Abstract
The redox potentials of electron transfer proteins vary over a wide range, even when the type of redox center is the same. Rees [Proc. Natl. Acad. Sci. USA (1985) 82, 3082-3085] proposed that this variation of redox potential partly reflects the different net charges of the proteins, and he presented a linear correlation between these two properties for 36 proteins. A review of the factors that influence protein redox potentials makes it clear that this linear correlation is fortuitous. The key factors influencing redox potentials are the contributions to the Gibbs energy difference between the two redox states, resulting from bonding interactions at the redox center, electrostatic interactions between the redox-center charge and polar groups within the protein and solvent, and redox-state conformational changes. The relative importance of these terms is likely to vary from protein to protein.
Full text
PDF

Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carter C. W., Jr New stereochemical analogies between iron-sulfur electron transport proteins. J Biol Chem. 1977 Nov 10;252(21):7802–7811. [PubMed] [Google Scholar]
- Churg A. K., Warshel A. Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins. Biochemistry. 1986 Apr 8;25(7):1675–1681. doi: 10.1021/bi00355a035. [DOI] [PubMed] [Google Scholar]
- Dervartanian D. V., Xavier A. V., Gall J. L. EPR determination of the oxidation-reduction potentials of the hemes in cytochrome c3 from Desulfovibrio vulgaris. Biochimie. 1978;60(3):321–325. doi: 10.1016/s0300-9084(78)80829-3. [DOI] [PubMed] [Google Scholar]
- Gilson M. K., Rashin A., Fine R., Honig B. On the calculation of electrostatic interactions in proteins. J Mol Biol. 1985 Aug 5;184(3):503–516. doi: 10.1016/0022-2836(85)90297-9. [DOI] [PubMed] [Google Scholar]
- Goldkorn T., Schejter A. The redox potential of cytochrome c-552 from Euglena gracillis: a thermodynamic study. Arch Biochem Biophys. 1976 Nov;177(1):39–45. doi: 10.1016/0003-9861(76)90413-6. [DOI] [PubMed] [Google Scholar]
- Gray J. C. Purification and properties of monomeric cytochrome f from charlock, Sinapis arvensis L. Eur J Biochem. 1978 Jan 2;82(1):133–141. doi: 10.1111/j.1432-1033.1978.tb12004.x. [DOI] [PubMed] [Google Scholar]
- Kassner R. J. A theoretical model for the effects of local nonpolar heme environments on the redox potentials in cytochromes. J Am Chem Soc. 1973 Apr 18;95(8):2674–2677. doi: 10.1021/ja00789a044. [DOI] [PubMed] [Google Scholar]
- Margalit R., Schejter A. Cytochrome c: a thermodynamic study of the relationships among oxidation state, ion-binding and structural parameters. 1. The effects of temperature, pH and electrostatic media on the standard redox potential of cytochrome c. Eur J Biochem. 1973 Feb 1;32(3):492–499. doi: 10.1111/j.1432-1033.1973.tb02633.x. [DOI] [PubMed] [Google Scholar]
- Moore G. R. Control of redox properties of cytochrome c by special electrostatic interactions. FEBS Lett. 1983 Sep 19;161(2):171–175. doi: 10.1016/0014-5793(83)81001-1. [DOI] [PubMed] [Google Scholar]
- Moore G. R., Pettigrew G. W., Pitt R. C., Williams R. J. pH dependence of the redox potential of Pseudomonas aeruginosa cytochrome c-551. Biochim Biophys Acta. 1980 Apr 2;590(2):261–271. doi: 10.1016/0005-2728(80)90030-4. [DOI] [PubMed] [Google Scholar]
- Moore G. R., Williams R. J. Structural basis for the variation in redox potential of cytochromes. FEBS Lett. 1977 Jul 15;79(2):229–232. doi: 10.1016/0014-5793(77)80793-x. [DOI] [PubMed] [Google Scholar]
- Nicholls P. Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta. 1974 Dec 30;346(3-4):261–310. doi: 10.1016/0304-4173(74)90003-2. [DOI] [PubMed] [Google Scholar]
- Pettigrew G. W., Bartsch R. G., Meyer T. E., Kamen M. D. Redox potentials of the photosynthetic bacterial cytochromes c2 and the structural bases for variability. Biochim Biophys Acta. 1978 Sep 7;503(3):509–523. doi: 10.1016/0005-2728(78)90150-0. [DOI] [PubMed] [Google Scholar]
- Przysiecki C. T., Meyer T. E., Cusanovich M. A. Circular dichroism and redox properties of high redox potential ferredoxins. Biochemistry. 1985 May 7;24(10):2542–2549. doi: 10.1021/bi00331a022. [DOI] [PubMed] [Google Scholar]
- Rees D. C. Electrostatic influence on energetics of electron transfer reactions. Proc Natl Acad Sci U S A. 1985 May;82(10):3082–3085. doi: 10.1073/pnas.82.10.3082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers N. K., Sternberg M. J. Electrostatic interactions in globular proteins. Different dielectric models applied to the packing of alpha-helices. J Mol Biol. 1984 Apr 15;174(3):527–542. doi: 10.1016/0022-2836(84)90334-6. [DOI] [PubMed] [Google Scholar]
- Sheridan R. P., Allen L. C., Carter C. W., Jr Coupling between oxidation state and hydrogen bond conformation in high potential iron-sulfur protein. J Biol Chem. 1981 May 25;256(10):5052–5057. [PubMed] [Google Scholar]
- Stellwagen E. Haem exposure as the determinate of oxidation-reduction potential of haem proteins. Nature. 1978 Sep 7;275(5675):73–74. doi: 10.1038/275073a0. [DOI] [PubMed] [Google Scholar]
- Tarr G. E., Fitch W. M. Amino acid sequence of cytochrome c from Tetrahymena pyriformis Phenoset A. Biochem J. 1976 Nov;159(2):193–199. doi: 10.1042/bj1590193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warshel A., Russell S. T. Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys. 1984 Aug;17(3):283–422. doi: 10.1017/s0033583500005333. [DOI] [PubMed] [Google Scholar]
