Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 9;67(Pt 12):o3254. doi: 10.1107/S1600536811046356

N,N′-Bis(pyridin-2-yl)benzene-1,4-diamine–quinoxaline (2/1)

Barbara Wicher a, Maria Gdaniec a,*
PMCID: PMC3238910  PMID: 22199763

Abstract

The asymmetric unit of the title compound, 2C16H14N4·C8H6N2, consits of one mol­ecule of N,N′-bis­(pyridin-2-yl)benzene-1,4-diamine (PDAB) and one half-mol­ecule of quinoxaline (QX) that is located around an inversion centre and disordered over two overlapping positions. The PDAB mol­ecule adopts a non-planar conformation with an E configuration at the two partially double exo C N bonds of the 2-pyridyl­amine units. In the crystal, these self-complementary units are N—H⋯N hydrogen bonded via a cyclic R 2 2(8) motif, creating tapes of PDAB mol­ecules extending along [010]. Inversion-related tapes are arranged into pairs through π–π stacking inter­actions between the benzene rings [centroid–centroid distance = 3.818 (1) Å] and the two symmetry-independent pyridine groups [centroid–centroid distance = 3.760 (1) Å]. The QX mol­ecules are enclosed in a cavity formed between six PDAB tapes.

Related literature

For the structures of polymorphic forms of N,N′-di(pyridin-2-yl)benzene-1,4-diamine and its co-crystal with phenazine, see: Bensemann et al. (2002); Wicher & Gdaniec (2011); Gdaniec et al. (2005).graphic file with name e-67-o3254-scheme1.jpg

Experimental

Crystal data

  • 2C16H14N4·C8H6N2

  • M r = 654.77

  • Monoclinic, Inline graphic

  • a = 11.8285 (9) Å

  • b = 9.1223 (7) Å

  • c = 14.7952 (9) Å

  • β = 93.698 (5)°

  • V = 1593.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 130 K

  • 0.50 × 0.30 × 0.25 mm

Data collection

  • Kuma KM-4-CCD κ-geometry diffractometer

  • 8116 measured reflections

  • 2897 independent reflections

  • 2082 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.121

  • S = 0.97

  • 2897 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046356/rz2662sup1.cif

e-67-o3254-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046356/rz2662Isup2.hkl

e-67-o3254-Isup2.hkl (139.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14N⋯N2i 0.90 2.12 2.9998 (17) 166
N7—H7N⋯N16ii 0.90 2.13 3.0173 (18) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

N,N'-Di(pyridin-2-yl)benzene-1,4-diamine (PDAB) is a very versatile supramolecular reagent. It has been shown that it can cocrystallize with the aromatic base, phenazine, forming cocrystals with the 1:4 molar ratio (Gdaniec et al., 2005). In this cocrystal the PDAB molecule is centrosymmetric and adopts a nearly planar conformation and a Z,Z form, i.e. the configuration at the partially double exo C≐ N bonds of its two 2-pyridylamine units is Z. The PDAB molecules are hydrogen bonded to phenazine molecules but, most importantly, their π-faces are directed to the edges of the phenazine molecules arranged viaπ-π stacking interactions into quartets. To check whether a similar packing motif will be observed for a compound containing the pyrazine fragment but a reduced π-system compared to phenazine, an attempt was made to cocrystallize PDAB with quinoxaline (QX). Cocrystallization was successful when PDAB was dissolved in molten QX (m.p. 301 K) and the solution was slowly evaporated at 331 K yielding the title molecular complex with 2:1 PDAB/QX ratio (Fig. 1). In contrast with the PDAB/phenazine cocrystal, in the title complex the PDAB molecule is nonplanar and adopts an E,E form that promotes formation of a cyclic R22(8) motif via N—H···N hydrogen bond between the self-complementary 2-pyridylamine units (Table 1). These cyclic motifs assemble PDAB molecules into tapes extending along [010]. The tapes related by inversion center are arranged into pairs through π-π stacking interactions between the benzene rings [centroid-centroid distance 3.818 (1) Å] and the two symmetry independent pyridine groups [centroid-centroid distance 3.760 (1) Å] (Fig. 2). Similar tape motifs have been observed in two of the three PDAB polymorphs (Bensemann et al., 2002; Wicher & Gdaniec, 2011), however these polymorphic structures were not stabilized by π-π stacking interactions between the tapes.

The QX molecule, that is not hydrogen bonded to PDAB, is enclosed in a centrosymmetric cavity formed between six PDAB tapes (Fig. 3). This leads to a disorder of the non-centrosymmetric QX molecule which in the cavity is located, with equal occupancies, in two alternative overlapping positions. Thus QX molecule in this crystal structure simulates the shape of a naphthalene molecule.

As there are no specific interactions between QX and PDAB molecules the driving force for the complex formation with PDAB is different in the two cocrystals with the aromatic heterobases containing the pyrazine ring.

Experimental

N,N'-Di(pyridin-2-yl)benzene-1,4-diamine (0.07 g, 0.27 mmol) was dissolved in an excess of the melted quinoxaline. The solution was heated at 331 K and after a few days colourless crystal suitable for X-ray analysis were obtained.

Refinement

All H atoms were located in difference electron-density maps, however for further refinement their positions were determined geometrically with N—H and C—H bond lengths of 0.90 Å and 0.95 Å, respectively. All H atoms were refined in the riding-model approximation, with Uiso(H)=1.2Ueq(N,C).

Figures

Fig. 1.

Fig. 1.

: Asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level. The elipsoids representing positions occupied equally by C and N atoms are coloured in grey and blue. The unlabelled atoms of quinoxaline are related to the labelled one by the symmetry operation: 1 - x,1 - y,1 - z.

Fig. 2.

Fig. 2.

: π-π stacking interactions connecting hydrogen-bonded PDAB tapes into pairs. N—H···N hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

: Crystal packing diagram viewed along b illustrating arrangement of the hydrogen-bonded tapes of PDAB in the crystal and quinoxaline molecules enclosed in the cavity formed between the tapes.

Crystal data

2C16H14N4·C8H6N2 F(000) = 688
Mr = 654.77 Dx = 1.365 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2533 reflections
a = 11.8285 (9) Å θ = 4.1–25.0°
b = 9.1223 (7) Å µ = 0.09 mm1
c = 14.7952 (9) Å T = 130 K
β = 93.698 (5)° Prism, colourless
V = 1593.1 (2) Å3 0.50 × 0.30 × 0.25 mm
Z = 2

Data collection

Kuma KM-4-CCD κ-geometry diffractometer 2082 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
graphite θmax = 25.4°, θmin = 4.1°
ω scans h = −13→14
8116 measured reflections k = −10→9
2897 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0796P)2] where P = (Fo2 + 2Fc2)/3
2897 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N2 0.34420 (10) 0.46004 (13) 0.12792 (9) 0.0251 (3)
N7 0.44563 (11) 0.24793 (13) 0.12278 (9) 0.0291 (3)
H7N 0.5037 0.3082 0.1126 0.035*
N14 0.55190 (10) −0.35168 (13) 0.12548 (9) 0.0295 (3)
H14N 0.4941 −0.4122 0.1359 0.035*
N16 0.65420 (10) −0.56243 (13) 0.11839 (9) 0.0260 (3)
C1 0.34338 (12) 0.31287 (16) 0.13482 (10) 0.0232 (4)
C3 0.24879 (13) 0.53106 (17) 0.14294 (10) 0.0282 (4)
H3 0.2492 0.6349 0.1382 0.034*
C4 0.15003 (13) 0.46477 (18) 0.16475 (11) 0.0301 (4)
H4 0.0841 0.5205 0.1745 0.036*
C5 0.15028 (13) 0.31317 (18) 0.17200 (11) 0.0292 (4)
H5 0.0839 0.2630 0.1876 0.035*
C6 0.24654 (13) 0.23600 (17) 0.15651 (10) 0.0266 (4)
H6 0.2474 0.1321 0.1604 0.032*
C8 0.46942 (13) 0.09666 (16) 0.12475 (10) 0.0243 (4)
C9 0.40085 (12) −0.00484 (17) 0.07789 (10) 0.0264 (4)
H9 0.3335 0.0269 0.0452 0.032*
C10 0.42953 (13) −0.15119 (16) 0.07830 (10) 0.0256 (4)
H10 0.3813 −0.2195 0.0463 0.031*
C11 0.52812 (13) −0.20032 (16) 0.12488 (10) 0.0253 (4)
C12 0.59638 (13) −0.09904 (17) 0.17195 (11) 0.0272 (4)
H12 0.6637 −0.1307 0.2047 0.033*
C13 0.56739 (13) 0.04714 (17) 0.17172 (10) 0.0270 (4)
H13 0.6152 0.1152 0.2042 0.032*
C15 0.65386 (13) −0.41581 (16) 0.11138 (10) 0.0239 (4)
C17 0.75049 (13) −0.63284 (18) 0.10303 (11) 0.0302 (4)
H17 0.7507 −0.7367 0.1074 0.036*
C18 0.84841 (14) −0.56538 (18) 0.08156 (11) 0.0310 (4)
H18 0.9149 −0.6201 0.0719 0.037*
C19 0.84671 (13) −0.41393 (18) 0.07442 (11) 0.0303 (4)
H19 0.9129 −0.3628 0.0594 0.036*
C20 0.75006 (13) −0.33812 (17) 0.08900 (10) 0.0276 (4)
H20 0.7482 −0.2343 0.0840 0.033*
C21 0.42626 (15) 0.38226 (19) 0.36086 (12) 0.0393 (5)
H21 0.3839 0.3310 0.3142 0.047*
C22 0.53039 (16) 0.44592 (18) 0.34188 (13) 0.0410 (5)
H22 0.5570 0.4363 0.2829 0.049*
N23 0.59282 (13) 0.51949 (17) 0.40527 (11) 0.0368 (4) 0.50
C23 0.59282 (13) 0.51949 (17) 0.40527 (11) 0.0368 (4) 0.50
H23 0.6629 0.5629 0.3922 0.044* 0.50
C24 0.55231 (12) 0.53158 (16) 0.49075 (11) 0.0275 (4)
C25 0.61465 (13) 0.60804 (16) 0.55764 (11) 0.0357 (4) 0.50
H25 0.6846 0.6529 0.5457 0.043* 0.50
N25 0.61465 (13) 0.60804 (16) 0.55764 (11) 0.0357 (4) 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0240 (7) 0.0225 (7) 0.0290 (7) 0.0005 (5) 0.0025 (6) −0.0026 (5)
N7 0.0227 (7) 0.0202 (7) 0.0449 (9) −0.0022 (5) 0.0067 (6) −0.0004 (6)
N14 0.0224 (7) 0.0208 (7) 0.0457 (9) −0.0006 (5) 0.0056 (6) 0.0047 (6)
N16 0.0248 (7) 0.0229 (7) 0.0301 (8) 0.0004 (5) 0.0011 (6) −0.0004 (6)
C1 0.0249 (8) 0.0223 (8) 0.0223 (8) −0.0012 (6) 0.0010 (6) −0.0020 (6)
C3 0.0301 (9) 0.0246 (8) 0.0298 (9) 0.0026 (7) 0.0012 (7) −0.0040 (7)
C4 0.0243 (8) 0.0339 (9) 0.0323 (9) 0.0032 (7) 0.0030 (7) −0.0048 (7)
C5 0.0247 (8) 0.0361 (9) 0.0270 (9) −0.0044 (7) 0.0026 (7) −0.0009 (7)
C6 0.0283 (9) 0.0239 (8) 0.0277 (9) −0.0022 (7) 0.0019 (7) 0.0000 (6)
C8 0.0238 (8) 0.0212 (8) 0.0284 (9) −0.0007 (6) 0.0059 (7) 0.0001 (6)
C9 0.0241 (8) 0.0258 (8) 0.0292 (9) 0.0000 (7) 0.0004 (7) 0.0024 (7)
C10 0.0244 (8) 0.0253 (8) 0.0271 (9) −0.0034 (6) 0.0010 (6) −0.0015 (6)
C11 0.0257 (8) 0.0219 (8) 0.0289 (9) 0.0009 (6) 0.0056 (7) 0.0024 (6)
C12 0.0231 (8) 0.0299 (9) 0.0283 (9) 0.0019 (7) 0.0003 (7) 0.0026 (7)
C13 0.0248 (8) 0.0277 (9) 0.0288 (9) −0.0034 (7) 0.0034 (7) −0.0035 (7)
C15 0.0242 (8) 0.0246 (8) 0.0225 (8) 0.0002 (6) −0.0007 (6) 0.0002 (6)
C17 0.0298 (9) 0.0267 (8) 0.0336 (9) 0.0037 (7) −0.0010 (7) −0.0037 (7)
C18 0.0259 (9) 0.0337 (9) 0.0334 (9) 0.0028 (7) 0.0011 (7) −0.0068 (7)
C19 0.0231 (9) 0.0374 (10) 0.0302 (9) −0.0054 (7) 0.0012 (7) −0.0031 (7)
C20 0.0273 (9) 0.0259 (8) 0.0292 (9) −0.0028 (7) −0.0004 (7) 0.0008 (7)
C21 0.0462 (11) 0.0331 (10) 0.0372 (11) −0.0056 (8) −0.0086 (9) 0.0026 (8)
C22 0.0550 (12) 0.0324 (10) 0.0362 (10) 0.0004 (9) 0.0081 (9) 0.0027 (8)
N23 0.0364 (9) 0.0337 (9) 0.0411 (10) −0.0045 (7) 0.0092 (7) 0.0025 (7)
C23 0.0364 (9) 0.0337 (9) 0.0411 (10) −0.0045 (7) 0.0092 (7) 0.0025 (7)
C24 0.0263 (8) 0.0214 (8) 0.0344 (9) 0.0003 (6) −0.0005 (7) 0.0021 (7)
C25 0.0314 (8) 0.0331 (9) 0.0417 (10) −0.0057 (7) −0.0055 (7) 0.0031 (7)
N25 0.0314 (8) 0.0331 (9) 0.0417 (10) −0.0057 (7) −0.0055 (7) 0.0031 (7)

Geometric parameters (Å, °)

N2—C3 1.3324 (18) C11—C12 1.385 (2)
N2—C1 1.3465 (19) C12—C13 1.377 (2)
N7—C1 1.3686 (19) C12—H12 0.9500
N7—C8 1.4083 (19) C13—H13 0.9500
N7—H7N 0.9001 C15—C20 1.398 (2)
N14—C15 1.3685 (19) C17—C18 1.367 (2)
N14—C11 1.4090 (19) C17—H17 0.9500
N14—H14N 0.9000 C18—C19 1.386 (2)
N16—C17 1.3397 (19) C18—H18 0.9500
N16—C15 1.3415 (19) C19—C20 1.365 (2)
C1—C6 1.398 (2) C19—H19 0.9500
C3—C4 1.372 (2) C20—H20 0.9500
C3—H3 0.9500 C21—N25i 1.331 (2)
C4—C5 1.387 (2) C21—C25i 1.331 (2)
C4—H4 0.9500 C21—C22 1.406 (3)
C5—C6 1.370 (2) C21—H21 0.9499
C5—H5 0.9500 C22—N23 1.336 (2)
C6—H6 0.9500 C22—H22 0.9500
C8—C9 1.387 (2) N23—C24 1.385 (2)
C8—C13 1.388 (2) N23—H23 0.9500
C9—C10 1.377 (2) C24—C25 1.384 (2)
C9—H9 0.9500 C24—C24i 1.408 (3)
C10—C11 1.390 (2) C25—C21i 1.331 (2)
C10—H10 0.9500 C25—H25 0.9499
C3—N2—C1 117.51 (13) C11—C12—H12 119.7
C1—N7—C8 126.76 (13) C12—C13—C8 121.08 (14)
C1—N7—H7N 116.6 C12—C13—H13 119.5
C8—N7—H7N 116.6 C8—C13—H13 119.5
C15—N14—C11 126.54 (13) N16—C15—N14 114.37 (13)
C15—N14—H14N 116.8 N16—C15—C20 121.68 (14)
C11—N14—H14N 116.7 N14—C15—C20 123.92 (14)
C17—N16—C15 117.59 (14) N16—C17—C18 124.47 (15)
N2—C1—N7 114.27 (13) N16—C17—H17 117.8
N2—C1—C6 121.83 (14) C18—C17—H17 117.8
N7—C1—C6 123.84 (14) C17—C18—C19 117.27 (15)
N2—C3—C4 124.61 (15) C17—C18—H18 121.4
N2—C3—H3 117.7 C19—C18—H18 121.4
C4—C3—H3 117.7 C20—C19—C18 120.08 (15)
C3—C4—C5 117.38 (15) C20—C19—H19 120.0
C3—C4—H4 121.3 C18—C19—H19 120.0
C5—C4—H4 121.3 C19—C20—C15 118.89 (15)
C6—C5—C4 119.79 (15) C19—C20—H20 120.6
C6—C5—H5 120.1 C15—C20—H20 120.6
C4—C5—H5 120.1 N25i—C21—C22 121.85 (16)
C5—C6—C1 118.86 (15) C25i—C21—C22 121.85 (16)
C5—C6—H6 120.6 N25i—C21—H21 119.1
C1—C6—H6 120.6 C25i—C21—H21 119.1
C9—C8—C13 118.40 (14) C22—C21—H21 119.1
C9—C8—N7 122.29 (14) N23—C22—C21 121.25 (17)
C13—C8—N7 119.25 (13) N23—C22—H22 119.3
C10—C9—C8 120.60 (14) C21—C22—H22 119.4
C10—C9—H9 119.7 C22—N23—C24 118.20 (15)
C8—C9—H9 119.7 C22—N23—H23 121.1
C9—C10—C11 120.88 (14) C24—N23—H23 120.7
C9—C10—H10 119.6 C25—C24—N23 119.55 (14)
C11—C10—H10 119.6 C25—C24—C24i 120.10 (19)
C12—C11—C10 118.52 (14) N23—C24—C24i 120.34 (18)
C12—C11—N14 122.74 (14) C21i—C25—C24 118.25 (15)
C10—C11—N14 118.68 (13) C21i—C25—H25 120.8
C13—C12—C11 120.52 (14) C24—C25—H25 120.9
C13—C12—H12 119.7
C3—N2—C1—N7 −177.03 (13) C11—C12—C13—C8 0.1 (2)
C3—N2—C1—C6 0.3 (2) C9—C8—C13—C12 0.1 (2)
C8—N7—C1—N2 −178.90 (14) N7—C8—C13—C12 −177.06 (14)
C8—N7—C1—C6 3.9 (2) C17—N16—C15—N14 178.27 (13)
C1—N2—C3—C4 −0.1 (2) C17—N16—C15—C20 −0.1 (2)
N2—C3—C4—C5 0.3 (2) C11—N14—C15—N16 178.07 (14)
C3—C4—C5—C6 −0.7 (2) C11—N14—C15—C20 −3.6 (2)
C4—C5—C6—C1 0.9 (2) C15—N16—C17—C18 0.6 (2)
N2—C1—C6—C5 −0.7 (2) N16—C17—C18—C19 −0.7 (2)
N7—C1—C6—C5 176.37 (14) C17—C18—C19—C20 0.3 (2)
C1—N7—C8—C9 47.3 (2) C18—C19—C20—C15 0.2 (2)
C1—N7—C8—C13 −135.63 (16) N16—C15—C20—C19 −0.3 (2)
C13—C8—C9—C10 0.1 (2) N14—C15—C20—C19 −178.51 (14)
N7—C8—C9—C10 177.18 (14) N25i—C21—C22—N23 −0.1 (3)
C8—C9—C10—C11 −0.6 (2) C25i—C21—C22—N23 −0.1 (3)
C9—C10—C11—C12 0.8 (2) C21—C22—N23—C24 0.0 (3)
C9—C10—C11—N14 178.09 (14) C22—N23—C24—C25 −179.52 (15)
C15—N14—C11—C12 −48.1 (2) C22—N23—C24—C24i −0.4 (3)
C15—N14—C11—C10 134.72 (16) N23—C24—C25—C21i −179.92 (15)
C10—C11—C12—C13 −0.6 (2) C24i—C24—C25—C21i 1.0 (3)
N14—C11—C12—C13 −177.76 (14)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N14—H14N···N2ii 0.90 2.12 2.9998 (17) 166
N7—H7N···N16iii 0.90 2.13 3.0173 (18) 167

Symmetry codes: (ii) x, y−1, z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2662).

References

  1. Bensemann, I., Gdaniec, M. & Połoński, T. (2002). New J. Chem. 26, 448–456.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Gdaniec, M., Bensemann, I. & Połoński, T. (2005). CrystEngComm, 7, 433–438.
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  5. Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wicher, B. & Gdaniec, M. (2011). Acta Cryst. E67, o3095. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046356/rz2662sup1.cif

e-67-o3254-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046356/rz2662Isup2.hkl

e-67-o3254-Isup2.hkl (139.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES