Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):m1863. doi: 10.1107/S1600536811049221

(Nitrato-κO)bis­[5-(pyridin-2-yl)pyrazine-2-carbonitrile-κ2 N 4,N 5]silver(I)

Fan Zhang a,*, Yong-Li Yang a
PMCID: PMC3238754  PMID: 22199631

Abstract

In the mononuclear title complex, [Ag(NO3)(C10H6N4)2], two κ2 N:N′-chelating 5-(pyridin-2-yl)pyrazine-2-carbonitrile ligands surround the AgI atom, forming an N4O square-pyramidal coordination geometry with one nitrate anion bonding at the apical site. The two heterocyclic rings of the 5-(2-pyridin-2-­yl)pyrazine-2-carbonitrile ligand are almost coplanar [dihedral angle = 5.63 (8)°], and the two chelating ligands are in an anti relationship. The mononuclear units are inter­connected along [010] through C—H⋯O(nitrate) and C—H⋯N(cyano) inter­actions, forming an infinite chain. The mononuclear units are stacked along the a axis and inter­connected via inter­molecular π–π stacking inter­actions between adjacent pyridine and pyrazine rings [centroid–centroid distances = 3.984 (2) and 3.595 (3) Å], thus forming a three-dimensional supra­molecular structure.

Related literature

For coordination complexes with pyridyl-based ligands, see: Dunne et al. (1997); Wang et al. (2009). For a related complex with 5-(2-pyridin-2-­yl)pyrazine-2-carbonitrile, see: Wang et al. (2010).graphic file with name e-67-m1863-scheme1.jpg

Experimental

Crystal data

  • [Ag(NO3)(C10H6N4)2]

  • M r = 534.26

  • Orthorhombic, Inline graphic

  • a = 14.000 (3) Å

  • b = 12.133 (2) Å

  • c = 23.832 (4) Å

  • V = 4048.4 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 K

  • 0.44 × 0.35 × 0.25 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.631, T max = 1.000

  • 27695 measured reflections

  • 5029 independent reflections

  • 3255 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.099

  • S = 1.03

  • 5029 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049221/zq2135sup1.cif

e-67-m1863-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049221/zq2135Isup2.hkl

e-67-m1863-Isup2.hkl (246.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O1i 0.93 2.35 3.233 (3) 157
C11—H11A⋯O2ii 0.93 2.54 3.232 (5) 132
C13—H13A⋯N8iii 0.93 2.73 3.319 (3) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

supplementary crystallographic information

Comment

Pyridyl based ligands have attracted increasing attention because of their versatile linkage behavior and their artificial and controllable synthesis (Dunne et al., 1997; Wang et al., 2009). Recently, we reported a silver(I) complex derived from 5-(2-pyridyl)pyrazine-2-carbonitrile (Wang et al., 2010). To make a further insight into the coordination chemistry of such a ligand featuring a 2-cyanopyrazinyl group at the 2-pyridyl carbon atom (Scheme 1), herein we present the structure of the new complex [Ag(C10H6N4)2(NO3)].

As shown in Fig. 1, in the mononuclear title complex two κ2N:N chelating 5-(2-pyridyl)pyrazine-2-carbonitrile ligands surround the AgI center to form a N4O-pyramidal coordination geometry with one nitrate bonding at the axial site. The Ag—N bond lengths lie within the range of 2.301 (2) - 2.579 (3) Å, with Ag1—N1 and Ag1—N4 slighty shorter than Ag1—N2 and Ag1—N5. These bond distances are comparable to those in [Ag(C10H6N4)2]BF4 (2.196 (2) - 2.685 (2) Å) reported by us recently (Wang et al. 2010). Furthermore, in the present case, the nitrate binds to the silver center with Ag1—O1 = 2.547 (3) Å. It is worth to note that a second O atom of the nitrate interacts with the silver center as shown by the Ag1—O2 distance of 2.800 (2) Å. Along the b axis, the mononuclear moieties are arranged with two adjacent ones around an inversion center. Indeed, C—H···O(nitrate) and C—H···N(cyano) interactions (Table 1) are found to link the mononuclear units together to form an infinite chain structure along the b axis (Fig. 2). Along the a direction, intermolecular π–π stacking interactions between adjacent pyridyl rings and pyrazinyl rings connect the mononuclear units together, forming a three-dimensional framework (Fig. 3). The distance between Cg1 (N4-N11-C12-C13-C14-C15) and Cg2i (N5-N16-C17-N6-C18-C19) is 3.984 (2) Å, while that between Cg3 (N1-N5-C6-N7-C8-C9) and Cg4ii (N2-C1-C2-N3-C3-C4) equals to 3.595 (3) Å (symmetry codes: i = –x, –y-1, –z+1; ii = –x+0.5, –y+1, z+1.5).

Experimental

The 5-(2-pyridyl)-2-cyanopyrazine ligand was obtained commercially. The ligand (18.1 mg, 0.1 mmol) and AgNO3 (17 mg, 0.1mmol) were mixed and dissolved in 3 ml methanol, and then 1 ml acetonitrile was subsequently added to make the solution clear. After stirring at room temperature for 3 hours, the resulted solution was filtrated, and the clear solution was kept in air for about one week at room temperature to yield yellow block-like crystals (21.1.0 mg, 79% yield).

Refinement

All H atoms were discernible in the difference electron density maps. Nevertheless, they were placed into idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The atom-numbering scheme of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The infinite chain structure with C—H···O(nitrate) and C—H···N(cyano) interactions between the mononuclear units.The nitrate are shown as thick bonds for clarity.

Fig. 3.

Fig. 3.

View down the b axis of the packing structure of the title complex. All non-covalent interactions are omitted for clarity.

Crystal data

[Ag(NO3)(C10H6N4)2] Z = 8
Mr = 534.26 F(000) = 2128
Orthorhombic, Pbca Dx = 1.753 Mg m3
Hall symbol: -P 2ac 2ab Mo Kα radiation, λ = 0.71073 Å
a = 14.000 (3) Å µ = 1.04 mm1
b = 12.133 (2) Å T = 293 K
c = 23.832 (4) Å Block, yellow
V = 4048.4 (13) Å3 0.44 × 0.35 × 0.25 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 5029 independent reflections
Radiation source: fine-focus sealed tube 3255 reflections with I > 2σ(I)
graphite Rint = 0.037
ω scans θmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −18→16
Tmin = 0.631, Tmax = 1.000 k = −12→16
27695 measured reflections l = −31→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0413P)2 + 2.5136P] P = (Fo2 + 2Fc2)/3
5029 reflections (Δ/σ)max = 0.002
298 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.15007 (2) 0.51787 (2) 0.601301 (9) 0.06172 (11)
N5 0.1257 (2) 0.6243 (2) 0.69391 (10) 0.0614 (7)
N2 0.14122 (18) 0.4141 (2) 0.50864 (9) 0.0578 (6)
C19 0.1326 (3) 0.7327 (3) 0.70324 (12) 0.0667 (9)
H19A 0.1353 0.7807 0.6729 0.080*
C16 0.1216 (2) 0.5589 (2) 0.73859 (11) 0.0483 (6)
N6 0.1332 (2) 0.7114 (2) 0.80173 (10) 0.0705 (8)
C15 0.1147 (2) 0.4379 (2) 0.72912 (11) 0.0462 (6)
C20 0.1401 (3) 0.8922 (3) 0.76683 (13) 0.0628 (8)
C18 0.1356 (2) 0.7745 (2) 0.75668 (12) 0.0539 (7)
C1 0.1550 (2) 0.3072 (3) 0.49880 (13) 0.0640 (8)
H1A 0.1696 0.2608 0.5286 0.077*
N4 0.11379 (19) 0.4031 (2) 0.67615 (9) 0.0540 (6)
N3 0.1261 (3) 0.3264 (3) 0.40160 (11) 0.0812 (9)
C4 0.1200 (2) 0.4781 (3) 0.46515 (11) 0.0538 (7)
C5 0.1057 (2) 0.5976 (3) 0.47527 (11) 0.0522 (7)
N8 0.1425 (3) 0.9830 (3) 0.77670 (15) 0.0860 (11)
C2 0.1481 (2) 0.2638 (3) 0.44573 (13) 0.0618 (8)
C13 0.1112 (3) 0.2529 (3) 0.76347 (13) 0.0649 (9)
H13A 0.1102 0.2027 0.7930 0.078*
N1 0.1064 (2) 0.6321 (2) 0.52862 (9) 0.0609 (7)
C17B 0.1266 (3) 0.6037 (3) 0.79202 (12) 0.0690 (10)
H17A 0.1252 0.5561 0.8226 0.083*
C11 0.1116 (3) 0.2943 (3) 0.66699 (12) 0.0643 (9)
H11A 0.1100 0.2694 0.6301 0.077*
C6 0.0916 (3) 0.6712 (3) 0.43157 (12) 0.0668 (9)
H6A 0.0907 0.6461 0.3947 0.080*
C14 0.1122 (3) 0.3652 (3) 0.77357 (12) 0.0606 (8)
H14A 0.1112 0.3915 0.8102 0.073*
C12 0.1117 (3) 0.2179 (3) 0.70918 (13) 0.0637 (8)
H12A 0.1120 0.1430 0.7009 0.076*
C10 0.1610 (3) 0.1471 (4) 0.43460 (15) 0.0709 (9)
C9 0.0938 (3) 0.7393 (3) 0.53821 (13) 0.0724 (10)
H9A 0.0941 0.7631 0.5753 0.087*
C7 0.0789 (3) 0.7812 (3) 0.44284 (13) 0.0761 (11)
H7A 0.0693 0.8311 0.4137 0.091*
C8 0.0805 (3) 0.8168 (3) 0.49718 (14) 0.0752 (10)
H8A 0.0728 0.8909 0.5060 0.090*
N7 0.1715 (3) 0.0567 (3) 0.42452 (16) 0.0910 (10)
C3 0.1130 (3) 0.4318 (3) 0.41204 (13) 0.0793 (11)
H3A 0.0981 0.4780 0.3821 0.095*
N9 0.3705 (3) 0.5055 (3) 0.60786 (12) 0.0663 (8)
O1 0.3136 (2) 0.4333 (3) 0.61980 (14) 0.0984 (9)
O2 0.3387 (3) 0.5884 (3) 0.58609 (14) 0.1118 (11)
O3 0.4546 (3) 0.4916 (3) 0.61817 (18) 0.1278 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0916 (2) 0.06265 (17) 0.03086 (12) 0.00339 (13) −0.00402 (10) 0.01006 (10)
N5 0.105 (2) 0.0443 (14) 0.0350 (12) −0.0033 (13) 0.0086 (12) 0.0042 (10)
N2 0.0754 (17) 0.0645 (17) 0.0334 (11) 0.0054 (13) −0.0044 (11) 0.0051 (11)
C19 0.114 (3) 0.0477 (18) 0.0387 (14) −0.0044 (17) 0.0097 (16) 0.0058 (13)
C16 0.0663 (18) 0.0449 (15) 0.0339 (13) 0.0023 (13) 0.0041 (11) 0.0039 (11)
N6 0.124 (3) 0.0491 (15) 0.0385 (12) 0.0014 (15) 0.0042 (14) −0.0024 (12)
C15 0.0623 (17) 0.0428 (15) 0.0334 (12) 0.0014 (13) 0.0018 (11) −0.0008 (11)
C20 0.090 (2) 0.050 (2) 0.0479 (16) −0.0007 (17) 0.0101 (16) −0.0005 (14)
C18 0.072 (2) 0.0433 (16) 0.0464 (15) 0.0000 (14) 0.0079 (13) −0.0014 (13)
C1 0.080 (2) 0.069 (2) 0.0432 (16) 0.0067 (17) −0.0080 (15) 0.0051 (15)
N4 0.0842 (17) 0.0446 (14) 0.0332 (11) 0.0018 (12) 0.0021 (11) 0.0007 (10)
N3 0.127 (3) 0.077 (2) 0.0402 (14) −0.0038 (19) −0.0035 (15) −0.0020 (14)
C4 0.0628 (18) 0.066 (2) 0.0320 (13) −0.0044 (15) 0.0005 (12) 0.0074 (13)
C5 0.0596 (17) 0.0646 (19) 0.0322 (12) −0.0027 (15) −0.0009 (12) 0.0089 (12)
N8 0.139 (3) 0.0503 (18) 0.069 (2) −0.0001 (18) 0.0090 (19) −0.0048 (15)
C2 0.068 (2) 0.068 (2) 0.0493 (16) −0.0040 (17) −0.0014 (14) −0.0036 (15)
C13 0.104 (3) 0.0476 (18) 0.0434 (15) −0.0059 (17) −0.0042 (16) 0.0107 (13)
N1 0.0833 (18) 0.0636 (17) 0.0358 (12) −0.0005 (14) −0.0047 (12) 0.0078 (12)
C17B 0.128 (3) 0.0420 (17) 0.0372 (15) 0.0015 (18) 0.0034 (16) 0.0044 (13)
C11 0.108 (3) 0.0482 (18) 0.0373 (15) −0.0021 (17) −0.0001 (15) −0.0038 (13)
C6 0.087 (2) 0.078 (2) 0.0353 (14) 0.0091 (19) 0.0002 (14) 0.0127 (15)
C14 0.097 (2) 0.0517 (18) 0.0330 (14) −0.0058 (17) −0.0010 (14) 0.0045 (13)
C12 0.097 (2) 0.0418 (17) 0.0527 (17) −0.0037 (16) −0.0004 (16) −0.0017 (14)
C10 0.074 (2) 0.080 (3) 0.059 (2) 0.000 (2) −0.0075 (16) −0.0096 (19)
C9 0.106 (3) 0.068 (2) 0.0438 (16) 0.003 (2) −0.0050 (17) 0.0031 (16)
C7 0.104 (3) 0.075 (3) 0.0491 (18) 0.014 (2) 0.0014 (18) 0.0234 (17)
C8 0.102 (3) 0.066 (2) 0.0574 (19) 0.0054 (19) −0.0033 (18) 0.0120 (17)
N7 0.097 (3) 0.078 (2) 0.098 (3) 0.004 (2) −0.022 (2) −0.021 (2)
C3 0.134 (3) 0.069 (2) 0.0357 (15) −0.003 (2) −0.0082 (18) 0.0084 (16)
N9 0.083 (2) 0.065 (2) 0.0509 (16) −0.0066 (15) 0.0031 (14) −0.0043 (13)
O1 0.093 (2) 0.084 (2) 0.118 (2) −0.0032 (17) −0.0003 (17) 0.0475 (18)
O2 0.175 (3) 0.0582 (17) 0.102 (2) −0.0110 (18) −0.027 (2) 0.0188 (17)
O3 0.078 (2) 0.156 (3) 0.150 (3) −0.005 (2) −0.008 (2) −0.026 (2)

Geometric parameters (Å, °)

Ag1—N1 2.301 (2) C4—C5 1.483 (4)
Ag1—N4 2.319 (2) C5—N1 1.338 (4)
Ag1—N2 2.545 (3) C5—C6 1.386 (4)
Ag1—O1 2.547 (3) C2—C10 1.453 (6)
Ag1—N5 2.579 (2) C13—C12 1.362 (4)
N5—C16 1.329 (3) C13—C14 1.383 (4)
N5—C19 1.338 (4) C13—H13A 0.9300
N2—C4 1.329 (4) N1—C9 1.333 (4)
N2—C1 1.332 (4) C17B—H17A 0.9300
C19—C18 1.371 (4) C11—C12 1.368 (4)
C19—H19A 0.9300 C11—H11A 0.9300
C16—C17B 1.386 (4) C6—C7 1.374 (5)
C16—C15 1.489 (4) C6—H6A 0.9300
N6—C18 1.319 (4) C14—H14A 0.9300
N6—C17B 1.331 (4) C12—H12A 0.9300
C15—N4 1.331 (3) C10—N7 1.132 (5)
C15—C14 1.379 (4) C9—C8 1.369 (4)
C20—N8 1.128 (4) C9—H9A 0.9300
C20—C18 1.450 (4) C7—C8 1.365 (5)
C1—C2 1.373 (4) C7—H7A 0.9300
C1—H1A 0.9300 C8—H8A 0.9300
N4—C11 1.338 (4) C3—H3A 0.9300
N3—C3 1.317 (5) N9—O3 1.215 (5)
N3—C2 1.333 (4) N9—O2 1.216 (4)
C4—C3 1.388 (4) N9—O1 1.218 (4)
N1—Ag1—N4 151.94 (10) C6—C5—C4 121.8 (3)
N1—Ag1—N2 68.39 (9) N3—C2—C1 121.7 (3)
N4—Ag1—N2 111.09 (9) N3—C2—C10 116.1 (3)
N1—Ag1—O1 127.70 (10) C1—C2—C10 122.2 (3)
N4—Ag1—O1 79.74 (9) C12—C13—C14 118.2 (3)
N2—Ag1—O1 89.70 (10) C12—C13—H13A 120.9
N1—Ag1—N5 107.92 (9) C14—C13—H13A 120.9
N4—Ag1—N5 67.26 (8) C9—N1—C5 117.8 (3)
N2—Ag1—N5 169.60 (9) C9—N1—Ag1 119.6 (2)
O1—Ag1—N5 99.92 (10) C5—N1—Ag1 121.9 (2)
C16—N5—C19 117.2 (3) N6—C17B—C16 123.2 (3)
C16—N5—Ag1 113.13 (18) N6—C17B—H17A 118.4
C19—N5—Ag1 128.68 (19) C16—C17B—H17A 118.4
C4—N2—C1 117.6 (3) N4—C11—C12 123.3 (3)
C4—N2—Ag1 113.5 (2) N4—C11—H11A 118.4
C1—N2—Ag1 128.9 (2) C12—C11—H11A 118.4
N5—C19—C18 121.4 (3) C7—C6—C5 119.8 (3)
N5—C19—H19A 119.3 C7—C6—H6A 120.1
C18—C19—H19A 119.3 C5—C6—H6A 120.1
N5—C16—C17B 120.0 (3) C15—C14—C13 119.8 (3)
N5—C16—C15 118.0 (2) C15—C14—H14A 120.1
C17B—C16—C15 121.9 (2) C13—C14—H14A 120.1
C18—N6—C17B 115.5 (3) C13—C12—C11 119.1 (3)
N4—C15—C14 121.7 (3) C13—C12—H12A 120.4
N4—C15—C16 117.2 (2) C11—C12—H12A 120.4
C14—C15—C16 121.1 (2) N7—C10—C2 178.2 (4)
N8—C20—C18 177.4 (4) N1—C9—C8 124.5 (3)
N6—C18—C19 122.7 (3) N1—C9—H9A 117.8
N6—C18—C20 115.9 (3) C8—C9—H9A 117.8
C19—C18—C20 121.4 (3) C8—C7—C6 119.4 (3)
N2—C1—C2 121.7 (3) C8—C7—H7A 120.3
N2—C1—H1A 119.2 C6—C7—H7A 120.3
C2—C1—H1A 119.2 C7—C8—C9 117.5 (3)
C15—N4—C11 117.9 (2) C7—C8—H8A 121.2
C15—N4—Ag1 122.46 (19) C9—C8—H8A 121.2
C11—N4—Ag1 118.15 (19) N3—C3—C4 123.7 (3)
C3—N3—C2 115.9 (3) N3—C3—H3A 118.1
N2—C4—C3 119.4 (3) C4—C3—H3A 118.1
N2—C4—C5 118.3 (2) O3—N9—O2 123.7 (4)
C3—C4—C5 122.3 (3) O3—N9—O1 119.2 (4)
N1—C5—C6 120.9 (3) O2—N9—O1 117.0 (4)
N1—C5—C4 117.3 (2) N9—O1—Ag1 105.0 (2)
N1—Ag1—N5—C16 161.6 (2) Ag1—N2—C4—C5 0.6 (3)
N4—Ag1—N5—C16 11.1 (2) N2—C4—C5—N1 −5.9 (4)
N2—Ag1—N5—C16 94.1 (5) C3—C4—C5—N1 174.7 (3)
O1—Ag1—N5—C16 −63.2 (2) N2—C4—C5—C6 174.4 (3)
N1—Ag1—N5—C19 −30.4 (3) C3—C4—C5—C6 −5.0 (5)
N4—Ag1—N5—C19 179.1 (3) C3—N3—C2—C1 0.9 (6)
N2—Ag1—N5—C19 −98.0 (5) C3—N3—C2—C10 179.0 (4)
O1—Ag1—N5—C19 104.7 (3) N2—C1—C2—N3 −0.8 (5)
N1—Ag1—N2—C4 2.6 (2) N2—C1—C2—C10 −178.8 (3)
N4—Ag1—N2—C4 152.4 (2) C6—C5—N1—C9 −0.5 (5)
O1—Ag1—N2—C4 −128.7 (2) C4—C5—N1—C9 179.8 (3)
N5—Ag1—N2—C4 73.6 (5) C6—C5—N1—Ag1 −171.4 (2)
N1—Ag1—N2—C1 −177.5 (3) C4—C5—N1—Ag1 8.9 (4)
N4—Ag1—N2—C1 −27.7 (3) N4—Ag1—N1—C9 88.5 (3)
O1—Ag1—N2—C1 51.2 (3) N2—Ag1—N1—C9 −176.9 (3)
N5—Ag1—N2—C1 −106.5 (5) O1—Ag1—N1—C9 −105.2 (3)
C16—N5—C19—C18 0.2 (5) N5—Ag1—N1—C9 13.4 (3)
Ag1—N5—C19—C18 −167.3 (3) N4—Ag1—N1—C5 −100.8 (3)
C19—N5—C16—C17B −1.4 (5) N2—Ag1—N1—C5 −6.2 (2)
Ag1—N5—C16—C17B 168.0 (3) O1—Ag1—N1—C5 65.5 (3)
C19—N5—C16—C15 −179.5 (3) N5—Ag1—N1—C5 −175.9 (2)
Ag1—N5—C16—C15 −10.1 (3) C18—N6—C17B—C16 −0.6 (6)
N5—C16—C15—N4 0.4 (4) N5—C16—C17B—N6 1.7 (6)
C17B—C16—C15—N4 −177.7 (3) C15—C16—C17B—N6 179.7 (3)
N5—C16—C15—C14 178.7 (3) C15—N4—C11—C12 −0.9 (5)
C17B—C16—C15—C14 0.6 (5) Ag1—N4—C11—C12 165.4 (3)
C17B—N6—C18—C19 −0.7 (5) N1—C5—C6—C7 0.5 (5)
C17B—N6—C18—C20 178.4 (3) C4—C5—C6—C7 −179.8 (3)
N5—C19—C18—N6 0.9 (6) N4—C15—C14—C13 1.8 (5)
N5—C19—C18—C20 −178.1 (3) C16—C15—C14—C13 −176.4 (3)
C4—N2—C1—C2 0.3 (5) C12—C13—C14—C15 −0.7 (6)
Ag1—N2—C1—C2 −179.6 (2) C14—C13—C12—C11 −1.0 (6)
C14—C15—N4—C11 −0.9 (5) N4—C11—C12—C13 1.9 (6)
C16—C15—N4—C11 177.3 (3) C5—N1—C9—C8 −0.2 (6)
C14—C15—N4—Ag1 −166.7 (2) Ag1—N1—C9—C8 170.9 (3)
C16—C15—N4—Ag1 11.5 (4) C5—C6—C7—C8 0.1 (6)
N1—Ag1—N4—C15 −97.5 (3) C6—C7—C8—C9 −0.7 (6)
N2—Ag1—N4—C15 179.1 (2) N1—C9—C8—C7 0.8 (6)
O1—Ag1—N4—C15 93.5 (3) C2—N3—C3—C4 −0.5 (6)
N5—Ag1—N4—C15 −11.9 (2) N2—C4—C3—N3 0.0 (6)
N1—Ag1—N4—C11 96.8 (3) C5—C4—C3—N3 179.4 (4)
N2—Ag1—N4—C11 13.4 (3) O3—N9—O1—Ag1 172.5 (3)
O1—Ag1—N4—C11 −72.3 (3) O2—N9—O1—Ag1 −7.3 (4)
N5—Ag1—N4—C11 −177.7 (3) N1—Ag1—O1—N9 39.1 (3)
C1—N2—C4—C3 0.1 (5) N4—Ag1—O1—N9 −147.4 (3)
Ag1—N2—C4—C3 180.0 (3) N2—Ag1—O1—N9 101.1 (2)
C1—N2—C4—C5 −179.3 (3) N5—Ag1—O1—N9 −82.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C19—H19A···O1i 0.93 2.35 3.233 (3) 157
C11—H11A···O2ii 0.93 2.54 3.232 (5) 132
C13—H13A···N8iii 0.93 2.73 3.319 (3) 122

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1/2, y−1/2, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2135).

References

  1. Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dunne, S. J., Summers, L. A. & von Nagy-Felsobuki, E. I. (1997). Coord. Chem. Rev. 165, 1–92.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  5. Wang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232–m1233. [DOI] [PMC free article] [PubMed]
  6. Wang, Y., Zhao, X. Q., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2009). Cryst. Growth Des 9, 2137–2145.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049221/zq2135sup1.cif

e-67-m1863-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049221/zq2135Isup2.hkl

e-67-m1863-Isup2.hkl (246.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES