Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):m1860–m1861. doi: 10.1107/S1600536811049890

[(1,2,5,6-η)-Cyclo­octa-1,5-diene]bis­(1-isopropyl-3-methyl­imidazolin-2-yl­idene)rhodium(I) tetra­fluorido­borate

Gary S Nichol a,*, Jonathan Rajaseelan b, David P Walton c, Edward Rajaseelan c
PMCID: PMC3238752  PMID: 22199629

Abstract

In the title compound, [Rh(C8H12)(C7H12N2)2]BF4, the square-planar Rh complex cation and the BF4 anion are both bis­ected by a crystallographic twofold rotation axis. The Rh and B atoms lie on this axis and all others are in general positions. In the crystal, two unique C—H⋯F hydrogen-bonding inter­actions are present, which involve both imidazolin-2-yl­idene H atoms. They form two separate C(5) motifs, the combination of which is a rippled hydrogen-bonded sheet structure in the ab plane.

Related literature

For the structure and dynamics of related N-heterocyclic carbene rhodium and iridium complexes, see: Chianese et al. (2003); Köcher & Herrmann (1997); Leung et al. (2006); Nichol et al. (2009, 2010); Herrmann et al. (2006). For the catalytic properties of these complexes, see: Albrecht et al. (2002); Frey et al. (2006); Gnanamgari et al. (2007); Voutchkova et al. (2008).graphic file with name e-67-m1860-scheme1.jpg

Experimental

Crystal data

  • [Rh(C8H12)(C7H12N2)2]BF4

  • M r = 546.27

  • Orthorhombic, Inline graphic

  • a = 11.7508 (6) Å

  • b = 11.9283 (6) Å

  • c = 17.3129 (9) Å

  • V = 2426.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 100 K

  • 0.38 × 0.37 × 0.37 mm

Data collection

  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.763, T max = 0.771

  • 234794 measured reflections

  • 14018 independent reflections

  • 10241 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.059

  • S = 1.13

  • 14018 reflections

  • 218 parameters

  • All H-atom parameters refined

  • Δρmax = 1.55 e Å−3

  • Δρmin = −0.92 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049890/fj2478sup1.cif

e-67-m1860-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049890/fj2478Isup2.hkl

e-67-m1860-Isup2.hkl (685.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049890/fj2478Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F1i 0.909 (11) 2.496 (11) 3.3975 (8) 171.4 (10)
C3—H3⋯F2ii 0.877 (12) 2.478 (12) 3.2415 (8) 145.9 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

JR and DPW thank the Department of Chemistry, Millers­ville University, for project funding. The diffractometer was purchased with funding from NSF grant CHE-0741837.

supplementary crystallographic information

Comment

We are interested in rhodium and iridium complexes with N-heterocyclic carbene ligands, in particular ligands derived from 1,2,4-triazole-derived compounds (Nichol et al., 2009, 2010). The title compound, (I), was prepared as part of this study (Figure 1). The Rh center has an expected square planar geometry and bond distances are unexceptional. Both the Rh and B atoms lie on a crystallographic twofold rotation axis, which bisects the complex and BF4- counterion. C–H···F hydrogen bonding interactions, which involve both imidazolin-2-ylidene H atoms and all four F atoms, form a thick two-dimensional sheet structure in the ab plane (Figure 2).

Experimental

The title compound was synthesized by transmetallation. 1-Isopropyl-3-methylimidazolium bromide (268 mg, 1.31 mmol) was mixed with Ag2O (152 mg, 0.654 mmol), and was stirred under dark at room temperature for 90 minutes in 10 ml of CH2Cl2. The resulting mixture was filtered through Celite into a new flask containing the neutral compound [(cod)Rh(NHC)Cl](585 mg, 1.31 mmol), and AgBF4(254 mg, 1.31 mmol)and stirred for an additional 90 minutes under dark. The mixture was filtered once more through Celite to remove silver bromide and silver chloride, and the solvent was removed under pressure to give a yellow solid (93%). Crystals of the resulting solid of the title compound, (I), were obtained by slow diffusion of pentane into dichloromethane solution of the compound. 1H NMR (400 MHz, CDCl3): δ (p.p.m.) = 7.15 (s, 2 H, NCH), 6.93 (s, 2 H, NCH), 5.03 (m, 3JH—H = 6.8 Hz, 2 H, CH of iPr), 4.63 (br, 2 H, CH of COD), 4.21 (s, 6 H, N—CH3), 3.92 (m, 2 H, CH of COD), 2.63 (m, 2 H, CH2 of COD), 2.42 – 1.92 (m, 6 H, CH2 of COD), 1.46 (d, 3JH—H = 6.8 Hz, 6 H, CH3 of iPr), 1.00 (d, 3JH—H = 6.8 Hz, 6 H, CH3 of iPr). 13C NMR: δ = 178.76, 178.22 (Ir—C), 124, 117 (N—CH—N), 91.34, 91.25 (N-CHMe3), 86.36, 86.28 (N—CH3), 52.60 (CH of COD), 38.10, 33.75, 27.99, (CH2 of COD), 23.5, 22.90 (CH3 of iPr).

Refinement

H atoms were located from a difference Fourier map and are freely refined.

Figures

Fig. 1.

Fig. 1.

Twice the asymmetric unit of (I), with H atoms omitted. Displacement ellipsoids are at the 50% probability level. Unlabeled atoms are related to labeled atoms by twofold rotation symmetry.

Fig. 2.

Fig. 2.

A c-axis projection showing C–H···F interactions (blue dotted lines) in (I). Red dotted lines indicate H bond continuation.

Crystal data

[Rh(C8H12)(C7H12N2)2]BF4 F(000) = 1128
Mr = 546.27 Dx = 1.495 Mg m3
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 9624 reflections
a = 11.7508 (6) Å θ = 4.2–51.7°
b = 11.9283 (6) Å µ = 0.75 mm1
c = 17.3129 (9) Å T = 100 K
V = 2426.7 (2) Å3 Block, yellow
Z = 4 0.38 × 0.37 × 0.37 mm

Data collection

Bruker Kappa APEXII DUO CCD diffractometer 14018 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics 10241 reflections with I > 2σ(I)
graphite Rint = 0.033
φ and ω scans θmax = 52.3°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −26→25
Tmin = 0.763, Tmax = 0.771 k = −26→26
234794 measured reflections l = −37→38

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: difference Fourier map
wR(F2) = 0.059 All H-atom parameters refined
S = 1.13 w = 1/[σ2(Fo2) + (0.0182P)2 + 0.6772P] where P = (Fo2 + 2Fc2)/3
14018 reflections (Δ/σ)max = 0.002
218 parameters Δρmax = 1.55 e Å3
0 restraints Δρmin = −0.92 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rh1 0.7500 0.2500 0.507678 (3) 0.01052 (1)
N1 0.56243 (4) 0.20105 (4) 0.38873 (3) 0.01399 (6)
N2 0.66738 (4) 0.05648 (4) 0.40496 (3) 0.01512 (6)
C1 0.65651 (4) 0.16534 (4) 0.42664 (3) 0.01295 (6)
C2 0.51512 (5) 0.11598 (5) 0.34425 (4) 0.01757 (8)
H2 0.4526 (10) 0.1269 (10) 0.3143 (7) 0.022 (3)*
C3 0.58158 (5) 0.02502 (5) 0.35458 (4) 0.01811 (8)
H3 0.5769 (10) −0.0434 (10) 0.3364 (7) 0.028 (3)*
C4 0.51719 (5) 0.31568 (5) 0.39338 (3) 0.01602 (7)
H4 0.5633 (9) 0.3517 (9) 0.4313 (6) 0.019 (3)*
C5 0.53212 (7) 0.37474 (6) 0.31623 (4) 0.02376 (11)
H5A 0.4910 (11) 0.3362 (11) 0.2772 (7) 0.030 (3)*
H5B 0.6089 (11) 0.3778 (11) 0.3028 (8) 0.031 (3)*
H5C 0.5034 (11) 0.4517 (11) 0.3183 (8) 0.035 (3)*
C6 0.39373 (6) 0.31435 (7) 0.41936 (5) 0.02579 (12)
H6A 0.3478 (11) 0.2754 (11) 0.3834 (8) 0.028 (3)*
H6B 0.3635 (11) 0.3876 (11) 0.4230 (8) 0.035 (3)*
H6C 0.3844 (12) 0.2775 (12) 0.4678 (9) 0.033 (3)*
C7 0.75478 (6) −0.02030 (5) 0.43195 (4) 0.02033 (9)
H7A 0.8005 (10) 0.0166 (10) 0.4689 (7) 0.024 (3)*
H7B 0.7196 (11) −0.0845 (12) 0.4540 (8) 0.031 (3)*
H7C 0.8014 (11) −0.0430 (11) 0.3906 (8) 0.032 (3)*
C8 0.61291 (5) 0.22486 (5) 0.59096 (3) 0.01603 (7)
H8 0.5433 (10) 0.2098 (10) 0.5610 (7) 0.021 (3)*
C9 0.68830 (5) 0.13645 (5) 0.60051 (3) 0.01646 (8)
H9 0.6691 (10) 0.0669 (10) 0.5751 (7) 0.025 (3)*
C10 0.77717 (6) 0.12488 (6) 0.66365 (4) 0.01943 (9)
H10A 0.7517 (9) 0.1609 (11) 0.7107 (8) 0.023 (3)*
H10B 0.7852 (10) 0.0442 (11) 0.6775 (7) 0.026 (3)*
C11 0.89369 (5) 0.16926 (6) 0.63829 (4) 0.01888 (9)
H11A 0.9440 (9) 0.1813 (9) 0.6833 (7) 0.020 (2)*
H11B 0.9335 (10) 0.1111 (10) 0.6049 (7) 0.023 (3)*
B1 0.7500 0.7500 0.29593 (6) 0.01705 (12)
F1 0.76439 (5) 0.84479 (5) 0.24966 (3) 0.03003 (10)
F2 0.65419 (4) 0.76347 (4) 0.34218 (3) 0.02659 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.01063 (2) 0.00980 (2) 0.01114 (2) −0.00124 (1) 0.000 0.000
N1 0.01412 (14) 0.01361 (14) 0.01424 (15) 0.00070 (11) −0.00193 (11) −0.00109 (12)
N2 0.01684 (16) 0.01164 (14) 0.01689 (16) 0.00010 (12) −0.00365 (13) −0.00144 (12)
C1 0.01345 (15) 0.01194 (15) 0.01347 (16) −0.00035 (12) −0.00093 (12) −0.00044 (12)
C2 0.01794 (19) 0.01713 (19) 0.0176 (2) −0.00031 (15) −0.00510 (16) −0.00262 (15)
C3 0.0211 (2) 0.01475 (18) 0.0185 (2) −0.00131 (16) −0.00536 (17) −0.00293 (15)
C4 0.01615 (18) 0.01608 (18) 0.01583 (18) 0.00398 (14) −0.00011 (14) −0.00123 (14)
C5 0.0321 (3) 0.0195 (2) 0.0197 (2) 0.0075 (2) 0.0032 (2) 0.00306 (19)
C6 0.0185 (2) 0.0318 (3) 0.0270 (3) 0.0065 (2) 0.0043 (2) −0.0023 (2)
C7 0.0218 (2) 0.01268 (16) 0.0265 (3) 0.00234 (17) −0.0073 (2) −0.00142 (16)
C8 0.01421 (17) 0.01788 (18) 0.01599 (18) −0.00244 (14) 0.00177 (14) −0.00026 (15)
C9 0.01790 (19) 0.01465 (17) 0.01685 (19) −0.00334 (15) 0.00120 (15) 0.00176 (14)
C10 0.0215 (2) 0.0200 (2) 0.0168 (2) −0.00095 (18) −0.00002 (17) 0.00507 (17)
C11 0.0179 (2) 0.0210 (2) 0.0178 (2) 0.00064 (17) −0.00287 (16) 0.00310 (17)
B1 0.0149 (3) 0.0145 (3) 0.0218 (3) 0.0006 (2) 0.000 0.000
F1 0.0346 (3) 0.0235 (2) 0.0320 (2) 0.00074 (18) 0.00329 (18) 0.01073 (17)
F2 0.01926 (17) 0.02301 (19) 0.0375 (3) 0.00023 (13) 0.00938 (16) −0.00171 (16)

Geometric parameters (Å, °)

Rh1—C1 2.0482 (5) C6—H6A 0.946 (13)
Rh1—C1i 2.0482 (5) C6—H6B 0.946 (14)
Rh1—C8 2.1826 (6) C6—H6C 0.952 (15)
Rh1—C8i 2.1826 (6) C7—H7A 0.944 (12)
Rh1—C9 2.2233 (6) C7—H7B 0.950 (14)
Rh1—C9i 2.2233 (6) C7—H7C 0.941 (13)
N1—C1 1.3544 (7) C8—H8 0.985 (12)
N1—C2 1.3899 (7) C8—C9 1.3872 (9)
N1—C4 1.4692 (7) C8—C11i 1.5074 (9)
N2—C1 1.3577 (7) C9—H9 0.965 (12)
N2—C3 1.3850 (7) C9—C10 1.5181 (9)
N2—C7 1.4532 (8) C10—H10A 0.968 (13)
C2—H2 0.909 (11) C10—H10B 0.997 (13)
C2—C3 1.3487 (9) C10—C11 1.5322 (9)
C3—H3 0.877 (12) C11—C8i 1.5075 (9)
C4—H4 0.954 (11) C11—H11A 0.989 (11)
C4—C5 1.5202 (9) C11—H11B 1.017 (12)
C4—C6 1.5190 (9) B1—F1 1.3960 (8)
C5—H5A 0.950 (13) B1—F1ii 1.3960 (8)
C5—H5B 0.933 (13) B1—F2 1.3908 (8)
C5—H5C 0.979 (14) B1—F2ii 1.3909 (8)
C1—Rh1—C1i 93.53 (3) C4—C6—H6A 110.8 (8)
C1—Rh1—C8 89.36 (2) C4—C6—H6B 111.7 (8)
C1i—Rh1—C8i 89.36 (2) C4—C6—H6C 112.0 (8)
C1—Rh1—C8i 156.36 (2) H6A—C6—H6B 106.4 (11)
C1i—Rh1—C8 156.36 (2) H6A—C6—H6C 106.7 (11)
C1—Rh1—C9 91.14 (2) H6B—C6—H6C 108.9 (11)
C1i—Rh1—C9 166.03 (2) N2—C7—H7A 109.0 (7)
C1i—Rh1—C9i 91.14 (2) N2—C7—H7B 109.3 (8)
C1—Rh1—C9i 166.03 (2) N2—C7—H7C 110.4 (8)
C8—Rh1—C8i 97.31 (3) H7A—C7—H7B 110.6 (11)
C8—Rh1—C9 36.69 (2) H7A—C7—H7C 108.6 (11)
C8i—Rh1—C9 81.19 (2) H7B—C7—H7C 109.0 (11)
C8i—Rh1—C9i 36.69 (2) Rh1—C8—H8 106.8 (7)
C8—Rh1—C9i 81.19 (2) Rh1—C8—C9 73.25 (3)
C9—Rh1—C9i 87.42 (3) Rh1—C8—C11i 106.38 (4)
C1—N1—C2 111.43 (5) H8—C8—C9 117.0 (7)
C1—N1—C4 124.16 (5) H8—C8—C11i 113.3 (7)
C2—N1—C4 124.41 (5) C9—C8—C11i 127.23 (5)
C1—N2—C3 111.39 (5) Rh1—C9—C8 70.06 (3)
C1—N2—C7 125.48 (5) Rh1—C9—H9 105.7 (7)
C3—N2—C7 123.10 (5) Rh1—C9—C10 110.59 (4)
Rh1—C1—N1 127.93 (4) C8—C9—H9 116.7 (7)
Rh1—C1—N2 127.62 (4) C8—C9—C10 126.46 (6)
N1—C1—N2 104.10 (4) H9—C9—C10 114.2 (7)
N1—C2—H2 122.4 (7) C9—C10—H10A 110.7 (7)
N1—C2—C3 106.40 (5) C9—C10—H10B 109.0 (7)
H2—C2—C3 131.2 (7) C9—C10—C11 112.14 (5)
N2—C3—C2 106.68 (5) H10A—C10—H10B 104.8 (11)
N2—C3—H3 121.6 (8) H10A—C10—C11 111.3 (7)
C2—C3—H3 131.7 (8) H10B—C10—C11 108.6 (7)
N1—C4—H4 104.6 (7) C8i—C11—C10 113.53 (5)
N1—C4—C5 109.96 (5) C8i—C11—H11A 109.7 (7)
N1—C4—C6 110.61 (5) C8i—C11—H11B 106.6 (7)
H4—C4—C5 109.3 (7) C10—C11—H11A 111.0 (7)
H4—C4—C6 110.0 (7) C10—C11—H11B 109.8 (7)
C5—C4—C6 112.04 (6) H11A—C11—H11B 105.8 (9)
C4—C5—H5A 110.0 (8) F1—B1—F1ii 109.97 (9)
C4—C5—H5B 110.4 (8) F1—B1—F2 109.56 (3)
C4—C5—H5C 111.2 (8) F1ii—B1—F2 109.02 (3)
H5A—C5—H5B 109.5 (11) F1ii—B1—F2ii 109.56 (3)
H5A—C5—H5C 107.7 (11) F1—B1—F2ii 109.02 (3)
H5B—C5—H5C 107.9 (11) F2—B1—F2ii 109.70 (9)
C2—N1—C1—Rh1 −173.45 (4) C2—N1—C4—C6 56.65 (8)
C2—N1—C1—N2 0.13 (6) C1—Rh1—C8—C9 92.76 (4)
C4—N1—C1—Rh1 7.28 (8) C1i—Rh1—C8—C9 −169.87 (5)
C4—N1—C1—N2 −179.14 (5) C1i—Rh1—C8—C11i −45.11 (7)
C3—N2—C1—Rh1 173.54 (4) C1—Rh1—C8—C11i −142.49 (4)
C3—N2—C1—N1 −0.07 (6) C8i—Rh1—C8—C9 −64.50 (3)
C7—N2—C1—Rh1 −4.70 (8) C8i—Rh1—C8—C11i 60.26 (4)
C7—N2—C1—N1 −178.31 (6) C9i—Rh1—C8—C9 −97.57 (4)
C1i—Rh1—C1—N1 −83.65 (5) C9—Rh1—C8—C11i 124.75 (6)
C1i—Rh1—C1—N2 104.22 (5) C9i—Rh1—C8—C11i 27.19 (4)
C8—Rh1—C1—N1 72.88 (5) Rh1—C8—C9—C10 101.36 (6)
C8i—Rh1—C1—N1 179.85 (5) C11i—C8—C9—Rh1 −98.12 (6)
C8—Rh1—C1—N2 −99.26 (5) C11i—C8—C9—C10 3.25 (9)
C8i—Rh1—C1—N2 7.72 (8) C1—Rh1—C9—C8 −87.40 (4)
C9—Rh1—C1—N1 109.52 (5) C1i—Rh1—C9—C8 163.01 (8)
C9i—Rh1—C1—N1 25.66 (11) C1—Rh1—C9—C10 149.98 (4)
C9—Rh1—C1—N2 −62.61 (5) C1i—Rh1—C9—C10 40.40 (11)
C9i—Rh1—C1—N2 −146.48 (8) C8i—Rh1—C9—C8 115.05 (4)
C1—N1—C2—C3 −0.15 (7) C8—Rh1—C9—C10 −122.61 (6)
C4—N1—C2—C3 179.12 (5) C8i—Rh1—C9—C10 −7.56 (4)
N1—C2—C3—N2 0.09 (7) C9i—Rh1—C9—C8 78.69 (3)
C1—N2—C3—C2 −0.01 (7) C9i—Rh1—C9—C10 −43.92 (4)
C7—N2—C3—C2 178.27 (6) Rh1—C9—C10—C11 −13.94 (7)
C1—N1—C4—C5 111.55 (6) C8—C9—C10—C11 −93.84 (7)
C1—N1—C4—C6 −124.17 (6) C9—C10—C11—C8i 39.69 (8)
C2—N1—C4—C5 −67.63 (8)

Symmetry codes: (i) −x+3/2, −y+1/2, z; (ii) −x+3/2, −y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···F1iii 0.909 (11) 2.496 (11) 3.3975 (8) 171.4 (10)
C3—H3···F2iv 0.877 (12) 2.478 (12) 3.2415 (8) 145.9 (11)

Symmetry codes: (iii) x−1/2, −y+1, −z+1/2; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2478).

References

  1. Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chianese, A. R., Li, X., Jansen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663–1667.
  4. Frey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725–5738.
  5. Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.
  6. Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.
  7. Köcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261–265.
  8. Leung, C. H., Incarvito, C. D. & Crabtree, R. H. (2006). Organometallics, 25, 6099–6107.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.
  11. Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Voutchkova, A. M., Gnanamgari, D., Jakobsche, C. E., Butler, C., Miller, S. J., Parr, J. & Crabtree, R. H. (2008). J. Organomet. Chem. 693, 1815–1821.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049890/fj2478sup1.cif

e-67-m1860-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049890/fj2478Isup2.hkl

e-67-m1860-Isup2.hkl (685.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049890/fj2478Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES