Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 5;67(Pt 12):o3205–o3206. doi: 10.1107/S1600536811045090

9-(2,5-Dimethyl­phen­oxy­carbon­yl)-10-methyl­acridinium trifluoro­methane­sulfonate

Damian Trzybiński a, Karol Krzymiński a, Jerzy Błażejowski a,*
PMCID: PMC3238871  PMID: 22199724

Abstract

In the title compound, C23H20NO2 +·CF3SO3 , the acridine ring system is oriented at a dihedral angle of 23.1 (1)° with respect to the benzene ring and the carboxyl group is twisted at an angle of 74.1 (1)° relative to the acridine skeleton. In the crystal, adjacent cations are linked through C—H⋯π inter­actions and neighboring cations and anions via weak C—H⋯O hydrogen bonds. The mean planes of adjacent acridine units are either parallel or inclined at angles of 15.0 (1), 26.9 (1) and 48.1 (1)° in the crystal structure.

Related literature

For general background to the chemiluminogenic properties of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­meth­ane­­sulfonates, see: Brown et al. (2009); King et al. (2007); Krzymiński et al. (2011); Roda et al. (2003). For related structures, see: Krzymiński et al. (2009). For inter­molecular inter­actions, see: Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Krzymiński et al. (2011).graphic file with name e-67-o3205-scheme1.jpg

Experimental

Crystal data

  • C23H20NO2 +·CF3SO3

  • M r = 491.48

  • Orthorhombic, Inline graphic

  • a = 12.3604 (17) Å

  • b = 17.341 (3) Å

  • c = 21.101 (3) Å

  • V = 4522.8 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.60 × 0.15 × 0.10 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.960, T max = 0.985

  • 32535 measured reflections

  • 4000 independent reflections

  • 2050 reflections with I > 2σ(I)

  • R int = 0.106

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.185

  • S = 1.01

  • 4000 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811045090/xu5358sup1.cif

e-67-o3205-sup1.cif (30.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045090/xu5358Isup2.hkl

e-67-o3205-Isup2.hkl (196.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811045090/xu5358Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C4/C11/C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O29i 0.93 2.59 3.257 (5) 129
C5—H5⋯O30 0.93 2.58 3.466 (5) 160
C6—H6⋯O28 0.93 2.52 3.303 (5) 142
C7—H7⋯O29ii 0.93 2.39 3.188 (5) 144
C20—H20⋯Cg2iii 0.93 2.81 3.439 (4) 126
C25—H25B⋯O28ii 0.96 2.49 3.289 (5) 141
C26—H26A⋯O30i 0.96 2.47 3.314 (5) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40). DT acknowledges financial support from the European Social Fund within the project "Educators for the elite – integrated training program for PhD students, post-docs and professors as academic teachers at the University of Gdansk" and the Human Capital Operational Program Action 4.1.1, Improving the quality on offer at tertiary educational institutions. This publication reflects the views only of the author: the sponsor cannot be held responsible for any use which may be made of the information contained therein.

supplementary crystallographic information

Comment

Chemiluminescing 9-(phenoxycarbonyl)-10-methylacridinium cations are widely applied as indicators or fragments of labels in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized by H2O2 in alkaline media, a reaction that is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Krzymiński et al., 2011). The efficiency of chemiluminescence – crucial to analytical applications – is affected by the constitution of the phenyl fragment. Here we present the crystal structure of 9-(2,5-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, whose chemiluminogenic features we have thoroughly investigated (Krzymiński et al., 2011).

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński et al., 2009). With respective average deviations from planarity of 0.022 (3) Å and 0.006 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 23.1 (1)°. The carboxyl group is twisted at an angle of 74.1 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (at an angle 0.0 (1)°) or inclined at angles of 15.0 (1), 26.9 (1) and 48.1 (1)° in the crystal lattice.

In the crystal structure, the adjacent cations are linked by C–H···π (Table 1, Fig. 2) contacts and the neighboring cations and anions via C–H···O (Table 1, Figs. 1 and 2) interactions. The C–H···O interactions are of the hydrogen bond type (Novoa et al. 2006), while the C–H···π (Takahashi et al., 2001) contacts should be of an attractive nature. The crystal structure is stabilized by a network of these specific short-range interactions and by long-range electrostatic interactions between ions.

Experimental

2,5-Dimethylphenylacridine-9-carboxylate was synthesized by esterification of 9-(chlorocarbonyl)acridine (obtained in the reaction of acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2,5-dimethylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996; Krzymiński et al., 2011). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) and subsequently quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2,5-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from ethanol/water solution (1:1 v/v) (m.p. 509–511 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg2 denotes the ring centroid. The C–H···O interactions are represented by dashed lines.

Fig. 2.

Fig. 2.

The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, –y + 1, –z + 1; (ii) –x + 1, y – 1/2, –z + 1/2; (iii) –x + 3/2, y – 1/2, z.]

Crystal data

C23H20NO2+·CF3SO3 F(000) = 2032
Mr = 491.48 Dx = 1.444 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4734 reflections
a = 12.3604 (17) Å θ = 3.4–26.0°
b = 17.341 (3) Å µ = 0.21 mm1
c = 21.101 (3) Å T = 295 K
V = 4522.8 (12) Å3 Needle, yellow
Z = 8 0.60 × 0.15 × 0.10 mm

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 4000 independent reflections
Radiation source: enhanced (Mo) X-ray source 2050 reflections with I > 2σ(I)
graphite Rint = 0.106
Detector resolution: 10.4002 pixels mm-1 θmax = 25.1°, θmin = 3.5°
ω scans h = −14→12
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −20→20
Tmin = 0.960, Tmax = 0.985 l = −23→25
32535 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0901P)2 + 0.2728P] where P = (Fo2 + 2Fc2)/3
4000 reflections (Δ/σ)max < 0.001
310 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7203 (3) 0.1485 (2) 0.5953 (2) 0.0692 (11)
H1 0.7452 0.0981 0.5906 0.083*
C2 0.7290 (4) 0.1843 (3) 0.6520 (2) 0.0872 (14)
H2 0.7599 0.1587 0.6863 0.105*
C3 0.6911 (4) 0.2608 (3) 0.6593 (2) 0.0858 (14)
H3 0.6977 0.2849 0.6984 0.103*
C4 0.6455 (3) 0.2995 (2) 0.6105 (2) 0.0713 (12)
H4 0.6197 0.3493 0.6167 0.086*
C5 0.5462 (3) 0.3125 (2) 0.3893 (2) 0.0667 (11)
H5 0.5235 0.3633 0.3943 0.080*
C6 0.5383 (4) 0.2782 (2) 0.3321 (2) 0.0815 (13)
H6 0.5102 0.3061 0.2981 0.098*
C7 0.5711 (4) 0.2021 (2) 0.3224 (2) 0.0720 (12)
H7 0.5637 0.1796 0.2826 0.086*
C8 0.6132 (3) 0.1613 (2) 0.3704 (2) 0.0600 (10)
H8 0.6365 0.1111 0.3633 0.072*
C9 0.6641 (3) 0.15331 (18) 0.48358 (18) 0.0474 (9)
N10 0.5964 (2) 0.30431 (15) 0.50005 (16) 0.0503 (7)
C11 0.6738 (3) 0.18708 (19) 0.54298 (17) 0.0502 (9)
C12 0.6370 (3) 0.26519 (19) 0.55098 (19) 0.0503 (9)
C13 0.6231 (2) 0.19343 (17) 0.43212 (17) 0.0452 (9)
C14 0.5886 (3) 0.27166 (18) 0.44149 (19) 0.0493 (9)
C15 0.7004 (3) 0.07054 (19) 0.47513 (17) 0.0504 (9)
O16 0.61431 (18) 0.02474 (12) 0.47079 (13) 0.0576 (7)
O17 0.7921 (2) 0.05008 (14) 0.47341 (14) 0.0755 (9)
C18 0.6283 (3) −0.05622 (18) 0.46459 (19) 0.0483 (9)
C19 0.6315 (3) −0.09995 (19) 0.51964 (19) 0.0518 (9)
C20 0.6311 (2) −0.1796 (2) 0.5100 (2) 0.0563 (10)
H20 0.6318 −0.2121 0.5451 0.068*
C21 0.6297 (3) −0.2116 (2) 0.4508 (2) 0.0552 (10)
H21 0.6294 −0.2650 0.4468 0.066*
C22 0.6289 (3) −0.16674 (19) 0.39689 (19) 0.0542 (10)
C23 0.6272 (3) −0.08684 (19) 0.4050 (2) 0.0553 (10)
H23 0.6252 −0.0545 0.3699 0.066*
C24 0.6348 (3) −0.0649 (2) 0.5843 (2) 0.0699 (11)
H24A 0.5841 −0.0231 0.5865 0.105*
H24B 0.7063 −0.0459 0.5927 0.105*
H24C 0.6161 −0.1032 0.6153 0.105*
C25 0.6290 (4) −0.2022 (2) 0.3319 (2) 0.0846 (13)
H25A 0.7006 −0.1995 0.3143 0.127*
H25B 0.5796 −0.1746 0.3051 0.127*
H25C 0.6070 −0.2552 0.3348 0.127*
C26 0.5592 (3) 0.38590 (18) 0.5077 (2) 0.0727 (12)
H26A 0.5623 0.4000 0.5517 0.109*
H26B 0.4862 0.3906 0.4927 0.109*
H26C 0.6054 0.4194 0.4836 0.109*
S27 0.44245 (10) 0.50390 (5) 0.30301 (6) 0.0740 (4)
O28 0.4254 (3) 0.43431 (19) 0.2715 (2) 0.1310 (14)
O29 0.3900 (3) 0.57019 (19) 0.2803 (2) 0.1239 (13)
O30 0.4320 (3) 0.4936 (2) 0.37051 (17) 0.1162 (12)
C31 0.5832 (5) 0.5223 (4) 0.2920 (3) 0.1130 (19)
F32 0.6101 (4) 0.5876 (3) 0.3223 (3) 0.218 (3)
F33 0.6458 (3) 0.4707 (3) 0.3148 (2) 0.1741 (18)
F34 0.6094 (4) 0.5364 (4) 0.2353 (3) 0.221 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.084 (3) 0.060 (2) 0.064 (3) 0.000 (2) −0.005 (2) 0.006 (2)
C2 0.113 (4) 0.092 (4) 0.056 (3) 0.000 (3) −0.015 (3) 0.008 (3)
C3 0.103 (3) 0.097 (4) 0.058 (3) −0.004 (3) 0.010 (3) −0.017 (3)
C4 0.074 (3) 0.072 (3) 0.068 (3) 0.001 (2) 0.009 (2) −0.011 (3)
C5 0.085 (3) 0.039 (2) 0.076 (3) 0.0017 (18) −0.002 (2) 0.014 (2)
C6 0.115 (4) 0.061 (3) 0.069 (3) 0.000 (2) −0.019 (3) 0.016 (3)
C7 0.107 (3) 0.059 (3) 0.050 (3) −0.010 (2) −0.005 (2) 0.002 (2)
C8 0.076 (3) 0.044 (2) 0.061 (3) −0.0047 (17) 0.006 (2) −0.002 (2)
C9 0.0457 (18) 0.0386 (18) 0.058 (3) −0.0028 (14) 0.0055 (17) 0.0033 (18)
N10 0.0522 (16) 0.0377 (15) 0.061 (2) −0.0010 (12) 0.0015 (15) −0.0024 (16)
C11 0.057 (2) 0.045 (2) 0.049 (2) −0.0060 (16) 0.0012 (18) 0.0022 (19)
C12 0.0508 (19) 0.049 (2) 0.051 (3) −0.0053 (16) 0.0118 (17) −0.005 (2)
C13 0.0497 (19) 0.0353 (18) 0.051 (2) −0.0035 (14) 0.0058 (16) 0.0035 (18)
C14 0.052 (2) 0.0384 (18) 0.057 (3) −0.0064 (15) 0.0017 (18) 0.0023 (19)
C15 0.054 (2) 0.0421 (19) 0.056 (3) 0.0008 (17) 0.0040 (18) 0.0039 (17)
O16 0.0504 (14) 0.0342 (12) 0.088 (2) 0.0021 (10) 0.0011 (13) 0.0011 (13)
O17 0.0518 (16) 0.0522 (15) 0.123 (3) 0.0057 (12) 0.0045 (16) −0.0069 (16)
C18 0.0467 (19) 0.0346 (18) 0.064 (3) 0.0009 (14) −0.0008 (18) 0.0045 (19)
C19 0.0448 (19) 0.048 (2) 0.062 (3) −0.0001 (15) −0.0006 (18) 0.005 (2)
C20 0.050 (2) 0.047 (2) 0.072 (3) −0.0021 (16) −0.0019 (19) 0.023 (2)
C21 0.051 (2) 0.0379 (19) 0.076 (3) −0.0014 (15) −0.0022 (19) 0.005 (2)
C22 0.058 (2) 0.044 (2) 0.061 (3) 0.0023 (16) −0.0029 (19) 0.003 (2)
C23 0.061 (2) 0.042 (2) 0.062 (3) 0.0027 (16) −0.0010 (19) 0.014 (2)
C24 0.075 (3) 0.071 (3) 0.064 (3) −0.001 (2) 0.001 (2) 0.003 (2)
C25 0.117 (4) 0.064 (3) 0.073 (3) 0.004 (2) −0.008 (3) −0.004 (2)
C26 0.087 (3) 0.040 (2) 0.092 (3) 0.0105 (19) 0.001 (2) −0.013 (2)
S27 0.1049 (9) 0.0443 (6) 0.0728 (9) 0.0084 (5) −0.0034 (6) −0.0028 (6)
O28 0.172 (4) 0.080 (2) 0.141 (4) 0.003 (2) −0.026 (3) −0.040 (2)
O29 0.140 (3) 0.080 (2) 0.152 (4) 0.027 (2) −0.003 (3) 0.034 (2)
O30 0.166 (4) 0.112 (3) 0.071 (2) 0.007 (2) 0.020 (2) 0.007 (2)
C31 0.130 (5) 0.102 (4) 0.108 (5) −0.007 (4) 0.007 (4) 0.029 (4)
F32 0.187 (4) 0.143 (4) 0.323 (8) −0.075 (3) −0.048 (4) 0.026 (4)
F33 0.110 (3) 0.186 (4) 0.227 (5) 0.038 (2) 0.005 (2) 0.091 (3)
F34 0.167 (4) 0.357 (7) 0.139 (4) 0.025 (4) 0.059 (3) 0.111 (5)

Geometric parameters (Å, °)

C1—C2 1.354 (6) O16—C18 1.421 (4)
C1—C11 1.413 (5) C18—C23 1.364 (5)
C1—H1 0.9300 C18—C19 1.388 (5)
C2—C3 1.415 (6) C19—C20 1.397 (5)
C2—H2 0.9300 C19—C24 1.495 (5)
C3—C4 1.352 (6) C20—C21 1.367 (5)
C3—H3 0.9300 C20—H20 0.9300
C4—C12 1.394 (5) C21—C22 1.378 (5)
C4—H4 0.9300 C21—H21 0.9300
C5—C6 1.349 (6) C22—C23 1.396 (5)
C5—C14 1.411 (5) C22—C25 1.503 (6)
C5—H5 0.9300 C23—H23 0.9300
C6—C7 1.397 (6) C24—H24A 0.9600
C6—H6 0.9300 C24—H24B 0.9600
C7—C8 1.340 (5) C24—H24C 0.9600
C7—H7 0.9300 C25—H25A 0.9600
C8—C13 1.421 (5) C25—H25B 0.9600
C8—H8 0.9300 C25—H25C 0.9600
C9—C13 1.386 (5) C26—H26A 0.9600
C9—C11 1.389 (5) C26—H26B 0.9600
C9—C15 1.514 (5) C26—H26C 0.9600
N10—C14 1.363 (4) S27—O28 1.394 (3)
N10—C12 1.366 (4) S27—O29 1.404 (3)
N10—C26 1.496 (4) S27—O30 1.441 (4)
C11—C12 1.439 (5) S27—C31 1.784 (7)
C13—C14 1.436 (4) C31—F34 1.264 (6)
C15—O17 1.188 (4) C31—F33 1.276 (6)
C15—O16 1.331 (4) C31—F32 1.343 (7)
C2—C1—C11 120.4 (4) C23—C18—O16 117.9 (3)
C2—C1—H1 119.8 C19—C18—O16 117.8 (3)
C11—C1—H1 119.8 C18—C19—C20 114.7 (4)
C1—C2—C3 120.0 (4) C18—C19—C24 122.9 (3)
C1—C2—H2 120.0 C20—C19—C24 122.4 (4)
C3—C2—H2 120.0 C21—C20—C19 122.3 (4)
C4—C3—C2 121.4 (4) C21—C20—H20 118.8
C4—C3—H3 119.3 C19—C20—H20 118.8
C2—C3—H3 119.3 C20—C21—C22 121.7 (3)
C3—C4—C12 120.4 (4) C20—C21—H21 119.2
C3—C4—H4 119.8 C22—C21—H21 119.2
C12—C4—H4 119.8 C21—C22—C23 117.3 (4)
C6—C5—C14 120.3 (4) C21—C22—C25 121.4 (3)
C6—C5—H5 119.8 C23—C22—C25 121.2 (4)
C14—C5—H5 119.8 C18—C23—C22 120.0 (3)
C5—C6—C7 121.7 (4) C18—C23—H23 120.0
C5—C6—H6 119.1 C22—C23—H23 120.0
C7—C6—H6 119.1 C19—C24—H24A 109.5
C8—C7—C6 120.1 (4) C19—C24—H24B 109.5
C8—C7—H7 120.0 H24A—C24—H24B 109.5
C6—C7—H7 120.0 C19—C24—H24C 109.5
C7—C8—C13 121.3 (3) H24A—C24—H24C 109.5
C7—C8—H8 119.3 H24B—C24—H24C 109.5
C13—C8—H8 119.3 C22—C25—H25A 109.5
C13—C9—C11 121.8 (3) C22—C25—H25B 109.5
C13—C9—C15 119.5 (3) H25A—C25—H25B 109.5
C11—C9—C15 118.7 (3) C22—C25—H25C 109.5
C14—N10—C12 122.2 (3) H25A—C25—H25C 109.5
C14—N10—C26 118.0 (3) H25B—C25—H25C 109.5
C12—N10—C26 119.8 (3) N10—C26—H26A 109.5
C9—C11—C1 122.7 (3) N10—C26—H26B 109.5
C9—C11—C12 118.4 (3) H26A—C26—H26B 109.5
C1—C11—C12 118.9 (3) N10—C26—H26C 109.5
N10—C12—C4 121.6 (3) H26A—C26—H26C 109.5
N10—C12—C11 119.4 (3) H26B—C26—H26C 109.5
C4—C12—C11 118.9 (4) O28—S27—O29 118.4 (3)
C9—C13—C8 123.5 (3) O28—S27—O30 110.5 (2)
C9—C13—C14 118.4 (3) O29—S27—O30 113.4 (2)
C8—C13—C14 118.1 (3) O28—S27—C31 103.9 (3)
N10—C14—C5 121.7 (3) O29—S27—C31 105.1 (3)
N10—C14—C13 119.8 (3) O30—S27—C31 103.8 (3)
C5—C14—C13 118.5 (3) F34—C31—F33 109.8 (6)
O17—C15—O16 125.6 (3) F34—C31—F32 102.9 (6)
O17—C15—C9 124.7 (3) F33—C31—F32 105.2 (6)
O16—C15—C9 109.7 (3) F34—C31—S27 114.0 (5)
C15—O16—C18 119.9 (2) F33—C31—S27 114.6 (5)
C23—C18—C19 124.0 (3) F32—C31—S27 109.3 (5)
C11—C1—C2—C3 0.1 (6) C9—C13—C14—N10 −0.3 (4)
C1—C2—C3—C4 0.2 (7) C8—C13—C14—N10 179.7 (3)
C2—C3—C4—C12 −1.5 (7) C9—C13—C14—C5 −179.6 (3)
C14—C5—C6—C7 0.1 (6) C8—C13—C14—C5 0.4 (5)
C5—C6—C7—C8 −1.0 (7) C13—C9—C15—O17 105.8 (4)
C6—C7—C8—C13 1.6 (6) C11—C9—C15—O17 −73.8 (5)
C13—C9—C11—C1 −176.8 (3) C13—C9—C15—O16 −74.9 (4)
C15—C9—C11—C1 2.8 (5) C11—C9—C15—O16 105.5 (3)
C13—C9—C11—C12 1.7 (5) O17—C15—O16—C18 1.2 (6)
C15—C9—C11—C12 −178.7 (3) C9—C15—O16—C18 −178.1 (3)
C2—C1—C11—C9 179.2 (4) C15—O16—C18—C23 −95.3 (4)
C2—C1—C11—C12 0.7 (5) C15—O16—C18—C19 91.0 (4)
C14—N10—C12—C4 179.4 (3) C23—C18—C19—C20 −1.3 (5)
C26—N10—C12—C4 −0.3 (5) O16—C18—C19—C20 172.0 (3)
C14—N10—C12—C11 0.4 (5) C23—C18—C19—C24 178.8 (3)
C26—N10—C12—C11 −179.2 (3) O16—C18—C19—C24 −7.9 (5)
C3—C4—C12—N10 −176.6 (4) C18—C19—C20—C21 1.1 (5)
C3—C4—C12—C11 2.3 (5) C24—C19—C20—C21 −178.9 (3)
C9—C11—C12—N10 −1.5 (5) C19—C20—C21—C22 0.2 (5)
C1—C11—C12—N10 177.0 (3) C20—C21—C22—C23 −1.4 (5)
C9—C11—C12—C4 179.5 (3) C20—C21—C22—C25 179.1 (3)
C1—C11—C12—C4 −1.9 (5) C19—C18—C23—C22 0.1 (5)
C11—C9—C13—C8 179.1 (3) O16—C18—C23—C22 −173.1 (3)
C15—C9—C13—C8 −0.4 (5) C21—C22—C23—C18 1.2 (5)
C11—C9—C13—C14 −0.8 (5) C25—C22—C23—C18 −179.3 (3)
C15—C9—C13—C14 179.6 (3) O28—S27—C31—F34 67.3 (6)
C7—C8—C13—C9 178.7 (3) O29—S27—C31—F34 −57.8 (6)
C7—C8—C13—C14 −1.3 (5) O30—S27—C31—F34 −177.1 (6)
C12—N10—C14—C5 179.8 (3) O28—S27—C31—F33 −60.5 (6)
C26—N10—C14—C5 −0.5 (5) O29—S27—C31—F33 174.5 (5)
C12—N10—C14—C13 0.5 (4) O30—S27—C31—F33 55.1 (6)
C26—N10—C14—C13 −179.8 (3) O28—S27—C31—F32 −178.2 (5)
C6—C5—C14—N10 −179.2 (4) O29—S27—C31—F32 56.7 (5)
C6—C5—C14—C13 0.2 (5) O30—S27—C31—F32 −62.6 (5)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C4/C11/C12 benzene ring.
D—H···A D—H H···A D···A D—H···A
C4—H4···O29i 0.93 2.59 3.257 (5) 129
C5—H5···O30 0.93 2.58 3.466 (5) 160
C6—H6···O28 0.93 2.52 3.303 (5) 142
C7—H7···O29ii 0.93 2.39 3.188 (5) 144
C20—H20···Cg2iii 0.93 2.81 3.439 (4) 126
C25—H25B···O28ii 0.96 2.49 3.289 (5) 141
C26—H26A···O30i 0.96 2.47 3.314 (5) 146

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5358).

References

  1. Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O’Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176. [DOI] [PubMed]
  4. Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072–1085. [DOI] [PubMed]
  5. Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o789–o790. [DOI] [PMC free article] [PubMed]
  6. Novoa, J. J., Mota, F. & D’Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
  7. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470. [PubMed]
  9. Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811045090/xu5358sup1.cif

e-67-o3205-sup1.cif (30.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811045090/xu5358Isup2.hkl

e-67-o3205-Isup2.hkl (196.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811045090/xu5358Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES