Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 5;67(Pt 12):o3168. doi: 10.1107/S1600536811045648

4-Hy­droxy-3-meth­oxy­benzaldehyde–nicotinamide (1/1)

Fiona N-F How a, M S Amalina a, Hamid Khaledi b,*, Hapipah Mohd Ali b
PMCID: PMC3238839  PMID: 22199692

Abstract

In the title compound, C6H6N2O·C8H8O3, an equimolar co-crystal of nicotinamide and vanillin, the aromatic ring and the amide fragment of the nicotinamide mol­ecule make a dihedral angle of 32.6 (2)°. The vanillin mol­ecule is almost planar, with an r.m.s. deviation for all non-H atoms of 0.0094 Å. The vaniline and nicotinamide aromatic rings are nearly coplanar, the dihedral angle between them being 3.20 (9)°. In the crystal, the two components are linked through N—H⋯O and O—H⋯N hydrogen bonds into chains along the a axis. The chains are connected via C—H⋯O inter­actions, forming a three-dimensional polymeric structure.

Related literature

For the crystal structure of nicotinamide, see: Miwa et al. (1999); Li et al. (2011). For the structure of vanillin, see: Velavan et al. (1995).graphic file with name e-67-o3168-scheme1.jpg

Experimental

Crystal data

  • C6H6N2O·C8H8O3

  • M r = 274.27

  • Triclinic, Inline graphic

  • a = 4.8979 (1) Å

  • b = 8.5440 (2) Å

  • c = 15.4713 (4) Å

  • α = 98.108 (1)°

  • β = 92.810 (2)°

  • γ = 94.784 (2)°

  • V = 637.52 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.22 × 0.14 × 0.04 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.977, T max = 0.996

  • 3432 measured reflections

  • 2243 independent reflections

  • 1862 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.112

  • S = 1.05

  • 2243 reflections

  • 191 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811045648/pv2471sup1.cif

e-67-o3168-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045648/pv2471Isup2.hkl

e-67-o3168-Isup2.hkl (110.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811045648/pv2471Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.87 (2) 2.05 (2) 2.900 (2) 167 (2)
N1—H1B⋯O2ii 0.87 (2) 2.42 (2) 3.085 (2) 134 (2)
N1—H1B⋯O3ii 0.87 (2) 2.20 (2) 3.019 (2) 156 (2)
O2—H2⋯N2iii 0.85 (2) 1.80 (2) 2.634 (2) 164 (2)
C8—H8A⋯O1iv 0.98 2.59 3.381 (3) 137
C8—H8C⋯O2i 0.98 2.55 3.337 (2) 138
C13—H13⋯O1v 0.95 2.49 3.185 (3) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

IIUM is acknowledged for funding this study (Endowment fund A No. EDWA10–150–0697).

supplementary crystallographic information

Comment

The crystal structures of nicotinamide (Miwa et al.,1999; Li et al., 2011) and 4-hydroxy-3-methoxybenzaldehyde, vanillin, (Velavan et al.,1995) have been previously reported. The title compound is an equimolar cocrystal of nicotinamide and vanillin (Fig. 1). The nicotinamide aromatic ring and the plane of the amide fragment, N1—C9—O4, are twisted with respect to each other, making a dihedral angle of 32.6 (2)°. The vanillin molecule is essentially planar, the highest deviation from the best plane passing through all non-H atoms being 0.0156 (13) Å for O3 atom. In the crystal, the molecules of nicotinamide and vanillin are linked through N—H···O and O—H···N hydrogen bonds into infinite chains along the a axis (Fig. 2). The chains are connected via C—H···O interactions (Table 1 and Fig. 2) to form a three-dimensional polymeric structure.

Experimental

A mixture of vanillin (1.52 g, 0.1 mol) and nicotinamide (1.22 g, 0.1 mol) in ethanol (30 ml) was heated for 1 hr. The solvent was then evaporated partially and the solution was left at room temperature. The colorless crystals of the title compound were obtained in a day.

Refinement

The C-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H distances of 0.95 (aryl) and 0.98 (methyl) Å. The N– and O-bound H atoms were located in a difference Fourier map, and refined with distance restraints of O—H = 0.84 (2) Å and N—H = 0.88 (2) Å. For all H atoms, Uiso(H) was set to 1.2–1.5eq(carrier atom). An additional rigid-bond type restraint (DELU in SHELXL97) was placed on the displacement parameters of C1 and C2.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

A chain along the a axis formed by N—H···O and O—H···N hydrogen bonds.

Crystal data

C6H6N2O·C8H8O3 Z = 2
Mr = 274.27 F(000) = 288
Triclinic, P1 Dx = 1.429 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.8979 (1) Å Cell parameters from 1226 reflections
b = 8.5440 (2) Å θ = 2.6–29.7°
c = 15.4713 (4) Å µ = 0.11 mm1
α = 98.108 (1)° T = 100 K
β = 92.810 (2)° Lath, colorless
γ = 94.784 (2)° 0.22 × 0.14 × 0.04 mm
V = 637.52 (3) Å3

Data collection

Bruker APEXII CCD diffractometer 2243 independent reflections
Radiation source: fine-focus sealed tube 1862 reflections with I > 2σ(I)
graphite Rint = 0.019
φ and ω scans θmax = 25.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −5→5
Tmin = 0.977, Tmax = 0.996 k = −10→10
3432 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.4685P] where P = (Fo2 + 2Fc2)/3
2243 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.66 e Å3
4 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3651 (3) 0.83011 (19) 0.61085 (10) 0.0359 (4)
O2 0.8107 (3) 0.63328 (16) 0.23075 (9) 0.0195 (3)
H2 0.949 (4) 0.698 (2) 0.2250 (15) 0.029*
O3 0.4028 (3) 0.44026 (16) 0.25734 (9) 0.0218 (3)
C1 0.3070 (5) 0.7306 (3) 0.54863 (14) 0.0286 (5)
H1 0.1529 0.6570 0.5522 0.034*
C2 0.4516 (4) 0.7113 (2) 0.46701 (13) 0.0210 (4)
C3 0.6726 (4) 0.8148 (2) 0.45164 (13) 0.0221 (5)
H3 0.7380 0.9016 0.4951 0.026*
C4 0.7972 (4) 0.7912 (2) 0.37307 (13) 0.0204 (4)
H4 0.9482 0.8620 0.3629 0.024*
C5 0.7035 (4) 0.6648 (2) 0.30888 (12) 0.0166 (4)
C6 0.4793 (4) 0.5600 (2) 0.32443 (12) 0.0176 (4)
C7 0.3561 (4) 0.5847 (2) 0.40255 (13) 0.0208 (5)
H7 0.2040 0.5146 0.4128 0.025*
C8 0.1709 (4) 0.3323 (2) 0.26827 (14) 0.0217 (5)
H8A 0.2110 0.2765 0.3179 0.033*
H8B 0.1328 0.2551 0.2150 0.033*
H8C 0.0103 0.3917 0.2793 0.033*
O4 0.8254 (3) 0.71964 (19) −0.04761 (9) 0.0299 (4)
N1 0.3766 (4) 0.6341 (2) −0.07875 (11) 0.0205 (4)
H1A 0.207 (3) 0.645 (3) −0.0672 (14) 0.025*
H1B 0.415 (4) 0.586 (2) −0.1293 (11) 0.025*
N2 0.2385 (3) 0.80224 (19) 0.18395 (10) 0.0170 (4)
C9 0.5840 (4) 0.7129 (2) −0.02755 (13) 0.0197 (4)
C10 0.5123 (4) 0.7959 (2) 0.05932 (12) 0.0169 (4)
C11 0.6653 (4) 0.9350 (2) 0.09779 (13) 0.0201 (4)
H11 0.8121 0.9801 0.0687 0.024*
C12 0.5998 (4) 1.0066 (2) 0.17913 (13) 0.0220 (5)
H12 0.6997 1.1023 0.2066 0.026*
C13 0.3864 (4) 0.9363 (2) 0.21971 (13) 0.0192 (4)
H13 0.3429 0.9856 0.2757 0.023*
C14 0.3015 (4) 0.7346 (2) 0.10499 (12) 0.0162 (4)
H14 0.1966 0.6397 0.0788 0.019*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0440 (10) 0.0363 (9) 0.0266 (9) 0.0056 (8) 0.0038 (7) 0.0006 (7)
O2 0.0182 (8) 0.0217 (7) 0.0174 (7) −0.0031 (6) 0.0053 (6) 0.0004 (6)
O3 0.0223 (8) 0.0214 (7) 0.0198 (7) −0.0045 (6) 0.0064 (6) −0.0016 (6)
C1 0.0356 (13) 0.0308 (12) 0.0189 (10) 0.0104 (10) −0.0028 (9) −0.0012 (9)
C2 0.0226 (11) 0.0246 (11) 0.0170 (10) 0.0074 (8) 0.0004 (8) 0.0045 (8)
C3 0.0270 (11) 0.0214 (10) 0.0165 (10) 0.0060 (9) −0.0036 (8) −0.0020 (8)
C4 0.0187 (10) 0.0193 (10) 0.0218 (11) −0.0018 (8) −0.0001 (8) 0.0014 (8)
C5 0.0157 (10) 0.0209 (10) 0.0145 (9) 0.0054 (8) 0.0026 (8) 0.0043 (8)
C6 0.0193 (10) 0.0176 (10) 0.0157 (10) 0.0033 (8) 0.0002 (8) 0.0007 (8)
C7 0.0193 (11) 0.0242 (11) 0.0199 (10) 0.0020 (8) 0.0046 (8) 0.0055 (8)
C8 0.0185 (11) 0.0198 (10) 0.0259 (11) −0.0031 (8) 0.0035 (8) 0.0021 (8)
O4 0.0144 (8) 0.0516 (10) 0.0228 (8) 0.0064 (7) 0.0038 (6) −0.0003 (7)
N1 0.0172 (9) 0.0279 (9) 0.0153 (9) 0.0046 (7) 0.0035 (7) −0.0030 (7)
N2 0.0171 (9) 0.0194 (8) 0.0148 (8) 0.0031 (7) 0.0012 (6) 0.0027 (6)
C9 0.0178 (11) 0.0255 (11) 0.0168 (10) 0.0055 (8) 0.0018 (8) 0.0042 (8)
C10 0.0144 (10) 0.0210 (10) 0.0156 (10) 0.0038 (8) −0.0008 (7) 0.0030 (8)
C11 0.0149 (10) 0.0240 (10) 0.0221 (10) 0.0003 (8) 0.0020 (8) 0.0058 (8)
C12 0.0227 (11) 0.0180 (10) 0.0234 (11) −0.0030 (8) −0.0011 (8) −0.0002 (8)
C13 0.0217 (11) 0.0192 (10) 0.0160 (10) 0.0031 (8) 0.0002 (8) 0.0001 (8)
C14 0.0157 (10) 0.0162 (9) 0.0161 (10) 0.0009 (7) −0.0013 (8) 0.0012 (7)

Geometric parameters (Å, °)

O1—C1 1.197 (3) C8—H8B 0.9800
O2—C5 1.343 (2) C8—H8C 0.9800
O2—H2 0.854 (16) O4—C9 1.236 (2)
O3—C6 1.365 (2) N1—C9 1.330 (3)
O3—C8 1.435 (2) N1—H1A 0.868 (16)
C1—C2 1.474 (3) N1—H1B 0.869 (16)
C1—H1 0.9500 N2—C13 1.336 (2)
C2—C3 1.391 (3) N2—C14 1.338 (2)
C2—C7 1.396 (3) C9—C10 1.500 (3)
C3—C4 1.384 (3) C10—C14 1.388 (3)
C3—H3 0.9500 C10—C11 1.392 (3)
C4—C5 1.391 (3) C11—C12 1.384 (3)
C4—H4 0.9500 C11—H11 0.9500
C5—C6 1.410 (3) C12—C13 1.384 (3)
C6—C7 1.375 (3) C12—H12 0.9500
C7—H7 0.9500 C13—H13 0.9500
C8—H8A 0.9800 C14—H14 0.9500
C5—O2—H2 112.6 (16) O3—C8—H8C 109.5
C6—O3—C8 117.44 (15) H8A—C8—H8C 109.5
O1—C1—C2 126.2 (2) H8B—C8—H8C 109.5
O1—C1—H1 116.9 C9—N1—H1A 121.6 (15)
C2—C1—H1 116.9 C9—N1—H1B 117.5 (15)
C3—C2—C7 119.56 (18) H1A—N1—H1B 120 (2)
C3—C2—C1 122.83 (19) C13—N2—C14 117.72 (17)
C7—C2—C1 117.59 (19) O4—C9—N1 123.82 (19)
C4—C3—C2 119.93 (19) O4—C9—C10 119.84 (18)
C4—C3—H3 120.0 N1—C9—C10 116.34 (17)
C2—C3—H3 120.0 C14—C10—C11 118.15 (18)
C3—C4—C5 120.68 (18) C14—C10—C9 121.73 (18)
C3—C4—H4 119.7 C11—C10—C9 120.07 (18)
C5—C4—H4 119.7 C12—C11—C10 118.88 (18)
O2—C5—C4 124.72 (18) C12—C11—H11 120.6
O2—C5—C6 115.90 (17) C10—C11—H11 120.6
C4—C5—C6 119.38 (18) C13—C12—C11 118.77 (19)
O3—C6—C7 125.62 (18) C13—C12—H12 120.6
O3—C6—C5 114.82 (17) C11—C12—H12 120.6
C7—C6—C5 119.56 (18) N2—C13—C12 123.12 (18)
C6—C7—C2 120.88 (19) N2—C13—H13 118.4
C6—C7—H7 119.6 C12—C13—H13 118.4
C2—C7—H7 119.6 N2—C14—C10 123.34 (18)
O3—C8—H8A 109.5 N2—C14—H14 118.3
O3—C8—H8B 109.5 C10—C14—H14 118.3
H8A—C8—H8B 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4i 0.87 (2) 2.05 (2) 2.900 (2) 167 (2)
N1—H1B···O2ii 0.87 (2) 2.42 (2) 3.085 (2) 134.(2)
N1—H1B···O3ii 0.87 (2) 2.20 (2) 3.019 (2) 156 (2)
O2—H2···N2iii 0.85 (2) 1.80 (2) 2.634 (2) 164 (2)
C8—H8A···O1iv 0.98 2.59 3.381 (3) 137.
C8—H8C···O2i 0.98 2.55 3.337 (2) 138.
C13—H13···O1v 0.95 2.49 3.185 (3) 130.

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2471).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Li, J., Bourne, S. A. & Caira, M. R. (2011). Chem. Commun. 47, 1530–1532. [DOI] [PubMed]
  4. Miwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78–84. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Velavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131–1133.
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811045648/pv2471sup1.cif

e-67-o3168-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045648/pv2471Isup2.hkl

e-67-o3168-Isup2.hkl (110.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811045648/pv2471Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES