 (3)
N3i—Cu1—N3—C6 −41 (3) C1—N2—C4—C5 −173.1 (4)
C3—N1—C1—N2 −0.9 (4) C2—N2—C4—C5 10.1 (7)
Cu1—N1—C1—N2 177.2 (2) Cu1—N3—C6—C1 −21.4 (4)
C3—N1—C1—C6 177.2 (3) N1—C1—C6—N3 17.6 (5)
Cu1—N1—C1—C6 −4.7 (5) N2—C1—C6—N3 −164.7 (4)
C2—N2—C1—N1 0.8 (4)

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2116).

References

  1. Blackman, A. G. (2005). Polyhedron, 24, 1–39.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  5. Schiller, A., Scopelliti, R., Benmelouka, M. & Severin, K. (2005). Inorg. Chem. 44, 6482–6492. [DOI] [PubMed]
  6. Schiller, A., Scopelliti, R. & Severin, K. (2006). Dalton Trans. pp. 3858–3867. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811050100/fi2116sup1.cif

e-67-m1845-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050100/fi2116Isup2.hkl

e-67-m1845-Isup2.hkl (96.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES