Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 9;67(Pt 12):o3252. doi: 10.1107/S1600536811046988

2-{[(4-{[(2-Hy­droxy­phen­yl)(phen­yl)methyl­idene]amino}­phen­yl)imino](phen­yl)meth­yl}phenol

Anita Blagus a,*, Branko Kaitner b
PMCID: PMC3238908  PMID: 22199761

Abstract

The title mol­ecule, C32H24N2O2, has a crystallographically imposed inversion centre and exists in the crystal as an enol–imine tautomer. The mol­ecular structure is stabilized by two strong intra­molecular O—H⋯N hydrogen bonds. The dihedral angles between the central benzene ring and the mean planes of the phenyl substituents are 59.99 (1) and 62.79 (2)°. In the crystal, the mol­ecules are arranged into (010) layers via C—H⋯π inter­actions.

Related literature

For general background to Schiff bases, see: Blagus et al. (2010). For similar structures derived from p-phenyl­enediamine, see: Al-Douh et al. (2009); Hoshino et al. (1988); Inabe et al. (1994).graphic file with name e-67-o3252-scheme1.jpg

Experimental

Crystal data

  • C32H24N2O2

  • M r = 468.53

  • Orthorhombic, Inline graphic

  • a = 17.383 (4) Å

  • b = 14.595 (3) Å

  • c = 9.476 (2) Å

  • V = 2404.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.6 × 0.5 × 0.3 mm

Data collection

  • Oxford Diffraction Xcalibur CCD diffractometer

  • 18421 measured reflections

  • 2361 independent reflections

  • 1559 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.149

  • S = 1.03

  • 2361 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046988/gk2425sup1.cif

e-67-o3252-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046988/gk2425Isup2.hkl

e-67-o3252-Isup2.hkl (113.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046988/gk2425Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.91 (2) 1.73 (2) 2.569 (2) 152 (2)
C15—H15⋯Cgi 0.93 2.93 3.748 (2) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support by the Ministry of Science, Education and Sport of the Republic of Croatia is gratefully acknowledged (grant No. 119–1193079–3069).

supplementary crystallographic information

Comment

There is constant interest in investigation of solid-state structures and properties of Schiff bases and their metal complexes (Blagus et al., 2010 and references therein). The title Schiff base is derived from p-phenylenediamine and the structures of three Schiff bases derived from p-phenylenediamine and different aldehydes [(i) vanillin (Al-Douh et al., 2009), (ii) salicylaldehyde (Hoshino et al., 1988) and(iii) 2-OH-1-naphthaldehyde (Inabe et al., 1994)] were published since 1988. Two main features that define the shape of the title molecule are: (i) strong intramolecular O–H···N hydrogen bond and (ii) spatial orientation of four terminal aromatic rings with respect to the central one (Fig. 1). The C1–C6 ring and pseudo-aromatic O1–H1–N1–C1–C2–C7 ring are almost co-planar with a dihedral angle of 1.79 (1)° and the displacement of H1 atom from the best plane of pseudo-aromatic ring of 0.016 Å. The bond distances characterizing the enol-imine tautomeric form of (I) are as expected. Taking the central ring C14–C14i–C15–C15i–C16–C16i [(i): –x, –y, –z+1] as the pivotal one, the interplanar angles between this ring and the rings C1–C6 and C8–C13 are 59.99 (1) and 62.79 (2)°, respectively. The latter rings intersect at an angle of 67.74 (1)°. In crystal packing some weak C–H···π interactions can be observed that organize the molecules into (0 1 0) layers shown in Fig. 2.

Experimental

The title compound was prepared by the condensation reaction of the aromatic diamine and aromatic 2-OH-ketone in molar ratio 1: 2. Ethanolic solutions of 2-hydroxybenzophenone (10 mmol) and o-phenylenediamine (5 mmol) were stirred for 3 h. The resulting brown resinous product was dissolved in ether and overlaid with the same volume of n-hexane. After one month, red-brown crystals suitable for single-crystal X-ray analysis were obtained by slow evaporation from the solution. IR spectrum was recorded on Shimadzu FTIR-8400 spectrophotometer cm-1: 3378, 1625, 1486, 1335, 1246, 759, 702.

Refinement

The O—H group hydrogen atom was located in a difference Fourier map and freely refined. The coordinates of H atoms bonded to C were calculated (C–H = 0.96 Å) and these H atoms were refined in a riding model approximation with Uiso(H) = 1.2Ueq (C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title molecule with displacement ellipsoids drawn at the 50% probability level. Label a refers to the atoms with the symmetry code: –x, –y, –z + 1.

Fig. 2.

Fig. 2.

Stacking of (0 1 0) layers along the b-direction. In spite of non-planarity of the title molecule mutual molecular arrangement in neighboring layers corresponds to the herringbone motif typical for fused ring aromatic planar hydrocarbon molecules.

Crystal data

C32H24N2O2 F(000) = 984
Mr = 468.53 Dx = 1.294 Mg m3
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 2361 reflections
a = 17.383 (4) Å θ = 4–26°
b = 14.595 (3) Å µ = 0.08 mm1
c = 9.476 (2) Å T = 298 K
V = 2404.1 (9) Å3 Prism, red-brown
Z = 4 0.6 × 0.5 × 0.3 mm

Data collection

Oxford Diffraction Xcalibur CCD diffractometer 1559 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.053
graphite θmax = 26.0°, θmin = 3.8°
ω scan h = −21→21
18421 measured reflections k = −18→15
2361 independent reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0869P)2] where P = (Fo2 + 2Fc2)/3
2361 reflections (Δ/σ)max < 0.001
166 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.10687 (9) 0.20165 (9) 0.10710 (16) 0.0382 (4)
H1 0.0915 (13) 0.1651 (16) 0.179 (3) 0.046*
N1 0.07823 (10) 0.05834 (11) 0.25539 (18) 0.0307 (4)
C1 0.13856 (11) 0.04766 (13) 0.0306 (2) 0.0291 (5)
C2 0.13707 (12) 0.14397 (13) 0.0114 (2) 0.0301 (5)
C3 0.16724 (13) 0.18187 (14) −0.1114 (2) 0.0350 (5)
H3 0.1650 0.2449 −0.1249 0.042*
C4 0.20034 (12) 0.12759 (14) −0.2129 (2) 0.0362 (5)
H4 0.2204 0.1542 −0.2941 0.043*
C5 0.20404 (12) 0.03367 (14) −0.1950 (2) 0.0350 (5)
H5 0.2269 −0.0030 −0.2636 0.042*
C6 0.17364 (12) −0.00509 (14) −0.0750 (2) 0.0328 (5)
H6 0.1764 −0.0683 −0.0636 0.039*
C7 0.10431 (12) 0.00524 (13) 0.1571 (2) 0.0290 (5)
C8 0.10237 (12) −0.09729 (13) 0.1671 (2) 0.0294 (5)
C9 0.05715 (13) −0.14864 (14) 0.0762 (2) 0.0363 (6)
H9 0.0289 −0.1196 0.0059 0.044*
C10 0.05388 (14) −0.24324 (15) 0.0898 (3) 0.0417 (6)
H10 0.0221 −0.2771 0.0306 0.050*
C11 0.09736 (14) −0.28720 (15) 0.1902 (3) 0.0453 (6)
H11 0.0961 −0.3507 0.1973 0.054*
C12 0.14278 (13) −0.23687 (14) 0.2802 (3) 0.0441 (6)
H12 0.1723 −0.2666 0.3481 0.053*
C13 0.14491 (12) −0.14183 (14) 0.2704 (2) 0.0377 (6)
H13 0.1748 −0.1081 0.3330 0.045*
C14 0.03947 (12) 0.02512 (13) 0.3774 (2) 0.0289 (5)
C15 −0.02406 (13) −0.03231 (13) 0.3698 (2) 0.0319 (5)
H15 −0.0407 −0.0539 0.2826 0.038*
C16 −0.06282 (12) −0.05766 (14) 0.4913 (2) 0.0318 (5)
H16 −0.1049 −0.0968 0.4851 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0542 (10) 0.0276 (8) 0.0328 (9) −0.0031 (7) 0.0041 (8) 0.0007 (7)
N1 0.0337 (10) 0.0296 (9) 0.0288 (10) −0.0006 (8) 0.0005 (8) 0.0031 (8)
C1 0.0284 (11) 0.0310 (11) 0.0279 (12) −0.0018 (9) −0.0031 (9) 0.0021 (9)
C2 0.0324 (12) 0.0286 (11) 0.0293 (12) −0.0027 (9) −0.0026 (10) −0.0028 (9)
C3 0.0397 (13) 0.0290 (11) 0.0364 (13) −0.0025 (10) −0.0036 (11) 0.0063 (10)
C4 0.0352 (12) 0.0408 (13) 0.0325 (12) −0.0067 (10) −0.0001 (10) 0.0037 (10)
C5 0.0341 (12) 0.0384 (13) 0.0326 (13) 0.0039 (10) 0.0028 (10) 0.0007 (10)
C6 0.0340 (12) 0.0276 (11) 0.0369 (13) 0.0001 (9) −0.0005 (10) 0.0011 (9)
C7 0.0288 (11) 0.0291 (11) 0.0292 (12) 0.0000 (9) −0.0036 (9) 0.0020 (9)
C8 0.0299 (11) 0.0267 (11) 0.0315 (11) 0.0008 (9) 0.0051 (10) 0.0022 (9)
C9 0.0388 (13) 0.0335 (12) 0.0367 (13) −0.0012 (10) −0.0004 (11) −0.0001 (10)
C10 0.0495 (15) 0.0310 (12) 0.0444 (15) −0.0087 (11) 0.0037 (12) −0.0065 (11)
C11 0.0507 (15) 0.0260 (11) 0.0592 (17) −0.0021 (11) 0.0072 (13) 0.0019 (11)
C12 0.0421 (14) 0.0341 (13) 0.0561 (16) 0.0024 (10) −0.0005 (12) 0.0136 (11)
C13 0.0374 (13) 0.0343 (12) 0.0413 (13) −0.0050 (10) −0.0003 (11) 0.0060 (10)
C14 0.0346 (12) 0.0231 (10) 0.0289 (12) 0.0032 (9) 0.0024 (9) 0.0027 (9)
C15 0.0368 (13) 0.0303 (11) 0.0286 (12) 0.0017 (10) −0.0014 (10) −0.0020 (9)
C16 0.0317 (12) 0.0283 (11) 0.0353 (13) −0.0026 (9) 0.0012 (10) 0.0005 (9)

Geometric parameters (Å, °)

O1—C2 1.344 (2) C8—C13 1.388 (3)
O1—H1 0.91 (2) C9—C10 1.388 (3)
N1—C7 1.294 (3) C9—H9 0.9300
N1—C14 1.423 (3) C10—C11 1.374 (3)
C1—C6 1.402 (3) C10—H10 0.9300
C1—C2 1.418 (3) C11—C12 1.375 (3)
C1—C7 1.474 (3) C11—H11 0.9300
C2—C3 1.391 (3) C12—C13 1.391 (3)
C3—C4 1.372 (3) C12—H12 0.9300
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.383 (3) C14—C15 1.388 (3)
C4—H4 0.9300 C14—C16i 1.392 (3)
C5—C6 1.376 (3) C15—C16 1.384 (3)
C5—H5 0.9300 C15—H15 0.9300
C6—H6 0.9300 C16—C14i 1.392 (3)
C7—C8 1.500 (3) C16—H16 0.9300
C8—C9 1.386 (3)
C2—O1—H1 104.8 (15) C13—C8—C7 119.99 (19)
C7—N1—C14 123.14 (17) C8—C9—C10 120.2 (2)
C6—C1—C2 117.41 (18) C8—C9—H9 119.9
C6—C1—C7 121.68 (18) C10—C9—H9 119.9
C2—C1—C7 120.90 (18) C11—C10—C9 120.4 (2)
O1—C2—C3 117.56 (18) C11—C10—H10 119.8
O1—C2—C1 122.76 (18) C9—C10—H10 119.8
C3—C2—C1 119.67 (19) C10—C11—C12 119.7 (2)
C4—C3—C2 120.98 (19) C10—C11—H11 120.1
C4—C3—H3 119.5 C12—C11—H11 120.1
C2—C3—H3 119.5 C11—C12—C13 120.4 (2)
C3—C4—C5 120.4 (2) C11—C12—H12 119.8
C3—C4—H4 119.8 C13—C12—H12 119.8
C5—C4—H4 119.8 C8—C13—C12 120.0 (2)
C6—C5—C4 119.4 (2) C8—C13—H13 120.0
C6—C5—H5 120.3 C12—C13—H13 120.0
C4—C5—H5 120.3 C15—C14—C16i 118.97 (18)
C5—C6—C1 122.10 (19) C15—C14—N1 122.68 (18)
C5—C6—H6 118.9 C16i—C14—N1 118.15 (18)
C1—C6—H6 118.9 C16—C15—C14 120.35 (19)
N1—C7—C1 118.37 (18) C16—C15—H15 119.8
N1—C7—C8 122.98 (18) C14—C15—H15 119.8
C1—C7—C8 118.65 (17) C15—C16—C14i 120.67 (19)
C9—C8—C13 119.14 (19) C15—C16—H16 119.7
C9—C8—C7 120.86 (18) C14i—C16—H16 119.7
C6—C1—C2—O1 −178.21 (19) N1—C7—C8—C9 114.0 (2)
C7—C1—C2—O1 1.9 (3) C1—C7—C8—C9 −67.0 (3)
C6—C1—C2—C3 2.3 (3) N1—C7—C8—C13 −64.5 (3)
C7—C1—C2—C3 −177.61 (19) C1—C7—C8—C13 114.5 (2)
O1—C2—C3—C4 178.80 (19) C13—C8—C9—C10 0.8 (3)
C1—C2—C3—C4 −1.7 (3) C7—C8—C9—C10 −177.8 (2)
C2—C3—C4—C5 0.2 (3) C8—C9—C10—C11 −2.2 (3)
C3—C4—C5—C6 0.5 (3) C9—C10—C11—C12 1.8 (4)
C4—C5—C6—C1 0.2 (3) C10—C11—C12—C13 0.1 (4)
C2—C1—C6—C5 −1.6 (3) C9—C8—C13—C12 1.0 (3)
C7—C1—C6—C5 178.34 (19) C7—C8—C13—C12 179.6 (2)
C14—N1—C7—C1 175.68 (17) C11—C12—C13—C8 −1.5 (3)
C14—N1—C7—C8 −5.3 (3) C7—N1—C14—C15 −53.9 (3)
C6—C1—C7—N1 174.74 (19) C7—N1—C14—C16i 131.3 (2)
C2—C1—C7—N1 −5.3 (3) C16i—C14—C15—C16 −0.9 (3)
C6—C1—C7—C8 −4.3 (3) N1—C14—C15—C16 −175.61 (18)
C2—C1—C7—C8 175.60 (19) C14—C15—C16—C14i 0.9 (3)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.91 (2) 1.73 (2) 2.569 (2) 152 (2)
C15—H15···Cgii 0.93 2.93 3.748 (2) 148

Symmetry codes: (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2425).

References

  1. Al-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009). Acta Cryst. E65, o680–o681. [DOI] [PMC free article] [PubMed]
  2. Blagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117–138.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Hoshino, N., Inabe, T., Mitani, T. & Maruyama, Y. (1988). Bull. Chem. Soc. Jpn, 61, 4207–4214.
  6. Inabe, T., Luneau, I., Mitani, T., Maruyama, Y. & Takeda, S. (1994). Bull. Chem. Soc. Jpn, 67, 612–621.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046988/gk2425sup1.cif

e-67-o3252-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046988/gk2425Isup2.hkl

e-67-o3252-Isup2.hkl (113.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046988/gk2425Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES