Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 5;67(Pt 12):o3196. doi: 10.1107/S1600536811045491

5-Meth­oxy-3-[(5-meth­oxy-1H-indol-3-yl)(phen­yl)meth­yl]-1H-indole

P Narayanan a, K Sethusankar a,*, K Ramachandiran b, P T Perumal b
PMCID: PMC3238863  PMID: 22199716

Abstract

In the title compound, C25H22N2O2, the indole rings are individually almost planar [with maximum deviations of 0.0116 (19) and 0.0113 (18) Å] and are almost orthogonal to each other, making a dihedral angle of 84.49 (6)°. The benzene ring is inclined at 72.83 (9) and 80.85 (9)° with respect to the indole rings. In the crystal, mol­ecules are linked by N—H⋯O inter­actions into chains running parallel to the c axis. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For the biological activity and uses of indole derivatives, see: Bell et al. (1994); Ge et al. (1996). For related structures, see: Zhang et al. (2006, 2007). graphic file with name e-67-o3196-scheme1.jpg

Experimental

Crystal data

  • C25H22N2O2

  • M r = 382.45

  • Monoclinic, Inline graphic

  • a = 9.1545 (4) Å

  • b = 10.5954 (6) Å

  • c = 21.1668 (13) Å

  • β = 93.679 (2)°

  • V = 2048.86 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.981, T max = 0.988

  • 16790 measured reflections

  • 3087 independent reflections

  • 2317 reflections with I > 2σ(I)

  • R int = 0.034

  • θmax = 23.7°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.119

  • S = 1.03

  • 3087 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811045491/pv2461sup1.cif

e-67-o3196-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045491/pv2461Isup2.hkl

e-67-o3196-Isup2.hkl (148.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811045491/pv2461Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2, Cg3, Cg4 and Cg5 are the centroids of the N2/C17–C20, C1–C6, C10–C15 and C19–C24 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.09 2.904 (2) 158
C25—H25BCg2ii 0.96 2.95 3.515 (3) 119
C16—H16CCg3iii 0.96 2.90 3.508 (3) 122
N2—H2ACg4iv 0.86 2.49 3.3149 (19) 160
C3—H3⋯Cg5v 0.93 2.60 3.470 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

PN and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, for providing facilities in the department to carry out this work.

supplementary crystallographic information

Comment

The synthesis of bis-indolylalkanes (BIAs) has been of considerable interest because of their occurance in various natural products posessing biological activities and usefulness in drug design (Bell, et al. 1994). These compounds also inhibit the proliferation of both estrogen dependent and independent cultured breast tumor cells (Ge, et al. 1996). In this paper, we present the synthesis and crystal structure of the title bis-indolylalkane derivative.

The title compound (Fig. 1) comprises a benzene ring and two methoxy indole rings connected through a carbon atom C7. The bicyclic indole rings, are individually planar with maximum deviations of 0.0116 (19)Å for C10 atom, in ring A (N1/C8–C15) and -0.0113 (18)Å for N2 atom, in ring B (N2/C17–C24). The indole rings are almost orthogonal to each other, with a dihedral angle of 84.49 (6)°. The deviations of methoxy group carbon atoms C16 and C25 from the rings A & B, are -0.118 (3)Å and -0.100 (3) Å, respectively.

The benzene ring (C1–C6) is inclined at 72.83 (9)° and 80.85 (9)°, with the indole rings A & B, respectively. The angles around atom C7 [C8–C7–C17 = 113.07 (14)°, C8–C7–C6 = 112.52 (14)° and C17–C7–C6 = 111.53 (15)°] deviate significantly from the ideal tetrahedral values which may be a result of steric interactions between benzene ring and the indole rings.

In the crystal packing, the molecules are linked by N—H···O intermolecular interactions into infinite chains running parallel to the c axis (Fig. 2). The crystal structure is further stabilized by C—H···Cg interactions where Cg2, Cg3, Cg4 and Cg5 are the centers of gravity of rings (N2/C17–C20), (C1–C6), (C10–C15) and (C19–C24), respectively (Table 1).

Experimental

To benzaldehyde (1 mmol) in CH2Cl2 (10 ml) was added KHSO4 (30 mol%) and the mixture was stirred for 5 min. Methoxyindole (2 mmol) was added to the mixture and the stirring was continued following the progress of the reaction by TLC. After completion of the reaction, the reaction mixture was extracted with ethyl acetate (3 x 10 ml), dried over anhydrous sodium sulfate, filtered, concentrated under reduced pressure and the residue was column chromatographed over silica gel using EtOAc/Petroleum ether (1:19) as eluent to get the pure product, the title compound, which was re-crystallized by slow evaporation of its solution in ethyl acetate, resulting in single crystals, suitable for XRD studies.

Refinement

The hydrogen atoms were placed in calculated positions with C–H = 0.93 to 0.98 and N–H = 0.86 Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C,N) for others. The crystal did not diffract beyond θ =23.7 ° as its mosaicity was quite high and a low temperature facility was not used for intensity data collection.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme; displacement ellipsoids are drawn at 30% probability level.

Fig. 2.

Fig. 2.

The packing arrangement of the title compound viewed down the a axis. The dashed lines indicate N—H···O intermolecular interactions resulting in chaims of molecules running parallel to the c axis.

Crystal data

C25H22N2O2 F(000) = 808
Mr = 382.45 Dx = 1.240 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3087 reflections
a = 9.1545 (4) Å θ = 2.2–23.7°
b = 10.5954 (6) Å µ = 0.08 mm1
c = 21.1668 (13) Å T = 293 K
β = 93.679 (2)° Block, brown
V = 2048.86 (19) Å3 0.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker APEXII KappaCCD diffractometer 3087 independent reflections
Radiation source: fine-focus sealed tube 2317 reflections with I > 2σ(I)
graphite Rint = 0.034
ω and φ scans θmax = 23.7°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −7→10
Tmin = 0.981, Tmax = 0.988 k = −11→11
16790 measured reflections l = −22→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.4003P] where P = (Fo2 + 2Fc2)/3
3087 reflections (Δ/σ)max < 0.001
264 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4797 (2) 0.37371 (19) 0.41816 (10) 0.0532 (5)
H1 0.5236 0.4447 0.4370 0.064*
C2 0.3360 (2) 0.3804 (2) 0.39415 (11) 0.0661 (6)
H2 0.2837 0.4552 0.3973 0.079*
C3 0.2704 (2) 0.2767 (3) 0.36573 (12) 0.0748 (7)
H3 0.1739 0.2812 0.3493 0.090*
C4 0.3477 (2) 0.1667 (3) 0.36166 (12) 0.0776 (8)
H4 0.3033 0.0962 0.3426 0.093*
C5 0.4916 (2) 0.1600 (2) 0.38590 (10) 0.0580 (6)
H5 0.5433 0.0850 0.3827 0.070*
C6 0.55940 (18) 0.26319 (17) 0.41470 (8) 0.0405 (5)
C7 0.71658 (18) 0.25468 (16) 0.44225 (8) 0.0374 (4)
H7 0.7559 0.1752 0.4268 0.045*
C8 0.72666 (19) 0.24617 (17) 0.51335 (8) 0.0394 (4)
C9 0.6212 (2) 0.26862 (18) 0.55446 (9) 0.0493 (5)
H9 0.5270 0.2967 0.5429 0.059*
C10 0.85246 (19) 0.20426 (17) 0.55141 (8) 0.0402 (4)
C11 0.8153 (2) 0.20311 (18) 0.61463 (9) 0.0489 (5)
C12 0.9142 (3) 0.1637 (2) 0.66314 (10) 0.0639 (6)
H12 0.8885 0.1626 0.7049 0.077*
C13 1.0503 (3) 0.1267 (2) 0.64757 (11) 0.0681 (6)
H13 1.1183 0.1007 0.6795 0.082*
C14 1.0901 (2) 0.1267 (2) 0.58488 (11) 0.0566 (6)
C15 0.9929 (2) 0.16574 (17) 0.53660 (9) 0.0460 (5)
H15 1.0197 0.1666 0.4950 0.055*
C16 1.2814 (2) 0.0968 (2) 0.51545 (13) 0.0767 (7)
H16A 1.2214 0.0460 0.4866 0.115*
H16B 1.3809 0.0682 0.5160 0.115*
H16C 1.2763 0.1834 0.5020 0.115*
C17 0.80985 (17) 0.35843 (17) 0.41750 (8) 0.0378 (4)
C18 0.8511 (2) 0.46889 (19) 0.44561 (9) 0.0502 (5)
H18 0.8282 0.4933 0.4860 0.060*
C19 0.94249 (19) 0.47413 (18) 0.35062 (9) 0.0445 (5)
C20 0.86769 (17) 0.35972 (16) 0.35638 (8) 0.0365 (4)
C21 0.86324 (18) 0.27284 (18) 0.30657 (8) 0.0422 (5)
H21 0.8142 0.1964 0.3095 0.051*
C22 0.9332 (2) 0.30362 (19) 0.25334 (9) 0.0468 (5)
C23 1.0038 (2) 0.4195 (2) 0.24795 (10) 0.0566 (6)
H23 1.0473 0.4387 0.2106 0.068*
C24 1.0106 (2) 0.5050 (2) 0.29604 (10) 0.0571 (6)
H24 1.0592 0.5815 0.2924 0.069*
C25 0.8751 (4) 0.1091 (3) 0.20263 (14) 0.1214 (14)
H25A 0.9235 0.0574 0.2348 0.182*
H25B 0.8804 0.0692 0.1621 0.182*
H25C 0.7744 0.1199 0.2116 0.182*
N1 0.6733 (2) 0.24406 (16) 0.61507 (8) 0.0585 (5)
H1A 0.6248 0.2529 0.6483 0.070*
N2 0.93115 (18) 0.53917 (16) 0.40619 (8) 0.0568 (5)
H2A 0.9683 0.6122 0.4148 0.068*
O1 1.23040 (17) 0.08657 (16) 0.57707 (8) 0.0778 (5)
O2 0.94253 (17) 0.22539 (15) 0.20173 (7) 0.0693 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0506 (12) 0.0478 (13) 0.0616 (14) 0.0015 (10) 0.0059 (10) −0.0035 (10)
C2 0.0535 (13) 0.0641 (16) 0.0804 (17) 0.0134 (11) 0.0026 (11) −0.0016 (13)
C3 0.0444 (12) 0.092 (2) 0.0867 (18) 0.0084 (13) −0.0066 (11) −0.0137 (15)
C4 0.0510 (13) 0.0825 (19) 0.097 (2) −0.0035 (13) −0.0095 (12) −0.0342 (15)
C5 0.0470 (11) 0.0568 (14) 0.0701 (15) 0.0024 (10) 0.0022 (10) −0.0191 (11)
C6 0.0387 (10) 0.0447 (12) 0.0390 (11) −0.0023 (8) 0.0090 (8) −0.0032 (8)
C7 0.0385 (9) 0.0368 (10) 0.0376 (11) −0.0013 (8) 0.0088 (8) −0.0050 (8)
C8 0.0442 (10) 0.0363 (11) 0.0390 (11) −0.0053 (8) 0.0115 (8) −0.0025 (8)
C9 0.0522 (11) 0.0499 (12) 0.0472 (13) −0.0019 (9) 0.0134 (10) −0.0004 (9)
C10 0.0504 (11) 0.0320 (10) 0.0387 (11) −0.0068 (8) 0.0072 (8) −0.0012 (8)
C11 0.0643 (13) 0.0415 (12) 0.0419 (12) −0.0069 (10) 0.0118 (10) 0.0000 (9)
C12 0.0972 (18) 0.0559 (14) 0.0384 (12) −0.0070 (13) 0.0021 (12) 0.0074 (10)
C13 0.0833 (17) 0.0560 (15) 0.0626 (16) 0.0029 (12) −0.0130 (13) 0.0122 (12)
C14 0.0611 (13) 0.0438 (13) 0.0641 (15) −0.0001 (10) −0.0033 (11) 0.0032 (10)
C15 0.0514 (11) 0.0403 (11) 0.0464 (12) −0.0042 (9) 0.0046 (9) −0.0017 (9)
C16 0.0547 (13) 0.0661 (17) 0.111 (2) 0.0008 (11) 0.0160 (14) 0.0084 (15)
C17 0.0364 (9) 0.0403 (11) 0.0372 (11) −0.0024 (8) 0.0056 (8) −0.0028 (8)
C18 0.0574 (12) 0.0516 (13) 0.0427 (11) −0.0084 (10) 0.0122 (9) −0.0075 (10)
C19 0.0474 (10) 0.0405 (11) 0.0463 (12) −0.0032 (9) 0.0079 (9) 0.0011 (9)
C20 0.0341 (9) 0.0378 (11) 0.0379 (11) −0.0009 (8) 0.0047 (7) 0.0008 (8)
C21 0.0402 (10) 0.0454 (12) 0.0418 (11) −0.0063 (8) 0.0089 (8) −0.0014 (9)
C22 0.0490 (11) 0.0546 (13) 0.0379 (11) −0.0024 (9) 0.0112 (9) −0.0024 (10)
C23 0.0662 (13) 0.0579 (14) 0.0483 (13) −0.0051 (11) 0.0236 (10) 0.0102 (11)
C24 0.0662 (13) 0.0416 (13) 0.0659 (15) −0.0092 (10) 0.0223 (11) 0.0068 (11)
C25 0.167 (3) 0.118 (3) 0.086 (2) −0.081 (2) 0.067 (2) −0.0612 (19)
N1 0.0740 (12) 0.0639 (12) 0.0403 (11) −0.0035 (9) 0.0243 (9) −0.0015 (8)
N2 0.0704 (11) 0.0422 (10) 0.0591 (11) −0.0166 (8) 0.0140 (9) −0.0078 (9)
O1 0.0604 (10) 0.0750 (12) 0.0961 (14) 0.0174 (8) −0.0089 (9) 0.0057 (9)
O2 0.0840 (11) 0.0779 (11) 0.0491 (9) −0.0194 (9) 0.0296 (8) −0.0157 (8)

Geometric parameters (Å, °)

C1—C2 1.382 (3) C14—C15 1.374 (3)
C1—C6 1.384 (3) C15—H15 0.9300
C1—H1 0.9300 C16—O1 1.417 (3)
C2—C3 1.372 (3) C16—H16A 0.9600
C2—H2 0.9300 C16—H16B 0.9600
C3—C4 1.369 (3) C16—H16C 0.9600
C3—H3 0.9300 C17—C18 1.356 (3)
C4—C5 1.385 (3) C17—C20 1.429 (2)
C4—H4 0.9300 C18—N2 1.366 (2)
C5—C6 1.379 (3) C18—H18 0.9300
C5—H5 0.9300 C19—N2 1.373 (2)
C6—C7 1.520 (2) C19—C24 1.386 (3)
C7—C8 1.505 (2) C19—C20 1.401 (2)
C7—C17 1.506 (2) C20—C21 1.398 (2)
C7—H7 0.9800 C21—C22 1.371 (3)
C8—C9 1.362 (3) C21—H21 0.9300
C8—C10 1.433 (3) C22—O2 1.378 (2)
C9—N1 1.365 (3) C22—C23 1.395 (3)
C9—H9 0.9300 C23—C24 1.361 (3)
C10—C11 1.402 (3) C23—H23 0.9300
C10—C15 1.404 (3) C24—H24 0.9300
C11—N1 1.371 (3) C25—O2 1.379 (3)
C11—C12 1.389 (3) C25—H25A 0.9600
C12—C13 1.367 (3) C25—H25B 0.9600
C12—H12 0.9300 C25—H25C 0.9600
C13—C14 1.398 (3) N1—H1A 0.8600
C13—H13 0.9300 N2—H2A 0.8600
C14—O1 1.373 (2)
C2—C1—C6 121.1 (2) C14—C15—H15 120.7
C2—C1—H1 119.4 C10—C15—H15 120.7
C6—C1—H1 119.4 O1—C16—H16A 109.5
C3—C2—C1 120.0 (2) O1—C16—H16B 109.5
C3—C2—H2 120.0 H16A—C16—H16B 109.5
C1—C2—H2 120.0 O1—C16—H16C 109.5
C4—C3—C2 119.8 (2) H16A—C16—H16C 109.5
C4—C3—H3 120.1 H16B—C16—H16C 109.5
C2—C3—H3 120.1 C18—C17—C20 106.26 (15)
C3—C4—C5 120.2 (2) C18—C17—C7 128.73 (16)
C3—C4—H4 119.9 C20—C17—C7 124.96 (15)
C5—C4—H4 119.9 C17—C18—N2 110.36 (17)
C6—C5—C4 120.9 (2) C17—C18—H18 124.8
C6—C5—H5 119.5 N2—C18—H18 124.8
C4—C5—H5 119.5 N2—C19—C24 131.17 (18)
C5—C6—C1 118.03 (17) N2—C19—C20 107.18 (15)
C5—C6—C7 120.69 (17) C24—C19—C20 121.65 (18)
C1—C6—C7 121.27 (17) C21—C20—C19 119.64 (16)
C8—C7—C17 113.07 (14) C21—C20—C17 132.98 (16)
C8—C7—C6 112.52 (14) C19—C20—C17 107.37 (15)
C17—C7—C6 111.53 (15) C22—C21—C20 118.07 (17)
C8—C7—H7 106.4 C22—C21—H21 121.0
C17—C7—H7 106.4 C20—C21—H21 121.0
C6—C7—H7 106.4 C21—C22—O2 124.35 (18)
C9—C8—C10 105.80 (17) C21—C22—C23 121.32 (18)
C9—C8—C7 128.92 (17) O2—C22—C23 114.32 (17)
C10—C8—C7 125.19 (15) C24—C23—C22 121.57 (18)
C8—C9—N1 110.34 (18) C24—C23—H23 119.2
C8—C9—H9 124.8 C22—C23—H23 119.2
N1—C9—H9 124.8 C23—C24—C19 117.70 (19)
C11—C10—C15 119.51 (18) C23—C24—H24 121.2
C11—C10—C8 107.68 (16) C19—C24—H24 121.2
C15—C10—C8 132.80 (17) O2—C25—H25A 109.5
N1—C11—C12 131.56 (19) O2—C25—H25B 109.5
N1—C11—C10 106.98 (17) H25A—C25—H25B 109.5
C12—C11—C10 121.46 (19) O2—C25—H25C 109.5
C13—C12—C11 118.0 (2) H25A—C25—H25C 109.5
C13—C12—H12 121.0 H25B—C25—H25C 109.5
C11—C12—H12 121.0 C9—N1—C11 109.19 (16)
C12—C13—C14 121.7 (2) C9—N1—H1A 125.4
C12—C13—H13 119.2 C11—N1—H1A 125.4
C14—C13—H13 119.2 C18—N2—C19 108.83 (16)
O1—C14—C15 124.7 (2) C18—N2—H2A 125.6
O1—C14—C13 114.60 (19) C19—N2—H2A 125.6
C15—C14—C13 120.7 (2) C14—O1—C16 116.91 (17)
C14—C15—C10 118.66 (19) C22—O2—C25 118.42 (16)
C6—C1—C2—C3 −0.7 (3) C8—C10—C15—C14 −178.15 (19)
C1—C2—C3—C4 0.4 (4) C8—C7—C17—C18 −28.6 (3)
C2—C3—C4—C5 −0.2 (4) C6—C7—C17—C18 99.3 (2)
C3—C4—C5—C6 0.3 (4) C8—C7—C17—C20 154.25 (16)
C4—C5—C6—C1 −0.5 (3) C6—C7—C17—C20 −77.8 (2)
C4—C5—C6—C7 178.92 (19) C20—C17—C18—N2 −0.1 (2)
C2—C1—C6—C5 0.7 (3) C7—C17—C18—N2 −177.62 (17)
C2—C1—C6—C7 −178.74 (18) N2—C19—C20—C21 −179.02 (16)
C5—C6—C7—C8 −104.3 (2) C24—C19—C20—C21 1.2 (3)
C1—C6—C7—C8 75.1 (2) N2—C19—C20—C17 0.3 (2)
C5—C6—C7—C17 127.43 (19) C24—C19—C20—C17 −179.42 (17)
C1—C6—C7—C17 −53.1 (2) C18—C17—C20—C21 179.09 (19)
C17—C7—C8—C9 113.9 (2) C7—C17—C20—C21 −3.3 (3)
C6—C7—C8—C9 −13.6 (3) C18—C17—C20—C19 −0.2 (2)
C17—C7—C8—C10 −70.0 (2) C7—C17—C20—C19 177.49 (16)
C6—C7—C8—C10 162.53 (17) C19—C20—C21—C22 0.0 (3)
C10—C8—C9—N1 0.3 (2) C17—C20—C21—C22 −179.20 (18)
C7—C8—C9—N1 176.99 (16) C20—C21—C22—O2 177.46 (17)
C9—C8—C10—C11 0.2 (2) C20—C21—C22—C23 −1.7 (3)
C7—C8—C10—C11 −176.63 (16) C21—C22—C23—C24 2.3 (3)
C9—C8—C10—C15 179.1 (2) O2—C22—C23—C24 −176.93 (19)
C7—C8—C10—C15 2.2 (3) C22—C23—C24—C19 −1.1 (3)
C15—C10—C11—N1 −179.67 (17) N2—C19—C24—C23 179.6 (2)
C8—C10—C11—N1 −0.7 (2) C20—C19—C24—C23 −0.7 (3)
C15—C10—C11—C12 −0.5 (3) C8—C9—N1—C11 −0.7 (2)
C8—C10—C11—C12 178.51 (18) C12—C11—N1—C9 −178.2 (2)
N1—C11—C12—C13 179.5 (2) C10—C11—N1—C9 0.9 (2)
C10—C11—C12—C13 0.5 (3) C17—C18—N2—C19 0.3 (2)
C11—C12—C13—C14 −0.6 (3) C24—C19—N2—C18 179.3 (2)
C12—C13—C14—O1 −179.8 (2) C20—C19—N2—C18 −0.4 (2)
C12—C13—C14—C15 0.7 (3) C15—C14—O1—C16 5.7 (3)
O1—C14—C15—C10 179.89 (18) C13—C14—O1—C16 −173.79 (19)
C13—C14—C15—C10 −0.7 (3) C21—C22—O2—C25 1.3 (3)
C11—C10—C15—C14 0.6 (3) C23—C22—O2—C25 −179.6 (2)

Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg4 and Cg5 are the centroids of the N2/C17–C20, C1–C6, C10–C15 and C19–C24 rings, respectively
D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.09 2.904 (2) 158
C25—H25B···Cg2ii 0.96 2.95 3.515 (3) 119
C16—H16C···Cg3iii 0.96 2.90 3.508 (3) 122
N2—H2A···Cg4iv 0.86 2.49 3.3149 (19) 160
C3—H3···Cg5v 0.93 2.60 3.470 (2) 157

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+1; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2461).

References

  1. Bell, R., Carmeli, S. & Sar, N. (1994). J. Nat. Prod. 57, 1587–1590. [DOI] [PubMed]
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Ge, X., Yannai, S., Rennert, G., Gruener, N. & Fares, F. A. (1996). Biochem. Biophys. Res. Commun. 228, pp. 153–158. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Zhang, D.-M., Tang, Q.-G., Ji, C.-X. & Guo, C. (2007). Acta Cryst. E63, o81–o82.
  8. Zhang, D.-M., Tang, S.-G., Wu, W.-Y., Tang, Q.-G. & Guo, C. (2006). Acta Cryst. E62, o5467–o5468.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811045491/pv2461sup1.cif

e-67-o3196-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045491/pv2461Isup2.hkl

e-67-o3196-Isup2.hkl (148.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811045491/pv2461Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES