Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 9;67(Pt 12):o3249. doi: 10.1107/S1600536811046642

N 4,N 6-Dimethyl-N 4,N 6-diphenyl­pyrimidine-4,5,6-triamine

Fuqiang Shi a, Li-Hong Zhu a, Li Mu b, Long Zhang a, Ya-Feng Li a,*
PMCID: PMC3238906  PMID: 22199759

Abstract

In the title compound, C18H19N5, the pyrimidine ring makes dihedral angles of 56.49 (9) and 70.88 (9)° with the phenyl rings. The dihedral angle between the two phenyl rings is 72.45 (9)°. No significant inter­molecular inter­actions are observed in the crystal structure.

Related literature

For applications and the biological activity of pyrimidine triamines, see: Barillari et al. (2001); Itoh et al. (2004); Koppel & Robins (1958).graphic file with name e-67-o3249-scheme1.jpg

Experimental

Crystal data

  • C18H19N5

  • M r = 305.38

  • Orthorhombic, Inline graphic

  • a = 8.8859 (18) Å

  • b = 14.360 (3) Å

  • c = 25.121 (5) Å

  • V = 3205.4 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.975, T max = 0.983

  • 28152 measured reflections

  • 3664 independent reflections

  • 2119 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.137

  • S = 1.03

  • 3664 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046642/is2800sup1.cif

e-67-o3249-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046642/is2800Isup2.hkl

e-67-o3249-Isup2.hkl (179.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046642/is2800Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, the State Education Ministry (20071108) and the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

supplementary crystallographic information

Comment

Pyrimidine triamines not only exhibit a wide range of biological activities (Barillari et al., 2001), but also are important intermediate products (Koppel & Robins, 1958; Itoh et al., 2004). Here, the crystal structure of N4,N6-dimethyl-N4,N6- diphenylpyrimidine-4,5,6-triamine is reported.

Experimental

N4,N6-dimethyl-5-nitro-N4,N6 -diphenylpyrimidine-4, 6-diamine (502.5 mg, 1.5 mmol) was dissolved in a mixture of ethanol (16 mL) and water (4 mL). Then, iron powder (504 mg, 9 mmol) and NH4Cl (96.3 mg, 1.8 mmol) were added. The mixture was then stirred in reflux for 6 h, cooled to room temperature, and filtered through a pad of celite. The filtrate was concentrated in vacuo. The residue was extracted with EtOAc, and the organic extract was washed with saturated NaHCO3, water, and brine and dried over anhydrous MgSO4. It was then filtered and concentrated in vacuo to the crude product which was purified by flash chromatography (elution with 9% EtOAc in petroleum ether followed by 20% EtOAc in petroleum ether) to give N4,N6-dimethyl-N4,N6- diphenylpyrimidine-4,5,6-triamine (colorless solid, 310 mg, 67.8%, 88.6-90.6 °C).

Refinement

All H atoms were located from difference Fourier maps and then were treated as riding, with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C or N) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoid are shown at the 50% probability level.

Crystal data

C18H19N5 F(000) = 1296
Mr = 305.38 Dx = 1.266 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 1000 reflections
a = 8.8859 (18) Å θ = 3.2–27.5°
b = 14.360 (3) Å µ = 0.08 mm1
c = 25.121 (5) Å T = 293 K
V = 3205.4 (11) Å3 Block, colorless
Z = 8 0.32 × 0.28 × 0.22 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 3664 independent reflections
Radiation source: fine-focus sealed tube 2119 reflections with I > 2σ(I)
graphite Rint = 0.065
Detector resolution: 10.00 pixels mm-1 θmax = 27.5°, θmin = 3.2°
ω scans h = −11→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −18→18
Tmin = 0.975, Tmax = 0.983 l = −32→32
28152 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0693P)2] where P = (Fo2 + 2Fc2)/3
3664 reflections (Δ/σ)max < 0.001
210 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Experimental. 1H NMR (CDCl3, 400 Hz), δ: 8.38 (s, 1H), 7.27 (t, J = 7.6Hz, 4H), 7.00(t, J = 7.2Hz, 2H), 6.90(d, J = 8.0Hz, 4H), 3.50 (s, 6H); 2.90 (s, 2H). 13C NMR (CDCl3, 100 Hz), δ: 151.1, 148.0, 145.7, 129.3, 122.8, 122.7, 120.0, 39.7. ES-MS: 336.1 [(M + H+)].
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0279 (3) 0.46280 (13) 0.41196 (8) 0.0660 (6)
H1 −0.0833 0.5128 0.4249 0.079*
C2 0.0751 (2) 0.32120 (11) 0.42746 (6) 0.0483 (4)
C3 0.15006 (19) 0.32587 (11) 0.37827 (6) 0.0460 (4)
C4 0.1152 (2) 0.40201 (11) 0.34631 (6) 0.0484 (4)
C5 0.1622 (2) 0.34917 (11) 0.25472 (6) 0.0480 (4)
C6 0.0766 (2) 0.26882 (12) 0.26084 (7) 0.0563 (5)
H6 0.0287 0.2573 0.2931 0.068*
C7 0.0620 (2) 0.20590 (13) 0.21954 (8) 0.0626 (5)
H7 0.0059 0.1519 0.2245 0.075*
C8 0.1296 (2) 0.22228 (16) 0.17087 (8) 0.0689 (6)
H8 0.1205 0.1795 0.1433 0.083*
C9 0.2099 (2) 0.30237 (15) 0.16412 (8) 0.0679 (6)
H9 0.2534 0.3148 0.1312 0.082*
C10 0.2278 (2) 0.36518 (14) 0.20496 (7) 0.0586 (5)
H10 0.2842 0.4189 0.1994 0.070*
C11 0.0814 (2) 0.15421 (10) 0.44409 (6) 0.0478 (4)
C12 0.1647 (2) 0.08195 (13) 0.46579 (7) 0.0612 (5)
H12 0.2369 0.0943 0.4917 0.073*
C13 0.1404 (3) −0.00819 (13) 0.44895 (9) 0.0713 (6)
H13 0.1949 −0.0566 0.4642 0.086*
C14 0.0367 (3) −0.02727 (13) 0.40991 (9) 0.0732 (6)
H14 0.0223 −0.0882 0.3983 0.088*
C15 −0.0447 (3) 0.04322 (13) 0.38829 (8) 0.0688 (6)
H15 −0.1150 0.0305 0.3619 0.083*
C16 −0.0238 (2) 0.13385 (12) 0.40531 (7) 0.0570 (5)
H16 −0.0810 0.1815 0.3905 0.068*
C17 0.2467 (3) 0.50505 (12) 0.28371 (9) 0.0743 (6)
H17A 0.3482 0.4977 0.2713 0.111*
H17B 0.2464 0.5430 0.3152 0.111*
H17C 0.1874 0.5345 0.2566 0.111*
C18 0.0744 (4) 0.26304 (14) 0.51905 (7) 0.0931 (9)
H18A 0.1106 0.3236 0.5290 0.140*
H18B 0.1257 0.2163 0.5395 0.140*
H18C −0.0318 0.2593 0.5258 0.140*
N1 0.02716 (19) 0.47211 (9) 0.36360 (6) 0.0593 (4)
N2 −0.01344 (19) 0.39000 (10) 0.44460 (6) 0.0602 (4)
N3 0.18291 (19) 0.41347 (9) 0.29607 (6) 0.0578 (4)
N4 0.25718 (18) 0.26103 (9) 0.36391 (6) 0.0583 (4)
H4A 0.3049 0.2669 0.3343 0.070*
H4B 0.2762 0.2147 0.3845 0.070*
N5 0.1029 (2) 0.24762 (9) 0.46223 (5) 0.0568 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0737 (15) 0.0553 (10) 0.0688 (13) 0.0106 (10) 0.0113 (11) −0.0102 (9)
C2 0.0550 (11) 0.0480 (9) 0.0419 (9) −0.0040 (8) −0.0006 (8) −0.0048 (7)
C3 0.0475 (10) 0.0451 (8) 0.0454 (9) −0.0010 (8) 0.0001 (8) −0.0040 (7)
C4 0.0528 (11) 0.0448 (8) 0.0475 (10) −0.0015 (8) −0.0008 (8) −0.0016 (7)
C5 0.0473 (10) 0.0530 (9) 0.0437 (9) 0.0073 (8) −0.0007 (7) 0.0038 (7)
C6 0.0542 (11) 0.0653 (11) 0.0493 (10) −0.0004 (9) 0.0027 (9) 0.0004 (8)
C7 0.0603 (13) 0.0644 (11) 0.0631 (12) 0.0040 (10) −0.0090 (10) −0.0071 (9)
C8 0.0674 (14) 0.0877 (14) 0.0517 (12) 0.0182 (12) −0.0070 (10) −0.0156 (10)
C9 0.0669 (14) 0.0877 (14) 0.0492 (11) 0.0198 (12) 0.0063 (10) −0.0004 (10)
C10 0.0547 (12) 0.0690 (11) 0.0522 (11) 0.0099 (9) 0.0064 (9) 0.0093 (9)
C11 0.0520 (10) 0.0490 (9) 0.0425 (9) −0.0001 (8) 0.0037 (8) 0.0017 (7)
C12 0.0571 (12) 0.0726 (12) 0.0540 (11) 0.0066 (10) 0.0002 (9) 0.0098 (9)
C13 0.0785 (16) 0.0578 (11) 0.0776 (14) 0.0206 (11) 0.0180 (12) 0.0118 (10)
C14 0.0905 (18) 0.0519 (11) 0.0770 (15) −0.0024 (11) 0.0167 (13) −0.0077 (10)
C15 0.0737 (15) 0.0623 (12) 0.0703 (13) −0.0102 (11) −0.0048 (11) −0.0086 (10)
C16 0.0578 (12) 0.0547 (10) 0.0585 (11) 0.0006 (9) −0.0063 (9) 0.0003 (8)
C17 0.0932 (17) 0.0561 (11) 0.0734 (14) −0.0147 (11) 0.0105 (12) 0.0092 (9)
C18 0.164 (3) 0.0758 (13) 0.0391 (11) −0.0086 (15) 0.0004 (13) −0.0048 (9)
N1 0.0656 (11) 0.0511 (8) 0.0611 (10) 0.0072 (8) 0.0001 (8) −0.0028 (7)
N2 0.0707 (11) 0.0551 (8) 0.0548 (9) 0.0016 (8) 0.0109 (8) −0.0073 (7)
N3 0.0740 (12) 0.0528 (8) 0.0466 (8) −0.0090 (8) 0.0073 (7) 0.0052 (6)
N4 0.0607 (10) 0.0602 (9) 0.0542 (9) 0.0132 (8) 0.0116 (8) 0.0062 (7)
N5 0.0807 (12) 0.0530 (8) 0.0366 (8) −0.0063 (8) −0.0048 (7) −0.0014 (6)

Geometric parameters (Å, °)

C1—N1 1.316 (2) C11—C16 1.381 (2)
C1—N2 1.335 (2) C11—C12 1.386 (2)
C1—H1 0.9300 C11—N5 1.429 (2)
C2—N2 1.334 (2) C12—C13 1.379 (3)
C2—N5 1.393 (2) C12—H12 0.9300
C2—C3 1.406 (2) C13—C14 1.374 (3)
C3—N4 1.379 (2) C13—H13 0.9300
C3—C4 1.391 (2) C14—C15 1.357 (3)
C4—N1 1.347 (2) C14—H14 0.9300
C4—N3 1.408 (2) C15—C16 1.383 (2)
C5—C6 1.391 (2) C15—H15 0.9300
C5—C10 1.398 (2) C16—H16 0.9300
C5—N3 1.402 (2) C17—N3 1.465 (2)
C6—C7 1.382 (2) C17—H17A 0.9600
C6—H6 0.9300 C17—H17B 0.9600
C7—C8 1.382 (3) C17—H17C 0.9600
C7—H7 0.9300 C18—N5 1.466 (2)
C8—C9 1.364 (3) C18—H18A 0.9600
C8—H8 0.9300 C18—H18B 0.9600
C9—C10 1.375 (3) C18—H18C 0.9600
C9—H9 0.9300 N4—H4A 0.8600
C10—H10 0.9300 N4—H4B 0.8600
N1—C1—N2 127.64 (17) C14—C13—C12 120.75 (19)
N1—C1—H1 116.2 C14—C13—H13 119.6
N2—C1—H1 116.2 C12—C13—H13 119.6
N2—C2—N5 117.64 (15) C15—C14—C13 119.64 (19)
N2—C2—C3 121.86 (15) C15—C14—H14 120.2
N5—C2—C3 120.22 (15) C13—C14—H14 120.2
N4—C3—C4 122.23 (15) C14—C15—C16 120.4 (2)
N4—C3—C2 121.66 (15) C14—C15—H15 119.8
C4—C3—C2 116.04 (15) C16—C15—H15 119.8
N1—C4—C3 122.05 (15) C11—C16—C15 120.57 (17)
N1—C4—N3 116.75 (14) C11—C16—H16 119.7
C3—C4—N3 120.91 (16) C15—C16—H16 119.7
C6—C5—C10 117.61 (16) N3—C17—H17A 109.5
C6—C5—N3 122.42 (15) N3—C17—H17B 109.5
C10—C5—N3 119.97 (16) H17A—C17—H17B 109.5
C7—C6—C5 120.74 (17) N3—C17—H17C 109.5
C7—C6—H6 119.6 H17A—C17—H17C 109.5
C5—C6—H6 119.6 H17B—C17—H17C 109.5
C6—C7—C8 120.78 (19) N5—C18—H18A 109.5
C6—C7—H7 119.6 N5—C18—H18B 109.5
C8—C7—H7 119.6 H18A—C18—H18B 109.5
C9—C8—C7 118.74 (18) N5—C18—H18C 109.5
C9—C8—H8 120.6 H18A—C18—H18C 109.5
C7—C8—H8 120.6 H18B—C18—H18C 109.5
C8—C9—C10 121.40 (19) C1—N1—C4 115.94 (15)
C8—C9—H9 119.3 C2—N2—C1 116.00 (16)
C10—C9—H9 119.3 C5—N3—C4 122.09 (14)
C9—C10—C5 120.70 (19) C5—N3—C17 118.99 (15)
C9—C10—H10 119.7 C4—N3—C17 117.41 (14)
C5—C10—H10 119.7 C3—N4—H4A 120.0
C16—C11—C12 118.70 (16) C3—N4—H4B 120.0
C16—C11—N5 120.91 (15) H4A—N4—H4B 120.0
C12—C11—N5 120.38 (16) C2—N5—C11 119.23 (13)
C13—C12—C11 119.90 (19) C2—N5—C18 117.72 (15)
C13—C12—H12 120.0 C11—N5—C18 115.39 (14)
C11—C12—H12 120.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2800).

References

  1. Barillari, C., Barlocco, D. & Raveglia, L. (2001). Eur. J. Org. Chem. pp. 4737–4741.
  2. Brandenburg, K. (2000). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Itoh, T., Sato, K. & Mase, T. (2004). Adv. Synth. Catal. 346, 1859–1867.
  5. Koppel, H. & Robins, R. (1958). J. Org. Chem. 23, 1457–1460.
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046642/is2800sup1.cif

e-67-o3249-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046642/is2800Isup2.hkl

e-67-o3249-Isup2.hkl (179.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046642/is2800Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES