Abstract
In the title compound, C18H14N2OS, the dihedral angle between the mean planes of the 3-naphthyl and 1-benzoyl rings is 20.7 (1)°. The crystal packing is stabilized by weak N—H⋯S interactions. Intramolecular N—H⋯O and C—H⋯O hydrogen bonding is also observed.
Related literature
For the biological activity of thiourea in medicinal chemistry, see: Saeed et al. (2009 ▶, 2010a
▶,b
▶); Maddani & Prabhu (2010 ▶). For the use of thiourea derivatives in organocatalysis, see: Jung & Kim (2008 ▶) and for their use as curing agents for epoxy resins, see: Saeed et al. (2011 ▶). For the use of thioureas as ligands in coordination chemistry, see: Burrows et al. (1999 ▶); Henderson et al. (2002 ▶); Schuster et al. (1990 ▶). For the pesticidal activity of acyl thioureas, see: Che et al. (1999 ▶). For standard bond lengths, see Allen et al. (1987 ▶).
Experimental
Crystal data
C18H14N2OS
M r = 306.37
Monoclinic,
a = 9.7368 (14) Å
b = 5.2256 (10) Å
c = 28.619 (4) Å
β = 92.126 (12)°
V = 1455.2 (4) Å3
Z = 4
Mo Kα radiation
μ = 0.23 mm−1
T = 173 K
0.35 × 0.08 × 0.08 mm
Data collection
Oxford Diffraction Xcalibur Eos Gemini diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010 ▶) T min = 0.925, T max = 0.982
12731 measured reflections
3460 independent reflections
2206 reflections with I > 2σ(I)
R int = 0.082
Refinement
R[F 2 > 2σ(F 2)] = 0.062
wR(F 2) = 0.135
S = 1.05
3460 reflections
205 parameters
2 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.25 e Å−3
Δρmin = −0.36 e Å−3
Data collection: CrysAlis PRO (Oxford Diffraction, 2010 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104582X/fk2043sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104582X/fk2043Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681104582X/fk2043Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N2—H2⋯O1 | 0.86 (2) | 1.85 (2) | 2.600 (3) | 144 (2) |
N1—H1⋯S1i | 0.86 (2) | 2.80 (2) | 3.591 (2) | 153 (2) |
C15—H15A⋯O1 | 0.95 | 2.51 | 3.411 (3) | 159 |
Symmetry code: (i) .
Acknowledgments
JPJ acknowledges the NSF–MRI program (grant No·CHE1039027) for funds to purchase the X-ray diffractometer.
supplementary crystallographic information
Comment
Thioureas are the subject of significant interest because of their usefulness in medicinal chemistry due to their biological activity as fungicides (Saeed et al., 2010a), anticancer (Saeed et al., 2010b),herbicides, rodenticides and phenoloxidase enzymatic inhibitors (Maddani & Prabhu, 2010). Recently, thiourea derivatives have found use in organocatalysis (Jung & Kim, 2008). Amino-thiourea derivatives (Saeed et al., 2009) and their transition metal complexes are used as curing agents for epoxy resins (Saeed et al., 2011). Thioureas have a long history as a ligand in coordination chemistry and coordinate readily to a metal via sulfur and oxygen (Burrows et al., 1999). These hard and soft donor atoms provide a multitude of bonding possibilities (Henderson et al., 2002). Hydrogen bonding behavior of some thioureas have been investigated and it is found that intramolecular hydrogen bonds between the carbonyl oxygen and a nitrogen atom is common. The complexing capacity of thiourea derivatives has been reported (Schuster et al., 1990). Also, some acyl thioureas have been found to possess pesticidal activities and promote plant growth while others have been shown to have a notable positive effect on the germination of maize seeds and on the chlorophyll contents in seedling leaves (Che et al., 1999). With the simultaneous presence of S, N and O electron donors, the versalitility and behavior of acylthioureas as building blocks in polydentate ligands for metal ions have become a recent topic of interest. Substituted acylthiourea ligands might act as monodentate sulfur donors, bidentate oxygen and nitrogen donors. In continuation of our research program concerned with structural modification of biologically active thiourea derivatives and their transition metal complexes, we aim to incorporate the aliphatic and aromatic moieties in the substituted phenyl nucleus with thiourea functionality to obtain new functions in an attempt to improve the antimicrobial profile of these compounds. In view of the importance of thiourea derivatives, the crystal structure of the title compound, C18H14N2OS, (I), is reported.
In the title compound, (I), the dihedral angle between the mean planes of the 3-naphthyl and 1-benzoyl rings is 20.7 (1)° (Fig. 1). Crystal packing is stabilized by weak N1—H1···S1 intermolecular interactions (Table 1, Fig. 2). N2—H2···O1 intramolecular hydrogen bonds are also observed (Table 1).
Experimental
A solution of benzoyl chloride (0.01 mol) in anhydrous acetone (80 ml) and 3% tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst (PTC) in anhydrous acetone was added dropwise to a suspension of dry ammonium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 45 min. After cooling to room temperature, a solution of 1-naphthylamine (0.01 mol) in anhydrous acetone (25 ml) was added dropwise and the resulting mixture refluxed for 2.5 h. Hydrochloric acid (0.1 N, 300 ml) was added, and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethanol.
Refinement
All H atoms were positioned with idealized geometry using a riding model, [C—H = 0.95Å and Uiso = 1.2Ueq(C,N)]. H(N) positions were refined freely.
Figures
Fig. 1.
Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the title compound viewed along the b axis. Dashed lines indicate weak N1—H1···S1 intermolecular interactions.
Crystal data
C18H14N2OS | F(000) = 640 |
Mr = 306.37 | Dx = 1.398 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1307 reflections |
a = 9.7368 (14) Å | θ = 3.5–32.3° |
b = 5.2256 (10) Å | µ = 0.23 mm−1 |
c = 28.619 (4) Å | T = 173 K |
β = 92.126 (12)° | Rod, colourless |
V = 1455.2 (4) Å3 | 0.35 × 0.08 × 0.08 mm |
Z = 4 |
Data collection
Oxford Diffraction Xcalibur Eos Gemini diffractometer | 3460 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2206 reflections with I > 2σ(I) |
graphite | Rint = 0.082 |
Detector resolution: 16.1500 pixels mm-1 | θmax = 27.9°, θmin = 4.0° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | k = −6→6 |
Tmin = 0.925, Tmax = 0.982 | l = −34→37 |
12731 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0427P)2 + 0.1745P] where P = (Fo2 + 2Fc2)/3 |
3460 reflections | (Δ/σ)max = 0.001 |
205 parameters | Δρmax = 0.25 e Å−3 |
2 restraints | Δρmin = −0.36 e Å−3 |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
S1 | 0.63172 (7) | 0.32704 (17) | 0.54848 (3) | 0.0446 (2) | |
O1 | 0.28206 (18) | 0.5576 (4) | 0.63936 (6) | 0.0395 (5) | |
N1 | 0.4117 (2) | 0.5657 (4) | 0.57512 (7) | 0.0300 (5) | |
H1 | 0.423 (3) | 0.632 (5) | 0.5480 (7) | 0.036* | |
N2 | 0.4889 (2) | 0.2542 (4) | 0.62654 (7) | 0.0280 (5) | |
H2 | 0.421 (2) | 0.315 (5) | 0.6413 (9) | 0.034* | |
C1 | 0.2515 (3) | 1.0084 (5) | 0.54374 (9) | 0.0313 (6) | |
H1A | 0.3367 | 0.9825 | 0.5293 | 0.038* | |
C2 | 0.1632 (3) | 1.1966 (5) | 0.52738 (10) | 0.0413 (7) | |
H2A | 0.1872 | 1.2993 | 0.5016 | 0.050* | |
C3 | 0.0399 (3) | 1.2359 (6) | 0.54847 (11) | 0.0427 (7) | |
H3A | −0.0216 | 1.3642 | 0.5369 | 0.051* | |
C4 | 0.0059 (3) | 1.0899 (6) | 0.58617 (10) | 0.0407 (7) | |
H4A | −0.0784 | 1.1195 | 0.6010 | 0.049* | |
C5 | 0.0929 (3) | 0.9015 (5) | 0.60260 (10) | 0.0364 (7) | |
H5A | 0.0685 | 0.8010 | 0.6287 | 0.044* | |
C6 | 0.2167 (2) | 0.8566 (5) | 0.58122 (8) | 0.0257 (5) | |
C7 | 0.3049 (2) | 0.6496 (5) | 0.60124 (8) | 0.0272 (6) | |
C8 | 0.5082 (2) | 0.3745 (5) | 0.58638 (9) | 0.0292 (6) | |
C9 | 0.5611 (2) | 0.0543 (5) | 0.64982 (9) | 0.0268 (6) | |
C10 | 0.6612 (2) | −0.0889 (5) | 0.62991 (9) | 0.0331 (6) | |
H10A | 0.6876 | −0.0526 | 0.5990 | 0.040* | |
C11 | 0.7248 (3) | −0.2889 (6) | 0.65515 (10) | 0.0395 (7) | |
H11A | 0.7964 | −0.3833 | 0.6415 | 0.047* | |
C12 | 0.6859 (3) | −0.3498 (5) | 0.69861 (10) | 0.0379 (7) | |
H12A | 0.7289 | −0.4890 | 0.7147 | 0.046* | |
C13 | 0.5827 (2) | −0.2094 (5) | 0.72029 (9) | 0.0297 (6) | |
C14 | 0.5195 (2) | −0.0002 (5) | 0.69628 (8) | 0.0261 (5) | |
C15 | 0.4192 (2) | 0.1399 (5) | 0.71991 (9) | 0.0306 (6) | |
H15A | 0.3758 | 0.2818 | 0.7048 | 0.037* | |
C16 | 0.3832 (3) | 0.0759 (5) | 0.76395 (9) | 0.0354 (7) | |
H16A | 0.3159 | 0.1740 | 0.7791 | 0.043* | |
C17 | 0.4444 (3) | −0.1323 (5) | 0.78703 (9) | 0.0371 (7) | |
H17A | 0.4181 | −0.1770 | 0.8176 | 0.045* | |
C18 | 0.5413 (3) | −0.2703 (5) | 0.76558 (9) | 0.0339 (6) | |
H18A | 0.5826 | −0.4119 | 0.7815 | 0.041* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0376 (4) | 0.0694 (6) | 0.0275 (4) | 0.0166 (4) | 0.0126 (3) | 0.0087 (4) |
O1 | 0.0407 (11) | 0.0504 (12) | 0.0283 (11) | 0.0153 (10) | 0.0124 (8) | 0.0099 (9) |
N1 | 0.0283 (11) | 0.0381 (13) | 0.0239 (12) | 0.0030 (10) | 0.0044 (9) | 0.0055 (10) |
N2 | 0.0248 (11) | 0.0373 (13) | 0.0223 (11) | 0.0044 (10) | 0.0066 (9) | 0.0002 (9) |
C1 | 0.0320 (14) | 0.0316 (15) | 0.0304 (15) | −0.0021 (12) | 0.0043 (11) | −0.0020 (12) |
C2 | 0.0535 (18) | 0.0349 (16) | 0.0356 (16) | 0.0020 (14) | 0.0032 (14) | 0.0069 (13) |
C3 | 0.0403 (16) | 0.0390 (17) | 0.0485 (19) | 0.0075 (14) | −0.0042 (14) | 0.0044 (14) |
C4 | 0.0312 (15) | 0.0450 (18) | 0.0460 (18) | 0.0060 (14) | 0.0049 (13) | 0.0053 (14) |
C5 | 0.0315 (14) | 0.0396 (17) | 0.0384 (16) | 0.0038 (13) | 0.0063 (12) | 0.0069 (13) |
C6 | 0.0249 (13) | 0.0277 (14) | 0.0245 (13) | −0.0005 (11) | 0.0015 (10) | −0.0014 (11) |
C7 | 0.0261 (13) | 0.0317 (14) | 0.0241 (13) | −0.0010 (11) | 0.0055 (10) | −0.0017 (11) |
C8 | 0.0233 (13) | 0.0381 (16) | 0.0260 (14) | 0.0033 (12) | 0.0009 (10) | −0.0009 (12) |
C9 | 0.0237 (12) | 0.0276 (14) | 0.0289 (14) | −0.0001 (11) | 0.0003 (10) | −0.0024 (11) |
C10 | 0.0285 (14) | 0.0390 (16) | 0.0319 (15) | 0.0033 (12) | 0.0017 (11) | −0.0021 (12) |
C11 | 0.0312 (15) | 0.0408 (17) | 0.0463 (18) | 0.0070 (13) | −0.0002 (13) | −0.0087 (14) |
C12 | 0.0376 (15) | 0.0348 (16) | 0.0409 (17) | 0.0019 (13) | −0.0050 (13) | 0.0004 (13) |
C13 | 0.0276 (13) | 0.0270 (14) | 0.0340 (15) | −0.0040 (11) | −0.0040 (11) | −0.0003 (11) |
C14 | 0.0258 (13) | 0.0260 (13) | 0.0263 (14) | −0.0058 (11) | −0.0010 (10) | −0.0011 (10) |
C15 | 0.0305 (14) | 0.0312 (14) | 0.0301 (14) | 0.0025 (12) | 0.0022 (11) | 0.0024 (11) |
C16 | 0.0394 (15) | 0.0372 (16) | 0.0302 (15) | 0.0005 (13) | 0.0074 (12) | 0.0024 (12) |
C17 | 0.0410 (16) | 0.0426 (17) | 0.0279 (15) | −0.0078 (14) | 0.0029 (12) | 0.0076 (13) |
C18 | 0.0381 (15) | 0.0286 (14) | 0.0342 (15) | −0.0080 (13) | −0.0083 (12) | 0.0053 (12) |
Geometric parameters (Å, °)
S1—C8 | 1.667 (2) | C6—C7 | 1.483 (3) |
O1—C7 | 1.220 (3) | C9—C10 | 1.370 (3) |
N1—C7 | 1.375 (3) | C9—C14 | 1.433 (3) |
N1—C8 | 1.401 (3) | C10—C11 | 1.401 (4) |
N1—H1 | 0.859 (16) | C10—H10A | 0.9500 |
N2—C8 | 1.329 (3) | C11—C12 | 1.351 (4) |
N2—C9 | 1.412 (3) | C11—H11A | 0.9500 |
N2—H2 | 0.861 (16) | C12—C13 | 1.407 (4) |
C1—C2 | 1.377 (4) | C12—H12A | 0.9500 |
C1—C6 | 1.386 (3) | C13—C18 | 1.408 (4) |
C1—H1A | 0.9500 | C13—C14 | 1.419 (3) |
C2—C3 | 1.379 (4) | C14—C15 | 1.413 (3) |
C2—H2A | 0.9500 | C15—C16 | 1.362 (3) |
C3—C4 | 1.372 (4) | C15—H15A | 0.9500 |
C3—H3A | 0.9500 | C16—C17 | 1.395 (4) |
C4—C5 | 1.370 (4) | C16—H16A | 0.9500 |
C4—H4A | 0.9500 | C17—C18 | 1.353 (4) |
C5—C6 | 1.392 (3) | C17—H17A | 0.9500 |
C5—H5A | 0.9500 | C18—H18A | 0.9500 |
C7—N1—C8 | 128.1 (2) | C10—C9—N2 | 123.9 (2) |
C7—N1—H1 | 119.1 (18) | C10—C9—C14 | 120.5 (2) |
C8—N1—H1 | 112.8 (18) | N2—C9—C14 | 115.6 (2) |
C8—N2—C9 | 132.4 (2) | C9—C10—C11 | 120.0 (3) |
C8—N2—H2 | 112.6 (18) | C9—C10—H10A | 120.0 |
C9—N2—H2 | 115.0 (18) | C11—C10—H10A | 120.0 |
C2—C1—C6 | 120.3 (2) | C12—C11—C10 | 121.1 (3) |
C2—C1—H1A | 119.9 | C12—C11—H11A | 119.5 |
C6—C1—H1A | 119.9 | C10—C11—H11A | 119.5 |
C1—C2—C3 | 120.1 (3) | C11—C12—C13 | 120.8 (3) |
C1—C2—H2A | 120.0 | C11—C12—H12A | 119.6 |
C3—C2—H2A | 120.0 | C13—C12—H12A | 119.6 |
C4—C3—C2 | 120.0 (3) | C12—C13—C18 | 121.4 (2) |
C4—C3—H3A | 120.0 | C12—C13—C14 | 119.5 (2) |
C2—C3—H3A | 120.0 | C18—C13—C14 | 119.1 (2) |
C5—C4—C3 | 120.4 (3) | C15—C14—C13 | 117.5 (2) |
C5—C4—H4A | 119.8 | C15—C14—C9 | 124.4 (2) |
C3—C4—H4A | 119.8 | C13—C14—C9 | 118.1 (2) |
C4—C5—C6 | 120.3 (3) | C16—C15—C14 | 121.4 (2) |
C4—C5—H5A | 119.9 | C16—C15—H15A | 119.3 |
C6—C5—H5A | 119.9 | C14—C15—H15A | 119.3 |
C1—C6—C5 | 119.0 (2) | C15—C16—C17 | 120.7 (3) |
C1—C6—C7 | 124.2 (2) | C15—C16—H16A | 119.7 |
C5—C6—C7 | 116.8 (2) | C17—C16—H16A | 119.7 |
O1—C7—N1 | 121.8 (2) | C18—C17—C16 | 119.6 (3) |
O1—C7—C6 | 120.7 (2) | C18—C17—H17A | 120.2 |
N1—C7—C6 | 117.5 (2) | C16—C17—H17A | 120.2 |
N2—C8—N1 | 114.9 (2) | C17—C18—C13 | 121.7 (3) |
N2—C8—S1 | 128.4 (2) | C17—C18—H18A | 119.2 |
N1—C8—S1 | 116.76 (19) | C13—C18—H18A | 119.2 |
C6—C1—C2—C3 | 0.4 (4) | C14—C9—C10—C11 | −0.6 (4) |
C1—C2—C3—C4 | 0.9 (5) | C9—C10—C11—C12 | 2.2 (4) |
C2—C3—C4—C5 | −1.1 (5) | C10—C11—C12—C13 | −1.7 (4) |
C3—C4—C5—C6 | 0.1 (4) | C11—C12—C13—C18 | −179.9 (2) |
C2—C1—C6—C5 | −1.5 (4) | C11—C12—C13—C14 | −0.5 (4) |
C2—C1—C6—C7 | 180.0 (2) | C12—C13—C14—C15 | −178.2 (2) |
C4—C5—C6—C1 | 1.2 (4) | C18—C13—C14—C15 | 1.2 (3) |
C4—C5—C6—C7 | 179.9 (2) | C12—C13—C14—C9 | 2.0 (3) |
C8—N1—C7—O1 | −0.4 (4) | C18—C13—C14—C9 | −178.6 (2) |
C8—N1—C7—C6 | 180.0 (2) | C10—C9—C14—C15 | 178.8 (2) |
C1—C6—C7—O1 | 165.4 (3) | N2—C9—C14—C15 | −3.5 (4) |
C5—C6—C7—O1 | −13.2 (4) | C10—C9—C14—C13 | −1.5 (3) |
C1—C6—C7—N1 | −15.0 (4) | N2—C9—C14—C13 | 176.2 (2) |
C5—C6—C7—N1 | 166.4 (2) | C13—C14—C15—C16 | −0.5 (4) |
C9—N2—C8—N1 | 179.7 (2) | C9—C14—C15—C16 | 179.2 (2) |
C9—N2—C8—S1 | −0.6 (4) | C14—C15—C16—C17 | −0.4 (4) |
C7—N1—C8—N2 | 3.1 (4) | C15—C16—C17—C18 | 0.7 (4) |
C7—N1—C8—S1 | −176.7 (2) | C16—C17—C18—C13 | 0.0 (4) |
C8—N2—C9—C10 | −10.9 (4) | C12—C13—C18—C17 | 178.4 (3) |
C8—N2—C9—C14 | 171.5 (3) | C14—C13—C18—C17 | −0.9 (4) |
N2—C9—C10—C11 | −178.1 (2) |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1 | 0.86 (2) | 1.85 (2) | 2.600 (3) | 144 (2) |
N1—H1···S1i | 0.86 (2) | 2.80 (2) | 3.591 (2) | 153 (2) |
C15—H15A···O1 | 0.95 | 2.51 | 3.411 (3) | 159. |
Symmetry codes: (i) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2043).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Burrows, A. D., Colman, M. D. & Mahon, M. F. (1999). Polyhedron, 18, 2665–2671.
- Che, D.-J., Li, G., Yao, X.-L., Wu, Q.-J., Wang, W.-L. & Zhu, Y. (1999). J. Organomet. Chem. 584, 190–196.
- Henderson, W., Nicholson, B. K., Dinger, M. B. & Bennett, R. L. (2002). Inorg. Chim. Acta, 338, 210–218.
- Jung, S. H. & Kim, D. Y. (2008). Tetrahedron Lett. 49, 5527–5530.
- Maddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327–2332. [DOI] [PubMed]
- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
- Saeed, S., Rashid, N., Hussain, R. & Jones, P. G. (2011). Eur. J. Chem. 2, 77–82.
- Saeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010b). Cent. Eur. J. Chem. 8, 550–558.
- Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010a). Eur. J. Med. Chem. 45, 1323–1331. [DOI] [PubMed]
- Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870–o1871. [DOI] [PMC free article] [PubMed]
- Schuster, M., Kugler, B. & Konig, K. H. (1990). Fresenius J. Anal. Chem. 338, 717–720.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104582X/fk2043sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104582X/fk2043Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681104582X/fk2043Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report