Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 9;67(Pt 12):o3247. doi: 10.1107/S1600536811046721

4-Carb­oxy­anilinium chloride

Li-Jun Han a,*, Shu-Ping Yang b, Xin Tao b, Yuan-Feng Ma b
PMCID: PMC3238904  PMID: 22199757

Abstract

In the title salt, C7H8NO2 +·Cl, the cation and anion are linked by an O—H⋯Cl hydrogen bond. The three-dimensional crystal structure is stabilized by N—H⋯O and N—H⋯Cl hydrogen bonds.

Related literature

For related structures, see: Athimoolam & Natarajan (2007); Gracin & Fischer (2005).graphic file with name e-67-o3247-scheme1.jpg

Experimental

Crystal data

  • C7H8NO2 +·Cl

  • M r = 173.59

  • Monoclinic, Inline graphic

  • a = 5.601 (5) Å

  • b = 8.269 (5) Å

  • c = 17.118 (5) Å

  • β = 96.371 (5)°

  • V = 787.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.30 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.814, T max = 0.882

  • 4205 measured reflections

  • 1299 independent reflections

  • 1210 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.192

  • S = 1.26

  • 1299 reflections

  • 133 parameters

  • All H-atom parameters refined

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046721/wn2458sup1.cif

e-67-o3247-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046721/wn2458Isup2.hkl

e-67-o3247-Isup2.hkl (62.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046721/wn2458Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.99 (8) 2.10 (8) 3.059 (4) 164 (6)
N1—H1A⋯Cl1i 0.85 (6) 2.33 (6) 3.154 (6) 165 (5)
N1—H1B⋯O2ii 0.88 (9) 2.05 (8) 2.823 (6) 145 (7)
N1—H1B⋯Cl1iii 0.88 (9) 2.70 (9) 3.289 (5) 125 (6)
N1—H1C⋯Cl1ii 0.96 (8) 2.26 (8) 3.215 (5) 172 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The project was supported by the Natural Science Foundation of Huaihai Institute of Technology, China (No. Z2009019).

supplementary crystallographic information

Comment

We intended to prepare a cerium(III) complex of p-aminobenzoic acid. However, we obtained crystals of the title salt, and we report here its crystal structure.

In the title salt, the asymmetric unit consists of one p-aminobenzoic acid cation and one chloride anion (Fig. 1).

The amine group is protonated and the C4—N1 bond length is 1.471 (7) Å. In the crystal structure of 4-carboxyanilinium(2R, 3R)-tartrate (Athimoolam & Natarajan, 2007) the amine group is also protonated and the values of the corresponding C—N bond lengths are 1.464 (6) Å and 1.476 (5) Å.

In the crystal structures of the α-polymorph of p-aminobenzoic acid (Athimoolam & Natarajan, 2007) and β-polymorph of p-aminobenzoic acid (Gracin & Fischer, 2005) the amino group is not protonated. For the α-polymorph the C—N distance is 1.372 (5) Å; for the β-polymorph the distance is 1.408 (3) Å.

The hydrogen bonds listed in Table 1 result in a crystal structure generated by inversion and glide symmetry (Fig. 2).

Experimental

To a solution containing p-aminobenzoic acid (1.37 g, 10 mmol) in ethanol (30 ml), a solution of cerium(III) chloride (1.24 g, 5 mmol) in methanol (15 ml) was added with stirring for 2 h at 323 K, and then the solution was filtered. Colourless crystals suitable for X-ray crystal structure analysis were obtained from the filtered solution over a period of two weeks.

Refinement

All H atoms were located in a difference Fourier map and refined freely; Csp2—H = 0.87 (6) – 0.96 (5) Å, N—H = 0.85 (6) – 0.96 (8) Å and O—H = 0.99 (8) Å.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title structure. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure, with hydrogen bonds shown as dashed lines. For clarity, H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code:(*).1 - x, 1 - y, 1 - z (#). 1 + x, 1/2 - y, 1/2 + z,(&). x, 1/2 - y, 1/2 + z].

Crystal data

C7H8NO2+·Cl F(000) = 360
Mr = 173.59 Dx = 1.463 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3678 reflections
a = 5.601 (5) Å θ = 2.4–29.3°
b = 8.269 (5) Å µ = 0.43 mm1
c = 17.118 (5) Å T = 298 K
β = 96.371 (5)° Block, yellow
V = 787.9 (9) Å3 0.50 × 0.40 × 0.30 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 1299 independent reflections
Radiation source: fine-focus sealed tube 1210 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −6→6
Tmin = 0.814, Tmax = 0.882 k = −9→7
4205 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 All H-atom parameters refined
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0616P)2 + 2.6608P] where P = (Fo2 + 2Fc2)/3
S = 1.26 (Δ/σ)max < 0.001
1299 reflections Δρmax = 0.49 e Å3
133 parameters Δρmin = −0.34 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.075 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5758 (9) 0.2824 (5) 0.5157 (3) 0.0322 (11)
C2 0.3637 (8) 0.1926 (6) 0.4999 (3) 0.0332 (11)
C3 0.3059 (9) 0.1230 (6) 0.4273 (3) 0.0367 (12)
C4 0.4607 (8) 0.1434 (5) 0.3701 (3) 0.0314 (11)
C5 0.6671 (9) 0.2347 (6) 0.3835 (3) 0.0362 (12)
C6 0.7245 (9) 0.3053 (6) 0.4564 (3) 0.0376 (12)
C7 0.6379 (9) 0.3487 (6) 0.5964 (3) 0.0348 (11)
N1 0.4043 (9) 0.0640 (6) 0.2933 (3) 0.0374 (10)
O1 0.8194 (7) 0.4512 (5) 0.6027 (2) 0.0488 (11)
O2 0.5313 (8) 0.3078 (5) 0.6508 (2) 0.0573 (12)
Cl1 0.9009 (2) 0.60977 (15) 0.76491 (7) 0.0407 (5)
H1 0.858 (13) 0.482 (9) 0.659 (5) 0.09 (2)*
H1A 0.279 (10) 0.006 (6) 0.293 (3) 0.032 (14)*
H1B 0.393 (14) 0.131 (11) 0.253 (5) 0.09 (3)*
H1C 0.545 (14) 0.002 (9) 0.286 (4) 0.08 (2)*
H2 0.262 (9) 0.183 (6) 0.541 (3) 0.034 (13)*
H3 0.175 (10) 0.067 (6) 0.419 (3) 0.033 (13)*
H5 0.780 (10) 0.249 (6) 0.347 (3) 0.042 (15)*
H6 0.863 (9) 0.363 (6) 0.465 (3) 0.026 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.035 (3) 0.030 (2) 0.033 (2) 0.0025 (19) 0.008 (2) 0.0034 (19)
C2 0.028 (2) 0.039 (3) 0.034 (2) 0.001 (2) 0.008 (2) 0.006 (2)
C3 0.033 (3) 0.035 (3) 0.045 (3) −0.004 (2) 0.013 (2) 0.003 (2)
C4 0.033 (2) 0.028 (2) 0.035 (2) 0.0035 (19) 0.009 (2) 0.0035 (18)
C5 0.035 (3) 0.040 (3) 0.036 (3) 0.000 (2) 0.013 (2) 0.005 (2)
C6 0.033 (3) 0.037 (3) 0.046 (3) −0.007 (2) 0.015 (2) −0.001 (2)
C7 0.031 (2) 0.038 (2) 0.034 (2) 0.002 (2) 0.002 (2) 0.003 (2)
N1 0.036 (2) 0.041 (2) 0.035 (2) −0.004 (2) 0.006 (2) 0.0016 (19)
O1 0.054 (2) 0.054 (2) 0.039 (2) −0.0211 (19) 0.0078 (19) −0.0046 (17)
O2 0.059 (3) 0.080 (3) 0.035 (2) −0.025 (2) 0.014 (2) −0.0088 (19)
Cl1 0.0353 (8) 0.0408 (8) 0.0459 (8) 0.0035 (5) 0.0043 (5) −0.0016 (5)

Geometric parameters (Å, °)

C1—C6 1.395 (6) C5—C6 1.383 (7)
C1—C2 1.402 (7) C5—H5 0.94 (5)
C1—C7 1.491 (7) C6—H6 0.91 (5)
C2—C3 1.374 (7) C7—O2 1.209 (6)
C2—H2 0.96 (5) C7—O1 1.319 (6)
C3—C4 1.389 (6) N1—H1A 0.85 (6)
C3—H3 0.87 (6) N1—H1B 0.88 (9)
C4—C5 1.378 (7) N1—H1C 0.96 (8)
C4—N1 1.471 (7) O1—H1 0.99 (8)
C6—C1—C2 119.6 (5) C6—C5—H5 116 (3)
C6—C1—C7 121.8 (5) C5—C6—C1 120.1 (5)
C2—C1—C7 118.6 (4) C5—C6—H6 118 (3)
C3—C2—C1 120.4 (4) C1—C6—H6 121 (3)
C3—C2—H2 122 (3) O2—C7—O1 124.0 (5)
C1—C2—H2 117 (3) O2—C7—C1 121.8 (5)
C2—C3—C4 119.0 (5) O1—C7—C1 114.2 (4)
C2—C3—H3 118 (3) C4—N1—H1A 111 (3)
C4—C3—H3 123 (3) C4—N1—H1B 114 (5)
C5—C4—C3 121.7 (5) H1A—N1—H1B 111 (6)
C5—C4—N1 119.1 (4) C4—N1—H1C 104 (5)
C3—C4—N1 119.1 (4) H1A—N1—H1C 113 (6)
C4—C5—C6 119.3 (4) H1B—N1—H1C 103 (6)
C4—C5—H5 125 (3) C7—O1—H1 109 (4)
C6—C1—C2—C3 2.1 (7) C4—C5—C6—C1 0.7 (8)
C7—C1—C2—C3 −176.9 (4) C2—C1—C6—C5 −2.3 (7)
C1—C2—C3—C4 −0.1 (7) C7—C1—C6—C5 176.6 (5)
C2—C3—C4—C5 −1.6 (7) C6—C1—C7—O2 −167.9 (5)
C2—C3—C4—N1 177.7 (4) C2—C1—C7—O2 11.1 (7)
C3—C4—C5—C6 1.4 (7) C6—C1—C7—O1 10.8 (7)
N1—C4—C5—C6 −177.9 (5) C2—C1—C7—O1 −170.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···Cl1 0.99 (8) 2.10 (8) 3.059 (4) 164 (6)
N1—H1A···Cl1i 0.85 (6) 2.33 (6) 3.154 (6) 165 (5)
N1—H1B···O2ii 0.88 (9) 2.05 (8) 2.823 (6) 145 (7)
N1—H1B···Cl1iii 0.88 (9) 2.70 (9) 3.289 (5) 125 (6)
N1—H1C···Cl1ii 0.96 (8) 2.26 (8) 3.215 (5) 172 (6)

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2458).

References

  1. Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. C63, o514–o517. [DOI] [PubMed]
  2. Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Gracin, S. & Fischer, A. (2005). Acta Cryst. E61, o1242–o1244.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046721/wn2458sup1.cif

e-67-o3247-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046721/wn2458Isup2.hkl

e-67-o3247-Isup2.hkl (62.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046721/wn2458Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES