Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 5;67(Pt 12):o3187. doi: 10.1107/S160053681104582X

1-Benzoyl-3-(naphthalen-1-yl)thio­urea

Sohail Saeed a,*, Naghmana Rashid a, Jerry P Jasinski b, James A Golen b
PMCID: PMC3238855  PMID: 22199708

Abstract

In the title compound, C18H14N2OS, the dihedral angle between the mean planes of the 3-naphthyl and 1-benzoyl rings is 20.7 (1)°. The crystal packing is stabilized by weak N—H⋯S inter­actions. Intra­molecular N—H⋯O and C—H⋯O hydrogen bonding is also observed.

Related literature

For the biological activity of thio­urea in medicinal chemistry, see: Saeed et al. (2009, 2010a ,b ); Maddani & Prabhu (2010). For the use of thio­urea derivatives in organocatalysis, see: Jung & Kim (2008) and for their use as curing agents for ep­oxy resins, see: Saeed et al. (2011). For the use of thio­ureas as ligands in coordination chemistry, see: Burrows et al. (1999); Henderson et al. (2002); Schuster et al. (1990). For the pesticidal activity of acyl thio­ureas, see: Che et al. (1999). For standard bond lengths, see Allen et al. (1987).graphic file with name e-67-o3187-scheme1.jpg

Experimental

Crystal data

  • C18H14N2OS

  • M r = 306.37

  • Monoclinic, Inline graphic

  • a = 9.7368 (14) Å

  • b = 5.2256 (10) Å

  • c = 28.619 (4) Å

  • β = 92.126 (12)°

  • V = 1455.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.35 × 0.08 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.925, T max = 0.982

  • 12731 measured reflections

  • 3460 independent reflections

  • 2206 reflections with I > 2σ(I)

  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.135

  • S = 1.05

  • 3460 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104582X/fk2043sup1.cif

e-67-o3187-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104582X/fk2043Isup2.hkl

e-67-o3187-Isup2.hkl (169.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104582X/fk2043Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 (2) 1.85 (2) 2.600 (3) 144 (2)
N1—H1⋯S1i 0.86 (2) 2.80 (2) 3.591 (2) 153 (2)
C15—H15A⋯O1 0.95 2.51 3.411 (3) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

JPJ acknowledges the NSF–MRI program (grant No·CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Thioureas are the subject of significant interest because of their usefulness in medicinal chemistry due to their biological activity as fungicides (Saeed et al., 2010a), anticancer (Saeed et al., 2010b),herbicides, rodenticides and phenoloxidase enzymatic inhibitors (Maddani & Prabhu, 2010). Recently, thiourea derivatives have found use in organocatalysis (Jung & Kim, 2008). Amino-thiourea derivatives (Saeed et al., 2009) and their transition metal complexes are used as curing agents for epoxy resins (Saeed et al., 2011). Thioureas have a long history as a ligand in coordination chemistry and coordinate readily to a metal via sulfur and oxygen (Burrows et al., 1999). These hard and soft donor atoms provide a multitude of bonding possibilities (Henderson et al., 2002). Hydrogen bonding behavior of some thioureas have been investigated and it is found that intramolecular hydrogen bonds between the carbonyl oxygen and a nitrogen atom is common. The complexing capacity of thiourea derivatives has been reported (Schuster et al., 1990). Also, some acyl thioureas have been found to possess pesticidal activities and promote plant growth while others have been shown to have a notable positive effect on the germination of maize seeds and on the chlorophyll contents in seedling leaves (Che et al., 1999). With the simultaneous presence of S, N and O electron donors, the versalitility and behavior of acylthioureas as building blocks in polydentate ligands for metal ions have become a recent topic of interest. Substituted acylthiourea ligands might act as monodentate sulfur donors, bidentate oxygen and nitrogen donors. In continuation of our research program concerned with structural modification of biologically active thiourea derivatives and their transition metal complexes, we aim to incorporate the aliphatic and aromatic moieties in the substituted phenyl nucleus with thiourea functionality to obtain new functions in an attempt to improve the antimicrobial profile of these compounds. In view of the importance of thiourea derivatives, the crystal structure of the title compound, C18H14N2OS, (I), is reported.

In the title compound, (I), the dihedral angle between the mean planes of the 3-naphthyl and 1-benzoyl rings is 20.7 (1)° (Fig. 1). Crystal packing is stabilized by weak N1—H1···S1 intermolecular interactions (Table 1, Fig. 2). N2—H2···O1 intramolecular hydrogen bonds are also observed (Table 1).

Experimental

A solution of benzoyl chloride (0.01 mol) in anhydrous acetone (80 ml) and 3% tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst (PTC) in anhydrous acetone was added dropwise to a suspension of dry ammonium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 45 min. After cooling to room temperature, a solution of 1-naphthylamine (0.01 mol) in anhydrous acetone (25 ml) was added dropwise and the resulting mixture refluxed for 2.5 h. Hydrochloric acid (0.1 N, 300 ml) was added, and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethanol.

Refinement

All H atoms were positioned with idealized geometry using a riding model, [C—H = 0.95Å and Uiso = 1.2Ueq(C,N)]. H(N) positions were refined freely.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the b axis. Dashed lines indicate weak N1—H1···S1 intermolecular interactions.

Crystal data

C18H14N2OS F(000) = 640
Mr = 306.37 Dx = 1.398 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1307 reflections
a = 9.7368 (14) Å θ = 3.5–32.3°
b = 5.2256 (10) Å µ = 0.23 mm1
c = 28.619 (4) Å T = 173 K
β = 92.126 (12)° Rod, colourless
V = 1455.2 (4) Å3 0.35 × 0.08 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 3460 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2206 reflections with I > 2σ(I)
graphite Rint = 0.082
Detector resolution: 16.1500 pixels mm-1 θmax = 27.9°, θmin = 4.0°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −6→6
Tmin = 0.925, Tmax = 0.982 l = −34→37
12731 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.1745P] where P = (Fo2 + 2Fc2)/3
3460 reflections (Δ/σ)max = 0.001
205 parameters Δρmax = 0.25 e Å3
2 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger..

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.63172 (7) 0.32704 (17) 0.54848 (3) 0.0446 (2)
O1 0.28206 (18) 0.5576 (4) 0.63936 (6) 0.0395 (5)
N1 0.4117 (2) 0.5657 (4) 0.57512 (7) 0.0300 (5)
H1 0.423 (3) 0.632 (5) 0.5480 (7) 0.036*
N2 0.4889 (2) 0.2542 (4) 0.62654 (7) 0.0280 (5)
H2 0.421 (2) 0.315 (5) 0.6413 (9) 0.034*
C1 0.2515 (3) 1.0084 (5) 0.54374 (9) 0.0313 (6)
H1A 0.3367 0.9825 0.5293 0.038*
C2 0.1632 (3) 1.1966 (5) 0.52738 (10) 0.0413 (7)
H2A 0.1872 1.2993 0.5016 0.050*
C3 0.0399 (3) 1.2359 (6) 0.54847 (11) 0.0427 (7)
H3A −0.0216 1.3642 0.5369 0.051*
C4 0.0059 (3) 1.0899 (6) 0.58617 (10) 0.0407 (7)
H4A −0.0784 1.1195 0.6010 0.049*
C5 0.0929 (3) 0.9015 (5) 0.60260 (10) 0.0364 (7)
H5A 0.0685 0.8010 0.6287 0.044*
C6 0.2167 (2) 0.8566 (5) 0.58122 (8) 0.0257 (5)
C7 0.3049 (2) 0.6496 (5) 0.60124 (8) 0.0272 (6)
C8 0.5082 (2) 0.3745 (5) 0.58638 (9) 0.0292 (6)
C9 0.5611 (2) 0.0543 (5) 0.64982 (9) 0.0268 (6)
C10 0.6612 (2) −0.0889 (5) 0.62991 (9) 0.0331 (6)
H10A 0.6876 −0.0526 0.5990 0.040*
C11 0.7248 (3) −0.2889 (6) 0.65515 (10) 0.0395 (7)
H11A 0.7964 −0.3833 0.6415 0.047*
C12 0.6859 (3) −0.3498 (5) 0.69861 (10) 0.0379 (7)
H12A 0.7289 −0.4890 0.7147 0.046*
C13 0.5827 (2) −0.2094 (5) 0.72029 (9) 0.0297 (6)
C14 0.5195 (2) −0.0002 (5) 0.69628 (8) 0.0261 (5)
C15 0.4192 (2) 0.1399 (5) 0.71991 (9) 0.0306 (6)
H15A 0.3758 0.2818 0.7048 0.037*
C16 0.3832 (3) 0.0759 (5) 0.76395 (9) 0.0354 (7)
H16A 0.3159 0.1740 0.7791 0.043*
C17 0.4444 (3) −0.1323 (5) 0.78703 (9) 0.0371 (7)
H17A 0.4181 −0.1770 0.8176 0.045*
C18 0.5413 (3) −0.2703 (5) 0.76558 (9) 0.0339 (6)
H18A 0.5826 −0.4119 0.7815 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0376 (4) 0.0694 (6) 0.0275 (4) 0.0166 (4) 0.0126 (3) 0.0087 (4)
O1 0.0407 (11) 0.0504 (12) 0.0283 (11) 0.0153 (10) 0.0124 (8) 0.0099 (9)
N1 0.0283 (11) 0.0381 (13) 0.0239 (12) 0.0030 (10) 0.0044 (9) 0.0055 (10)
N2 0.0248 (11) 0.0373 (13) 0.0223 (11) 0.0044 (10) 0.0066 (9) 0.0002 (9)
C1 0.0320 (14) 0.0316 (15) 0.0304 (15) −0.0021 (12) 0.0043 (11) −0.0020 (12)
C2 0.0535 (18) 0.0349 (16) 0.0356 (16) 0.0020 (14) 0.0032 (14) 0.0069 (13)
C3 0.0403 (16) 0.0390 (17) 0.0485 (19) 0.0075 (14) −0.0042 (14) 0.0044 (14)
C4 0.0312 (15) 0.0450 (18) 0.0460 (18) 0.0060 (14) 0.0049 (13) 0.0053 (14)
C5 0.0315 (14) 0.0396 (17) 0.0384 (16) 0.0038 (13) 0.0063 (12) 0.0069 (13)
C6 0.0249 (13) 0.0277 (14) 0.0245 (13) −0.0005 (11) 0.0015 (10) −0.0014 (11)
C7 0.0261 (13) 0.0317 (14) 0.0241 (13) −0.0010 (11) 0.0055 (10) −0.0017 (11)
C8 0.0233 (13) 0.0381 (16) 0.0260 (14) 0.0033 (12) 0.0009 (10) −0.0009 (12)
C9 0.0237 (12) 0.0276 (14) 0.0289 (14) −0.0001 (11) 0.0003 (10) −0.0024 (11)
C10 0.0285 (14) 0.0390 (16) 0.0319 (15) 0.0033 (12) 0.0017 (11) −0.0021 (12)
C11 0.0312 (15) 0.0408 (17) 0.0463 (18) 0.0070 (13) −0.0002 (13) −0.0087 (14)
C12 0.0376 (15) 0.0348 (16) 0.0409 (17) 0.0019 (13) −0.0050 (13) 0.0004 (13)
C13 0.0276 (13) 0.0270 (14) 0.0340 (15) −0.0040 (11) −0.0040 (11) −0.0003 (11)
C14 0.0258 (13) 0.0260 (13) 0.0263 (14) −0.0058 (11) −0.0010 (10) −0.0011 (10)
C15 0.0305 (14) 0.0312 (14) 0.0301 (14) 0.0025 (12) 0.0022 (11) 0.0024 (11)
C16 0.0394 (15) 0.0372 (16) 0.0302 (15) 0.0005 (13) 0.0074 (12) 0.0024 (12)
C17 0.0410 (16) 0.0426 (17) 0.0279 (15) −0.0078 (14) 0.0029 (12) 0.0076 (13)
C18 0.0381 (15) 0.0286 (14) 0.0342 (15) −0.0080 (13) −0.0083 (12) 0.0053 (12)

Geometric parameters (Å, °)

S1—C8 1.667 (2) C6—C7 1.483 (3)
O1—C7 1.220 (3) C9—C10 1.370 (3)
N1—C7 1.375 (3) C9—C14 1.433 (3)
N1—C8 1.401 (3) C10—C11 1.401 (4)
N1—H1 0.859 (16) C10—H10A 0.9500
N2—C8 1.329 (3) C11—C12 1.351 (4)
N2—C9 1.412 (3) C11—H11A 0.9500
N2—H2 0.861 (16) C12—C13 1.407 (4)
C1—C2 1.377 (4) C12—H12A 0.9500
C1—C6 1.386 (3) C13—C18 1.408 (4)
C1—H1A 0.9500 C13—C14 1.419 (3)
C2—C3 1.379 (4) C14—C15 1.413 (3)
C2—H2A 0.9500 C15—C16 1.362 (3)
C3—C4 1.372 (4) C15—H15A 0.9500
C3—H3A 0.9500 C16—C17 1.395 (4)
C4—C5 1.370 (4) C16—H16A 0.9500
C4—H4A 0.9500 C17—C18 1.353 (4)
C5—C6 1.392 (3) C17—H17A 0.9500
C5—H5A 0.9500 C18—H18A 0.9500
C7—N1—C8 128.1 (2) C10—C9—N2 123.9 (2)
C7—N1—H1 119.1 (18) C10—C9—C14 120.5 (2)
C8—N1—H1 112.8 (18) N2—C9—C14 115.6 (2)
C8—N2—C9 132.4 (2) C9—C10—C11 120.0 (3)
C8—N2—H2 112.6 (18) C9—C10—H10A 120.0
C9—N2—H2 115.0 (18) C11—C10—H10A 120.0
C2—C1—C6 120.3 (2) C12—C11—C10 121.1 (3)
C2—C1—H1A 119.9 C12—C11—H11A 119.5
C6—C1—H1A 119.9 C10—C11—H11A 119.5
C1—C2—C3 120.1 (3) C11—C12—C13 120.8 (3)
C1—C2—H2A 120.0 C11—C12—H12A 119.6
C3—C2—H2A 120.0 C13—C12—H12A 119.6
C4—C3—C2 120.0 (3) C12—C13—C18 121.4 (2)
C4—C3—H3A 120.0 C12—C13—C14 119.5 (2)
C2—C3—H3A 120.0 C18—C13—C14 119.1 (2)
C5—C4—C3 120.4 (3) C15—C14—C13 117.5 (2)
C5—C4—H4A 119.8 C15—C14—C9 124.4 (2)
C3—C4—H4A 119.8 C13—C14—C9 118.1 (2)
C4—C5—C6 120.3 (3) C16—C15—C14 121.4 (2)
C4—C5—H5A 119.9 C16—C15—H15A 119.3
C6—C5—H5A 119.9 C14—C15—H15A 119.3
C1—C6—C5 119.0 (2) C15—C16—C17 120.7 (3)
C1—C6—C7 124.2 (2) C15—C16—H16A 119.7
C5—C6—C7 116.8 (2) C17—C16—H16A 119.7
O1—C7—N1 121.8 (2) C18—C17—C16 119.6 (3)
O1—C7—C6 120.7 (2) C18—C17—H17A 120.2
N1—C7—C6 117.5 (2) C16—C17—H17A 120.2
N2—C8—N1 114.9 (2) C17—C18—C13 121.7 (3)
N2—C8—S1 128.4 (2) C17—C18—H18A 119.2
N1—C8—S1 116.76 (19) C13—C18—H18A 119.2
C6—C1—C2—C3 0.4 (4) C14—C9—C10—C11 −0.6 (4)
C1—C2—C3—C4 0.9 (5) C9—C10—C11—C12 2.2 (4)
C2—C3—C4—C5 −1.1 (5) C10—C11—C12—C13 −1.7 (4)
C3—C4—C5—C6 0.1 (4) C11—C12—C13—C18 −179.9 (2)
C2—C1—C6—C5 −1.5 (4) C11—C12—C13—C14 −0.5 (4)
C2—C1—C6—C7 180.0 (2) C12—C13—C14—C15 −178.2 (2)
C4—C5—C6—C1 1.2 (4) C18—C13—C14—C15 1.2 (3)
C4—C5—C6—C7 179.9 (2) C12—C13—C14—C9 2.0 (3)
C8—N1—C7—O1 −0.4 (4) C18—C13—C14—C9 −178.6 (2)
C8—N1—C7—C6 180.0 (2) C10—C9—C14—C15 178.8 (2)
C1—C6—C7—O1 165.4 (3) N2—C9—C14—C15 −3.5 (4)
C5—C6—C7—O1 −13.2 (4) C10—C9—C14—C13 −1.5 (3)
C1—C6—C7—N1 −15.0 (4) N2—C9—C14—C13 176.2 (2)
C5—C6—C7—N1 166.4 (2) C13—C14—C15—C16 −0.5 (4)
C9—N2—C8—N1 179.7 (2) C9—C14—C15—C16 179.2 (2)
C9—N2—C8—S1 −0.6 (4) C14—C15—C16—C17 −0.4 (4)
C7—N1—C8—N2 3.1 (4) C15—C16—C17—C18 0.7 (4)
C7—N1—C8—S1 −176.7 (2) C16—C17—C18—C13 0.0 (4)
C8—N2—C9—C10 −10.9 (4) C12—C13—C18—C17 178.4 (3)
C8—N2—C9—C14 171.5 (3) C14—C13—C18—C17 −0.9 (4)
N2—C9—C10—C11 −178.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1 0.86 (2) 1.85 (2) 2.600 (3) 144 (2)
N1—H1···S1i 0.86 (2) 2.80 (2) 3.591 (2) 153 (2)
C15—H15A···O1 0.95 2.51 3.411 (3) 159.

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2043).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Burrows, A. D., Colman, M. D. & Mahon, M. F. (1999). Polyhedron, 18, 2665–2671.
  3. Che, D.-J., Li, G., Yao, X.-L., Wu, Q.-J., Wang, W.-L. & Zhu, Y. (1999). J. Organomet. Chem. 584, 190–196.
  4. Henderson, W., Nicholson, B. K., Dinger, M. B. & Bennett, R. L. (2002). Inorg. Chim. Acta, 338, 210–218.
  5. Jung, S. H. & Kim, D. Y. (2008). Tetrahedron Lett. 49, 5527–5530.
  6. Maddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327–2332. [DOI] [PubMed]
  7. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Saeed, S., Rashid, N., Hussain, R. & Jones, P. G. (2011). Eur. J. Chem. 2, 77–82.
  9. Saeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010b). Cent. Eur. J. Chem. 8, 550–558.
  10. Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010a). Eur. J. Med. Chem. 45, 1323–1331. [DOI] [PubMed]
  11. Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870–o1871. [DOI] [PMC free article] [PubMed]
  12. Schuster, M., Kugler, B. & Konig, K. H. (1990). Fresenius J. Anal. Chem. 338, 717–720.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104582X/fk2043sup1.cif

e-67-o3187-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104582X/fk2043Isup2.hkl

e-67-o3187-Isup2.hkl (169.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104582X/fk2043Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES