Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jul;83(14):5005–5009. doi: 10.1073/pnas.83.14.5005

Tissue distribution, immunoreactivity, and physical properties of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.

M R el-Maghrabi, J J Correia, P J Heil, T M Pate, C E Cobb, S J Pilkis
PMCID: PMC323878  PMID: 3014526

Abstract

6-Phosphofructo-2-kinase (EC 2.7.1.105) and fructose-2,6-bisphosphatase (EC 3.1.3.46) activities were determined in various rat tissues, the latter by using a method based on the formation of a phosphorylated enzyme intermediate during the course of catalysis. Both activities from liver, skeletal muscle, lung, kidney, and testis copurified during polyethylene glycol fractionation, anion-exchange and blue Sepharose chromatography, and gel filtration. The Stokes radius of these enzymes and of the liver bifunctional enzyme was 45 A. Extrahepatic tissues had only 10% or less of the kinase activity found in liver. The results indicate that a liver-type bifunctional enzyme is present in most extrahepatic tissues but that it is minimally expressed. However, the ratio of kinase to bisphosphatase activity in most extrahepatic tissues was 4- to 6-fold higher than in liver, whereas heart 6-phosphofructo-2-kinase had no associated bisphosphatase activity, although its Stokes radius was also 45 A. The heart enzyme was not precipitated by an antiserum to the liver enzyme, whereas only a fraction of the kidney and testis activities was precipitated by this antiserum. The data support the existence of a distinct form of extrahepatic 6-phosphofructo-2-kinase, most readily demonstrated in heart, which may not be bifunctional.

Full text

PDF
5005

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansevin A. T., Roark D. E., Yphantis D. A. Improved ultracentrifuge cells for high-speed sedimentation equilibrium studies with interference optics. Anal Biochem. 1970 Mar;34:237–261. doi: 10.1016/0003-2697(70)90103-x. [DOI] [PubMed] [Google Scholar]
  2. El-Maghrabi M. R., Claus T. H., Pilkis J., Fox E., Pilkis S. J. Regulation of rat liver fructose 2,6-bisphosphatase. J Biol Chem. 1982 Jul 10;257(13):7603–7607. [PubMed] [Google Scholar]
  3. El-Maghrabi M. R., Fox E., Pilkis J., Pilkis S. J. Cyclic AMP-dependent phosphorylation of rat liver 6-phosphofructo 2-kinase, fructose 2,6-bisphosphatase. Biochem Biophys Res Commun. 1982 Jun 15;106(3):794–802. doi: 10.1016/0006-291x(82)91780-6. [DOI] [PubMed] [Google Scholar]
  4. El-Maghrabi M. R., Pate T. M., Murray K. J., Pilkis S. J. Differential effects of proteolysis and protein modification on the activities of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem. 1984 Nov 10;259(21):13096–13103. [PubMed] [Google Scholar]
  5. El-Maghrabi M. R., Pate T. M., Pilkis J., Pilkis S. J. Effect of sulfhydryl modification on the activities of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem. 1984 Nov 10;259(21):13104–13110. [PubMed] [Google Scholar]
  6. El-Maghrabi M. R., Pilkis S. J. Rat liver 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase: a review of relationships between the two activities of the enzyme. J Cell Biochem. 1984;26(1):1–17. doi: 10.1002/jcb.240260102. [DOI] [PubMed] [Google Scholar]
  7. Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
  8. Johnson M. L., Correia J. J., Yphantis D. A., Halvorson H. R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J. 1981 Dec;36(3):575–588. doi: 10.1016/S0006-3495(81)84753-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kountz P. D., el-Maghrabi M. R., Pilkis S. J. Isolation and characterization of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from bovine liver. Arch Biochem Biophys. 1985 May 1;238(2):531–543. doi: 10.1016/0003-9861(85)90197-3. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Lee J. C., Gekko K., Timasheff S. N. Measurements of preferential solvent interactions by densimetric techniques. Methods Enzymol. 1979;61:26–49. doi: 10.1016/0076-6879(79)61005-4. [DOI] [PubMed] [Google Scholar]
  12. Murray K. J., El-Maghrabi M. R., Kountz P. D., Lukas T. J., Soderling T. R., Pilkis S. J. Amino acid sequence of the phosphorylation site of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem. 1984 Jun 25;259(12):7673–7681. [PubMed] [Google Scholar]
  13. Pilkis S. J., El-Maghrabi M. R., McGrane M., Pilkis J., Fox E., Claus T. H. Fructose 2,6-bisphosphate: a mediator of hormone action at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle. Mol Cell Endocrinol. 1982 Mar;25(3):245–266. doi: 10.1016/0303-7207(82)90082-x. [DOI] [PubMed] [Google Scholar]
  14. Rider M. H., Foret D., Hue L. Comparison of purified bovine heart and rat liver 6-phosphofructo-2-kinase. Evidence for distinct isoenzymes. Biochem J. 1985 Oct 1;231(1):193–196. doi: 10.1042/bj2310193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roark D. E., Yphantis D. A. Studies of self-associating systems by equilibrium ultracentrifugation. Ann N Y Acad Sci. 1969 Nov 7;164(1):245–278. doi: 10.1111/j.1749-6632.1969.tb14043.x. [DOI] [PubMed] [Google Scholar]
  16. Roskoski R., Jr Assays of protein kinase. Methods Enzymol. 1983;99:3–6. doi: 10.1016/0076-6879(83)99034-1. [DOI] [PubMed] [Google Scholar]
  17. Sakakibara R., Kitajima S., Uyeda K. Differences in kinetic properties of phospho and dephospho forms of fructose-6-phosphate, 2-kinase and fructose 2,6-bisphosphatase. J Biol Chem. 1984 Jan 10;259(1):41–46. [PubMed] [Google Scholar]
  18. Sakakibara R., Tanaka T., Uyeda K., Richards E. G., Thomas H., Kangawa K., Matsuo H. Studies of the structure of fructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase. Biochemistry. 1985 Nov 19;24(24):6818–6824. doi: 10.1021/bi00345a013. [DOI] [PubMed] [Google Scholar]
  19. Stewart H. B., el-Maghrabi M. R., Pilkis S. J. Evidence for a phosphoenzyme intermediate in the reaction pathway of rat hepatic fructose-2,6-bisphosphatase. J Biol Chem. 1985 Oct 25;260(24):12935–12941. [PubMed] [Google Scholar]
  20. Teller D. C. Characterization of proteins by sedimentation equilibrium in the analytical ultracentrifuge. Methods Enzymol. 1973;27:346–441. doi: 10.1016/s0076-6879(73)27017-9. [DOI] [PubMed] [Google Scholar]
  21. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Willimas R. C., Jr A laser light source for the analytical ultracentrifuge. Anal Biochem. 1972 Jul;48(1):164–171. doi: 10.1016/0003-2697(72)90180-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES