Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 9;67(Pt 12):o3253. doi: 10.1107/S1600536811046630

7-Hy­droxy-4-methyl-8-(3-methyl­benzo­yl)-2H-chromen-2-one ethanol monosolvate

Shu-Ping Yang a,*, Li-Jun Han b, Xiao-Yun Chen a, Zhuan Gao a
PMCID: PMC3238909  PMID: 22199762

Abstract

In the title compound, C18H14O4·C2H6O, the coumarin ring system is approximately planar with a maximum deviation of 0.037 (3) Å and is nearly perpendicular to the benzene ring, making a dihedral angle of 86.55 (9)°. In the crystal, mol­ecules are linked by classical O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For the biological activity of coumarins, see: Sharma et al. (2005); Xiao et al. (2010); Iqbal et al. (2009); Siddiqui et al. (2009); Rollinger et al. (2004); Brühlmann et al. (2001). For a related structure, see: Yang et al. (2010).graphic file with name e-67-o3253-scheme1.jpg

Experimental

Crystal data

  • C18H14O4·C2H6O

  • M r = 340.36

  • Monoclinic, Inline graphic

  • a = 12.4562 (6) Å

  • b = 10.0341 (5) Å

  • c = 14.8999 (7) Å

  • β = 111.980 (3)°

  • V = 1726.93 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.972, T max = 0.982

  • 12216 measured reflections

  • 3021 independent reflections

  • 1762 reflections with I > 2σ(I)

  • R int = 0.119

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.188

  • S = 1.05

  • 3021 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046630/xu5373sup1.cif

e-67-o3253-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046630/xu5373Isup2.hkl

e-67-o3253-Isup2.hkl (145.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046630/xu5373Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.82 1.82 2.629 (3) 166
O5—H5A⋯O2 0.82 1.95 2.764 (3) 169
C17—H17⋯O2ii 0.93 2.54 3.398 (4) 154
C20—H20B⋯O4iii 0.96 2.53 3.489 (5) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The project was supported by the Natural Science Foundation of Huaihai Institute of Technology, China (No. Z2009019).

supplementary crystallographic information

Comment

Coumarins are very well known for their biological activity, such as antioxidants (Sharma et al., 2005), anticancer activity (Xiao et al., 2010), antiamoebic (Iqbal et al., 2009), anticonvulsant activity (Siddiqui et al., 2009) and inhibitions of acetylcholinesterase and monoamine oxidase (Rollinger et al., 2004; Brühlmann et al., 2001). Previous we have decribed the crystal structure of 8-benzoyl-7-hydroxy-4-methyl coumarin (Yang et al., 2010). As part of our study of the crystal structures of coumarin derivatives with 7-hydroxy, we report here the crystal structure of 8-(3-methylbenzoyl)-7-hydroxy-4-methyl-2H-1-benzopyran-2-one, (I).

In the molecule (I), the asymmetric unit contains one coumarin molecule and one ethanol molecule, and which are linked together by one O—H···O hydrogen bond (Table 1 and Fig. 1). The coumarin moiety (r.m.s deviations 0.0214 Å) and phenyl ring are perpendicular to each other with a dihedral angle of 86.55 (9)° between the plane of the atoms O1—O3/C1—C9 and the plane of C12—C17.

In crystal structure of (I), atom O3 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O5 in the molecule at (x, y - 1, z), forming a C(10) chain running parallel to the [010] direction and generated by translation. Inversionally related molecular chains are linked together by a weak π–π interaction, the ring centroid Cg1[O1/C1—C4/C9] in the molecule at (x, y, z) connects Cg1 in the molecule at (1 - x, 1 - y, 1 - z) [centroid–centroid distance = 3.57278 (17) Å], so forming a doubled chain of R44(22) ring parallel to the [010] direction (Fig. 2). Neighboring doubled chains are linked into three-dimensional crystal structure by weak C—H···O hydrogen bonds (Table.1).

Experimental

The mixture containing 1.47 g (5 mmol) of dry powdered 7-(3-methylbenzoxy)-4-methylcoumarin and 2.0 g (15 mmol) of anhydrous aluminium chloride was heated for about 2 h at 463 K in an oil bath, then 30 ml of dilute (1:7) hydrochloric acid is added and the mixture is heated on a steam bath for 60 min, the crude products were filtered off, washed with water. Single crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from a 95% ethanol solution, m.p. 503–504 K.

Refinement

H atoms were placed in calculated positions with O—H = 0.82 Å (hydroxyl), C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C) (aromatic and methylene) and Uiso(H) = 1.5Ueq(C,O) (methyl and hydroxyl).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of title structure, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme, intramolecular O—H···O contact is shown.

Fig. 2.

Fig. 2.

The molecular doubled chain of R44(22) ring parallel to the [010] direction. [Symmetry codes: (*) x, -1 + y, z; (#) x, 1 + y, 1 - z;(&)1 - x, 1 - y, 1 - z].

Crystal data

C18H14O4·C2H6O F(000) = 720
Mr = 340.36 Dx = 1.309 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1087 reflections
a = 12.4562 (6) Å θ = 2.5–27.8°
b = 10.0341 (5) Å µ = 0.09 mm1
c = 14.8999 (7) Å T = 298 K
β = 111.980 (3)° Prism, colourless
V = 1726.93 (14) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3021 independent reflections
Radiation source: fine-focus sealed tube 1762 reflections with I > 2σ(I)
graphite Rint = 0.119
φ and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −14→8
Tmin = 0.972, Tmax = 0.982 k = −11→8
12216 measured reflections l = −15→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0767P)2 + 0.8164P] where P = (Fo2 + 2Fc2)/3
3021 reflections (Δ/σ)max < 0.001
229 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5042 (3) 0.6046 (3) 0.3838 (2) 0.0487 (8)
C2 0.3975 (3) 0.5458 (3) 0.3794 (2) 0.0547 (9)
H2 0.3386 0.6016 0.3809 0.066*
C3 0.3789 (3) 0.4140 (3) 0.3734 (2) 0.0498 (8)
C4 0.4702 (2) 0.3271 (3) 0.3715 (2) 0.0439 (7)
C5 0.4632 (3) 0.1883 (3) 0.3652 (2) 0.0538 (8)
H5 0.3943 0.1467 0.3595 0.065*
C6 0.5548 (3) 0.1119 (3) 0.3673 (2) 0.0523 (8)
H6 0.5474 0.0197 0.3626 0.063*
C7 0.6596 (3) 0.1722 (3) 0.3765 (2) 0.0460 (8)
C8 0.6708 (2) 0.3099 (3) 0.38248 (19) 0.0395 (7)
C9 0.5751 (2) 0.3841 (3) 0.37894 (18) 0.0400 (7)
C10 0.2669 (3) 0.3553 (4) 0.3712 (3) 0.0717 (11)
H10A 0.2202 0.4242 0.3828 0.108*
H10B 0.2828 0.2882 0.4205 0.108*
H10C 0.2261 0.3159 0.3090 0.108*
C11 0.7839 (2) 0.3780 (3) 0.3970 (2) 0.0409 (7)
C12 0.8089 (2) 0.4124 (3) 0.31036 (19) 0.0389 (7)
C13 0.9089 (2) 0.4854 (3) 0.3207 (2) 0.0445 (7)
H13 0.9614 0.5062 0.3823 0.053*
C14 0.9305 (3) 0.5269 (3) 0.2408 (2) 0.0524 (8)
C15 0.8528 (3) 0.4895 (4) 0.1505 (3) 0.0639 (10)
H15 0.8668 0.5149 0.0959 0.077*
C16 0.7554 (3) 0.4160 (4) 0.1391 (2) 0.0637 (10)
H16 0.7050 0.3917 0.0775 0.076*
C17 0.7327 (3) 0.3784 (3) 0.2191 (2) 0.0489 (8)
H17 0.6661 0.3301 0.2115 0.059*
C18 1.0332 (3) 0.6147 (4) 0.2514 (3) 0.0744 (11)
H18A 1.0066 0.7024 0.2278 0.112*
H18B 1.0751 0.5776 0.2147 0.112*
H18C 1.0833 0.6197 0.3184 0.112*
O1 0.59052 (16) 0.51973 (19) 0.38378 (14) 0.0455 (5)
O2 0.52656 (19) 0.7229 (2) 0.38776 (17) 0.0622 (7)
O3 0.75312 (19) 0.1018 (2) 0.37973 (17) 0.0611 (6)
H3 0.7378 0.0220 0.3759 0.092*
O4 0.84811 (18) 0.4066 (2) 0.47834 (15) 0.0611 (7)
C19 0.8207 (4) 0.7597 (4) 0.4184 (4) 0.0976 (15)
H19A 0.8036 0.6926 0.3680 0.117*
H19B 0.8307 0.7144 0.4785 0.117*
C20 0.9288 (4) 0.8253 (4) 0.4285 (4) 0.0938 (14)
H20A 0.9239 0.8584 0.3667 0.141*
H20B 0.9914 0.7626 0.4523 0.141*
H20C 0.9425 0.8981 0.4732 0.141*
O5 0.7296 (2) 0.8436 (2) 0.3963 (3) 0.1013 (11)
H5A 0.6743 0.8040 0.4008 0.152*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0388 (18) 0.049 (2) 0.0555 (19) 0.0084 (15) 0.0140 (14) 0.0061 (15)
C2 0.0376 (18) 0.060 (2) 0.065 (2) 0.0087 (16) 0.0180 (15) 0.0060 (17)
C3 0.0358 (17) 0.062 (2) 0.0499 (18) −0.0011 (16) 0.0140 (13) 0.0072 (15)
C4 0.0359 (16) 0.049 (2) 0.0452 (17) −0.0037 (14) 0.0129 (13) 0.0039 (14)
C5 0.0417 (18) 0.058 (2) 0.061 (2) −0.0136 (16) 0.0182 (15) 0.0034 (16)
C6 0.052 (2) 0.0435 (19) 0.062 (2) −0.0063 (16) 0.0216 (16) 0.0020 (15)
C7 0.0421 (18) 0.0450 (19) 0.0511 (18) 0.0015 (15) 0.0177 (14) 0.0041 (14)
C8 0.0384 (16) 0.0392 (17) 0.0408 (16) −0.0007 (13) 0.0148 (12) 0.0016 (13)
C9 0.0401 (17) 0.0388 (17) 0.0398 (15) −0.0019 (14) 0.0135 (13) 0.0038 (13)
C10 0.041 (2) 0.085 (3) 0.092 (3) −0.0007 (19) 0.0287 (18) 0.011 (2)
C11 0.0358 (16) 0.0378 (17) 0.0459 (17) 0.0044 (13) 0.0117 (14) 0.0010 (13)
C12 0.0319 (15) 0.0361 (16) 0.0486 (16) 0.0030 (13) 0.0149 (13) −0.0006 (13)
C13 0.0358 (16) 0.0409 (18) 0.0566 (18) 0.0009 (13) 0.0170 (14) −0.0052 (14)
C14 0.050 (2) 0.0468 (19) 0.069 (2) 0.0021 (15) 0.0332 (17) 0.0032 (16)
C15 0.067 (2) 0.075 (3) 0.060 (2) 0.004 (2) 0.0343 (19) 0.0069 (18)
C16 0.058 (2) 0.083 (3) 0.0475 (19) −0.005 (2) 0.0169 (16) −0.0057 (17)
C17 0.0451 (18) 0.0514 (19) 0.0493 (18) −0.0030 (15) 0.0167 (14) −0.0027 (14)
C18 0.063 (2) 0.071 (3) 0.103 (3) −0.010 (2) 0.048 (2) 0.005 (2)
O1 0.0357 (11) 0.0407 (12) 0.0602 (13) 0.0028 (9) 0.0179 (10) 0.0051 (9)
O2 0.0485 (14) 0.0451 (14) 0.0929 (18) 0.0074 (11) 0.0262 (12) 0.0043 (12)
O3 0.0509 (14) 0.0423 (13) 0.0938 (17) 0.0020 (11) 0.0314 (12) −0.0004 (12)
O4 0.0472 (14) 0.0809 (17) 0.0482 (13) −0.0111 (12) 0.0098 (11) −0.0003 (11)
C19 0.097 (3) 0.059 (3) 0.171 (5) 0.012 (3) 0.088 (3) 0.017 (3)
C20 0.071 (3) 0.081 (3) 0.131 (4) 0.006 (2) 0.040 (3) −0.009 (3)
O5 0.0615 (17) 0.0419 (15) 0.203 (3) 0.0025 (13) 0.052 (2) 0.0129 (17)

Geometric parameters (Å, °)

C1—O2 1.216 (4) C12—C17 1.379 (4)
C1—O1 1.372 (4) C12—C13 1.403 (4)
C1—C2 1.433 (4) C13—C14 1.379 (4)
C2—C3 1.340 (4) C13—H13 0.9300
C2—H2 0.9300 C14—C15 1.384 (5)
C3—C4 1.441 (4) C14—C18 1.512 (4)
C3—C10 1.503 (4) C15—C16 1.375 (5)
C4—C9 1.393 (4) C15—H15 0.9300
C4—C5 1.397 (4) C16—C17 1.376 (4)
C5—C6 1.364 (4) C16—H16 0.9300
C5—H5 0.9300 C17—H17 0.9300
C6—C7 1.399 (4) C18—H18A 0.9600
C6—H6 0.9300 C18—H18B 0.9600
C7—O3 1.348 (3) C18—H18C 0.9600
C7—C8 1.387 (4) O3—H3 0.8200
C8—C9 1.390 (4) C19—O5 1.352 (5)
C8—C11 1.507 (4) C19—C20 1.454 (6)
C9—O1 1.372 (3) C19—H19A 0.9700
C10—H10A 0.9600 C19—H19B 0.9700
C10—H10B 0.9600 C20—H20A 0.9600
C10—H10C 0.9600 C20—H20B 0.9600
C11—O4 1.211 (3) C20—H20C 0.9600
C11—C12 1.478 (4) O5—H5A 0.8200
O2—C1—O1 116.1 (3) C13—C12—C11 119.7 (2)
O2—C1—C2 126.6 (3) C14—C13—C12 121.0 (3)
O1—C1—C2 117.3 (3) C14—C13—H13 119.5
C3—C2—C1 122.9 (3) C12—C13—H13 119.5
C3—C2—H2 118.5 C13—C14—C15 117.8 (3)
C1—C2—H2 118.5 C13—C14—C18 121.1 (3)
C2—C3—C4 118.7 (3) C15—C14—C18 121.1 (3)
C2—C3—C10 121.6 (3) C16—C15—C14 122.0 (3)
C4—C3—C10 119.7 (3) C16—C15—H15 119.0
C9—C4—C5 116.6 (3) C14—C15—H15 119.0
C9—C4—C3 118.3 (3) C15—C16—C17 119.8 (3)
C5—C4—C3 125.1 (3) C15—C16—H16 120.1
C6—C5—C4 121.9 (3) C17—C16—H16 120.1
C6—C5—H5 119.0 C16—C17—C12 119.8 (3)
C4—C5—H5 119.0 C16—C17—H17 120.1
C5—C6—C7 120.1 (3) C12—C17—H17 120.1
C5—C6—H6 120.0 C14—C18—H18A 109.5
C7—C6—H6 120.0 C14—C18—H18B 109.5
O3—C7—C8 117.1 (3) H18A—C18—H18B 109.5
O3—C7—C6 122.6 (3) C14—C18—H18C 109.5
C8—C7—C6 120.3 (3) H18A—C18—H18C 109.5
C7—C8—C9 117.9 (3) H18B—C18—H18C 109.5
C7—C8—C11 121.8 (3) C1—O1—C9 121.4 (2)
C9—C8—C11 120.3 (2) C7—O3—H3 109.5
O1—C9—C8 115.4 (2) O5—C19—C20 113.8 (3)
O1—C9—C4 121.3 (3) O5—C19—H19A 108.8
C8—C9—C4 123.3 (3) C20—C19—H19A 108.8
C3—C10—H10A 109.5 O5—C19—H19B 108.8
C3—C10—H10B 109.5 C20—C19—H19B 108.8
H10A—C10—H10B 109.5 H19A—C19—H19B 107.7
C3—C10—H10C 109.5 C19—C20—H20A 109.5
H10A—C10—H10C 109.5 C19—C20—H20B 109.5
H10B—C10—H10C 109.5 H20A—C20—H20B 109.5
O4—C11—C12 122.8 (3) C19—C20—H20C 109.5
O4—C11—C8 118.9 (2) H20A—C20—H20C 109.5
C12—C11—C8 118.2 (2) H20B—C20—H20C 109.5
C17—C12—C13 119.5 (3) C19—O5—H5A 109.5
C17—C12—C11 120.7 (3)
O2—C1—C2—C3 178.8 (3) C3—C4—C9—C8 176.9 (3)
O1—C1—C2—C3 −1.5 (4) C7—C8—C11—O4 −94.5 (3)
C1—C2—C3—C4 0.2 (5) C9—C8—C11—O4 82.6 (3)
C1—C2—C3—C10 178.6 (3) C7—C8—C11—C12 88.2 (3)
C2—C3—C4—C9 1.9 (4) C9—C8—C11—C12 −94.7 (3)
C10—C3—C4—C9 −176.5 (3) O4—C11—C12—C17 −179.6 (3)
C2—C3—C4—C5 −179.9 (3) C8—C11—C12—C17 −2.4 (4)
C10—C3—C4—C5 1.7 (4) O4—C11—C12—C13 −2.3 (4)
C9—C4—C5—C6 0.7 (4) C8—C11—C12—C13 174.8 (2)
C3—C4—C5—C6 −177.6 (3) C17—C12—C13—C14 1.8 (4)
C4—C5—C6—C7 0.4 (5) C11—C12—C13—C14 −175.5 (3)
C5—C6—C7—O3 179.5 (3) C12—C13—C14—C15 −2.6 (4)
C5—C6—C7—C8 −0.8 (4) C12—C13—C14—C18 175.2 (3)
O3—C7—C8—C9 179.8 (2) C13—C14—C15—C16 1.4 (5)
C6—C7—C8—C9 0.0 (4) C18—C14—C15—C16 −176.3 (3)
O3—C7—C8—C11 −3.1 (4) C14—C15—C16—C17 0.5 (6)
C6—C7—C8—C11 177.2 (3) C15—C16—C17—C12 −1.3 (5)
C7—C8—C9—O1 −179.1 (2) C13—C12—C17—C16 0.1 (5)
C11—C8—C9—O1 3.6 (3) C11—C12—C17—C16 177.4 (3)
C7—C8—C9—C4 1.2 (4) O2—C1—O1—C9 −179.6 (2)
C11—C8—C9—C4 −176.1 (2) C2—C1—O1—C9 0.6 (4)
C5—C4—C9—O1 178.8 (2) C8—C9—O1—C1 −178.2 (2)
C3—C4—C9—O1 −2.8 (4) C4—C9—O1—C1 1.5 (4)
C5—C4—C9—C8 −1.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O5i 0.82 1.82 2.629 (3) 166.
O5—H5A···O2 0.82 1.95 2.764 (3) 169.
C17—H17···O2ii 0.93 2.54 3.398 (4) 154.
C20—H20B···O4iii 0.96 2.53 3.489 (5) 177.

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5373).

References

  1. Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany
  2. Brühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195–3198. [DOI] [PubMed]
  3. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Iqbal, P. F., Bhat, A. R. & Azam, A. (2009). Eur. J. Med. Chem. 44, 2252–2259. [DOI] [PubMed]
  6. Rollinger, J. M., Hornick, A., Langer, T., Stuppner, H. & Prast, H. (2004). J. Med. Chem. 47, 6248–6254. [DOI] [PubMed]
  7. Sharma, S. D., Rajor, H. K., Chopra, S. & Sharma, R. K. (2005). Biometals, 18, 143–154. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161–167. [PubMed]
  10. Xiao, C.-F., Tao, L.-Y., Sun, H.-Y., Wei, W., Chen, Y., Fu, L.-W. & Zou, Y. (2010). Chin. Chem. Lett. 21, 1295–1298.
  11. Yang, S.-P., Han, L.-J., Wang, D.-Q. & Chen, X.-Y. (2010). Acta Cryst. E66, o3183. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046630/xu5373sup1.cif

e-67-o3253-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046630/xu5373Isup2.hkl

e-67-o3253-Isup2.hkl (145.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046630/xu5373Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES