Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):o3257. doi: 10.1107/S1600536811046472

Guanidinium 2-(myristoylsulfanyl)ethane­sulfonate

Elizabeth S Monillas a, Wesley H Monillas a, Eric R Sirianni a, Glenn P A Yap a,*, Klaus H Theopold a
PMCID: PMC3238917  PMID: 22199766

Abstract

In the title compound, CH6N3 +·C16H31O4S2 [systematic name: guanidinium 2-(tetra­deca­noylsulfan­yl)ethane­sulfon­ate], each 2-(myristoyl­thio)­ethane­sulfonate ion displays hydrogen bonding to three guanidinium counter-ions, which themselves display hydrogen bonding to two symmetry-related 2-(myristoylthio)ethanesulfonate ions. Thus each cation forms six N—H⋯O bonds to neighboring anions, thereby self-assembling an extended ladder-type network. The average hydrogen-bond donor–acceptor distance is 2.931 (5) Å. The alkyl chains form the rungs of a ladder with hydrogen-bonding inter­actions forming the side rails.

Related literature

The synthesis of the title compound was adapted from Schramm et al. (1954) and Dalton et al. (1981). For extended networks via hydrogen-bonding in guanidinium organo­sulfonates, see: Horner et al. (2001, 2007); Russell & Ward (1996). For typical donor-acceptor distances in these compounds, see: Adams (1978); Ashiq et al. (2010). For studies of these structural motifs for use as electronic materials, see: Russell et al. (1994). graphic file with name e-67-o3257-scheme1.jpg

Experimental

Crystal data

  • CH6N3 +·C16H31O4S2

  • M r = 411.62

  • Monoclinic, Inline graphic

  • a = 25.185 (13) Å

  • b = 7.370 (4) Å

  • c = 12.663 (7) Å

  • β = 101.851 (10)°

  • V = 2300 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 200 K

  • 0.25 × 0.18 × 0.01 mm

Data collection

  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.938, T max = 0.997

  • 18707 measured reflections

  • 5688 independent reflections

  • 2763 reflections with I > 2σ(I)

  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082

  • wR(F 2) = 0.247

  • S = 1.01

  • 5688 reflections

  • 292 parameters

  • 83 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046472/zj2033sup1.cif

e-67-o3257-sup1.cif (36.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046472/zj2033Isup3.hkl

e-67-o3257-Isup3.hkl (278.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046472/zj2033Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (4) 2.12 (4) 2.943 (4) 159 (4)
N1—H2⋯O3ii 0.80 (4) 2.11 (4) 2.900 (4) 171 (4)
N2—H3⋯O2ii 0.84 (4) 2.12 (4) 2.957 (4) 171 (4)
N2—H4⋯O1 0.84 (4) 2.13 (4) 2.960 (4) 172 (4)
N3—H5⋯O2 0.83 (5) 2.06 (5) 2.892 (4) 178 (5)
N3—H6⋯O3i 0.82 (5) 2.14 (5) 2.942 (4) 167 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Science Foundation (grants CHE-0616375 and CHE-0911081) and the Department of Energy (grant DE—FG02–92ER14273).

supplementary crystallographic information

Comment

The title compound was prepared as a reagent in attempts to synthesized a myristoylate protein derivative in vitro. The synthesis was adapted from Schramm et al. (1954) and Dalton et al. (1981). During characterization by X-ray diffraction it was observed to display an interesting ladder-type lattice network. It has been previously reported that guanidinium organosulfonates are capable of extended networks via hydrogen-bonding (Russell & Ward 1996, Horner et al. 2001, 2007). As shown in Figure 2 the guanidinium counterions form near planar end caps, the side rails, with the inward facing myristoyl groups interlocking causing a bilayer stacking or the rungs of the extended ladder-type network. The average hydrogen bond donor-acceptor distance is 2.931 (5) Å which is in the typical range observed for these type of compounds (Adams 1978, Ashiq et al. 2010). These structural motifs have previously been studied for use as electronic materials (Russell et al. 1994).

Experimental

The compound synthesis was adapted from Schramm et al. (1954) and Dalton et al. (1981). Guanidinium 2-mercaptoethansulfonate, 1.0 g (5 mmol), and guanidinium carbonate, 0.9 g (9.9 mmol), were added to 20 mL 1:1 acetonitrile/water. The mixture was stirred and purged with dry nitrogen gas. When the guanidinium carbonate completely dissolved, 1.36 mL (5.01 mmol) of myristoyl chloride was added and the reaction was stirred under 1 atmosphere of nitrogen. After one hour, 4 mL 1:1 acetonitrile/water were added to the mixture. The mixture was stirred for an additional hour after which time the guanidinium 2-(myristoylthio)ethanesulfonate precipitate was filtered and collected yielding 1.09 g (2.65 mmol, 53% yield) of product. Crystals suitable for X-ray diffraction were obtained from slow evaporation of a saturated solution of the compound from a 9:1 acetonitrile/water mixed solvent.

Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms on the guanidium ion were located and refined with 1.2 Ueq of the attached N atom. All other H-atoms were were placed in calculated positions Chemically identical atoms in the disordered portions of the anion constrained to similar 1,2 and 1,3 atom-atom separations, equal atomic displacement parameters, rigid bond restraints and refined to roughly 50/50 site occupancy ratio. Although several C level alerts occur in the checkCIF report, trial refinements with global rigid bond constraints did not significantly improve the structure.

Figures

Fig. 1.

Fig. 1.

Molecular diagram of the structure in the asymmetric unit omitting H-atoms and one of two disordered contributions for clarity. Thermal ellipsoids depicted at 50% probability.

Fig. 2.

Fig. 2.

Packing diagram displaying extended ladder network.

Crystal data

CH6N3+·C16H31O4S2 F(000) = 896
Mr = 411.62 Dx = 1.189 Mg m3
Monoclinic, P21/c Melting point: 326 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 25.185 (13) Å Cell parameters from 4043 reflections
b = 7.370 (4) Å θ = 1.7–25.0°
c = 12.663 (7) Å µ = 0.26 mm1
β = 101.851 (10)° T = 200 K
V = 2300 (2) Å3 Block, colourless
Z = 4 0.25 × 0.18 × 0.01 mm

Data collection

Bruker APEX diffractometer 5688 independent reflections
Radiation source: fine-focus sealed tube 2763 reflections with I > 2σ(I)
graphite Rint = 0.085
Detector resolution: 836.6 pixels mm-1 θmax = 28.4°, θmin = 1.7°
ω scans h = −33→31
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) k = −9→9
Tmin = 0.938, Tmax = 0.997 l = −16→16
18707 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.247 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 2.2088P] where P = (Fo2 + 2Fc2)/3
5688 reflections (Δ/σ)max < 0.001
292 parameters Δρmax = 0.45 e Å3
83 restraints Δρmin = −0.39 e Å3

Special details

Experimental. Data collection is performed with four batch runs at φ = 0.00 ° (600 frames), at φ = 90.00 ° (600 frames), at φ = 180 ° (600 frames) and at φ = 270 ° (600 frames). Frame width = 0.30 \& in ω. Data is merged, corrected for decay, and treated with multi-scan absorption corrections.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.08990 (4) 0.52011 (11) 0.43991 (7) 0.0377 (3)
N1 0.05207 (15) −0.1418 (4) 0.2036 (3) 0.0416 (8)
H1 0.0523 (16) −0.240 (6) 0.242 (3) 0.050*
H2 0.0514 (17) −0.145 (6) 0.140 (3) 0.050*
N2 0.05787 (14) 0.1693 (4) 0.2060 (3) 0.0391 (8)
H3 0.0609 (16) 0.173 (5) 0.141 (3) 0.047*
H4 0.0627 (16) 0.264 (6) 0.243 (3) 0.047*
N3 0.05382 (19) 0.0153 (5) 0.3608 (3) 0.0571 (11)
H5 0.0607 (19) 0.111 (7) 0.395 (4) 0.069*
H6 0.0504 (19) −0.080 (7) 0.392 (4) 0.069*
O1 0.08125 (13) 0.5176 (3) 0.3228 (2) 0.0514 (8)
O2 0.07864 (11) 0.3453 (3) 0.48467 (19) 0.0428 (7)
O3 0.06170 (10) 0.6702 (3) 0.47983 (19) 0.0399 (7)
C1 0.05490 (16) 0.0131 (5) 0.2569 (3) 0.0362 (8)
C2 0.15997 (19) 0.5593 (6) 0.4892 (5) 0.0568 (12)
H2A 0.1790 (17) 0.452 (6) 0.460 (3) 0.056 (12)*
H2B 0.163 (2) 0.543 (6) 0.561 (4) 0.071 (16)*
C4 0.2617 (4) 0.7903 (14) 0.3451 (6) 0.0384 (15) 0.4984 (16)
C5 0.3212 (4) 0.8295 (14) 0.3533 (7) 0.0417 (17) 0.4984 (16)
H5A 0.3416 0.7860 0.4241 0.050* 0.4984 (16)
H5B 0.3264 0.9625 0.3507 0.050* 0.4984 (16)
C6 0.3447 (4) 0.7415 (18) 0.2645 (7) 0.0376 (18) 0.4984 (16)
H6A 0.3218 0.7726 0.1935 0.045* 0.4984 (16)
H6B 0.3442 0.6080 0.2727 0.045* 0.4984 (16)
C7 0.4024 (4) 0.804 (2) 0.2678 (8) 0.043 (2) 0.4984 (16)
H7A 0.4009 0.9353 0.2512 0.052* 0.4984 (16)
H7B 0.4226 0.7906 0.3432 0.052* 0.4984 (16)
C24 0.2725 (4) 0.7552 (13) 0.3933 (6) 0.0384 (15) 0.5016 (16)
C25 0.3012 (4) 0.8162 (14) 0.3060 (7) 0.0417 (17) 0.5016 (16)
H25A 0.3063 0.9493 0.3117 0.050* 0.5016 (16)
H25B 0.2775 0.7904 0.2350 0.050* 0.5016 (16)
C26 0.3560 (4) 0.7276 (17) 0.3097 (7) 0.0376 (18) 0.5016 (16)
H26A 0.3509 0.5950 0.2998 0.045* 0.5016 (16)
H26B 0.3794 0.7484 0.3816 0.045* 0.5016 (16)
C27 0.3847 (5) 0.801 (2) 0.2231 (7) 0.043 (2) 0.5016 (16)
H27A 0.3576 0.7993 0.1543 0.052* 0.5016 (16)
H27B 0.3930 0.9299 0.2408 0.052* 0.5016 (16)
C8 0.4335 (2) 0.7213 (6) 0.2010 (5) 0.0800 (17)
H8A 0.4066 0.6723 0.1395 0.096*
H8B 0.4501 0.6143 0.2423 0.096*
C9 0.4748 (2) 0.7936 (6) 0.1544 (5) 0.0821 (18)
H9A 0.4554 0.8766 0.0980 0.098*
H9B 0.4953 0.8733 0.2115 0.098*
C10 0.5146 (2) 0.7172 (7) 0.1078 (5) 0.088 (2)
H10A 0.4942 0.6379 0.0505 0.106*
H10B 0.5340 0.6338 0.1640 0.106*
C11 0.5558 (2) 0.7898 (6) 0.0618 (5) 0.0740 (16)
H11A 0.5366 0.8746 0.0063 0.089*
H11B 0.5767 0.8675 0.1195 0.089*
C12 0.5952 (2) 0.7120 (7) 0.0142 (6) 0.098 (2)
H12A 0.5741 0.6355 −0.0439 0.117*
H12B 0.6138 0.6258 0.0695 0.117*
C13 0.6371 (2) 0.7811 (6) −0.0313 (4) 0.0693 (15)
H13A 0.6507 0.8881 0.0134 0.083*
H13B 0.6187 0.8300 −0.1023 0.083*
C14 0.6846 (4) 0.6936 (15) −0.0512 (7) 0.0436 (17) 0.4984 (16)
H14A 0.6734 0.5684 −0.0738 0.052* 0.4984 (16)
H14B 0.7095 0.6830 0.0200 0.052* 0.4984 (16)
C34 0.6675 (3) 0.6978 (15) −0.1047 (7) 0.0436 (17) 0.5016 (16)
H34A 0.6730 0.5698 −0.0812 0.052* 0.5016 (16)
H34B 0.6424 0.6949 −0.1760 0.052* 0.5016 (16)
C15 0.7177 (2) 0.7554 (6) −0.1253 (5) 0.0736 (15)
H15A 0.6916 0.8067 −0.1873 0.088*
H15B 0.7382 0.8603 −0.0887 0.088*
C16 0.7555 (3) 0.6604 (7) −0.1720 (6) 0.104 (2)
H16A 0.7742 0.5806 −0.1131 0.125*
H16B 0.7327 0.5784 −0.2245 0.125*
C17 0.7963 (3) 0.7127 (8) −0.2238 (6) 0.111 (2)
H17A 0.8139 0.6046 −0.2462 0.166*
H17B 0.8232 0.7851 −0.1745 0.166*
H17C 0.7809 0.7854 −0.2875 0.166*
S2 0.24330 (9) 0.7885 (4) 0.47364 (18) 0.0565 (5) 0.4984 (16)
O4 0.2287 (2) 0.7707 (10) 0.2631 (4) 0.0637 (18) 0.4984 (16)
C3 0.1879 (3) 0.7406 (17) 0.4910 (9) 0.0534 (19) 0.4984 (16)
H3A 0.1865 0.7925 0.5625 0.064* 0.4984 (16)
H3B 0.1628 0.8153 0.4378 0.064* 0.4984 (16)
S22 0.20209 (9) 0.7959 (4) 0.36378 (18) 0.0565 (5) 0.5016 (16)
O24 0.2953 (2) 0.6859 (9) 0.4769 (4) 0.0584 (16) 0.5016 (16)
C23 0.1698 (4) 0.7495 (17) 0.4390 (8) 0.0534 (19) 0.5016 (16)
H23A 0.1330 0.7943 0.4062 0.064* 0.5016 (16)
H23B 0.1830 0.8289 0.5019 0.064* 0.5016 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0548 (6) 0.0278 (5) 0.0337 (5) −0.0039 (4) 0.0167 (4) −0.0003 (4)
N1 0.066 (2) 0.0291 (16) 0.0317 (17) −0.0027 (16) 0.0143 (17) −0.0002 (14)
N2 0.056 (2) 0.0286 (17) 0.0352 (18) −0.0036 (15) 0.0150 (16) −0.0022 (13)
N3 0.114 (4) 0.0287 (17) 0.0329 (18) −0.005 (2) 0.024 (2) −0.0012 (14)
O1 0.095 (2) 0.0311 (14) 0.0330 (14) −0.0013 (14) 0.0238 (14) 0.0015 (11)
O2 0.0652 (18) 0.0293 (13) 0.0364 (14) −0.0084 (13) 0.0166 (13) 0.0037 (10)
O3 0.0531 (17) 0.0329 (13) 0.0379 (14) 0.0008 (12) 0.0188 (12) −0.0006 (10)
C1 0.046 (2) 0.0285 (18) 0.0342 (18) −0.0014 (16) 0.0083 (16) 0.0005 (15)
C2 0.052 (3) 0.049 (3) 0.077 (4) 0.000 (2) 0.030 (3) −0.008 (2)
C4 0.042 (4) 0.035 (4) 0.036 (4) −0.003 (3) 0.002 (3) −0.004 (4)
C5 0.051 (6) 0.035 (3) 0.040 (5) −0.010 (4) 0.010 (4) −0.008 (4)
C6 0.039 (4) 0.036 (3) 0.036 (6) −0.002 (3) 0.004 (4) 0.002 (5)
C7 0.054 (7) 0.038 (2) 0.039 (6) −0.008 (5) 0.011 (4) −0.005 (6)
C24 0.042 (4) 0.035 (4) 0.036 (4) −0.003 (3) 0.002 (3) −0.004 (4)
C25 0.051 (6) 0.035 (3) 0.040 (5) −0.010 (4) 0.010 (4) −0.008 (4)
C26 0.039 (4) 0.036 (3) 0.036 (6) −0.002 (3) 0.004 (4) 0.002 (5)
C27 0.054 (7) 0.038 (2) 0.039 (6) −0.008 (5) 0.011 (4) −0.005 (6)
C8 0.064 (3) 0.040 (2) 0.152 (5) −0.001 (2) 0.057 (4) −0.006 (3)
C9 0.106 (4) 0.035 (2) 0.129 (5) −0.003 (3) 0.081 (4) 0.002 (3)
C10 0.079 (4) 0.041 (3) 0.167 (6) −0.003 (3) 0.077 (4) −0.011 (3)
C11 0.091 (4) 0.039 (2) 0.111 (4) 0.000 (2) 0.065 (3) 0.006 (3)
C12 0.089 (4) 0.039 (3) 0.193 (7) −0.004 (3) 0.095 (5) −0.008 (3)
C13 0.091 (4) 0.040 (2) 0.093 (4) −0.001 (2) 0.055 (3) 0.001 (2)
C14 0.051 (5) 0.036 (2) 0.044 (5) 0.003 (4) 0.011 (4) 0.002 (5)
C34 0.051 (5) 0.036 (2) 0.044 (5) 0.003 (4) 0.011 (4) 0.002 (5)
C15 0.085 (4) 0.046 (3) 0.108 (4) −0.005 (3) 0.059 (3) −0.005 (3)
C16 0.101 (5) 0.045 (3) 0.195 (7) −0.001 (3) 0.100 (5) −0.003 (4)
C17 0.125 (6) 0.074 (4) 0.165 (7) −0.012 (4) 0.102 (5) −0.019 (4)
S2 0.0356 (8) 0.0827 (12) 0.0492 (9) −0.0116 (8) 0.0037 (7) 0.0106 (8)
O4 0.042 (3) 0.103 (5) 0.044 (3) 0.001 (3) 0.003 (3) −0.017 (3)
C3 0.024 (4) 0.056 (3) 0.075 (6) −0.007 (4) −0.003 (4) −0.002 (5)
S22 0.0356 (8) 0.0827 (12) 0.0492 (9) −0.0116 (8) 0.0037 (7) 0.0106 (8)
O24 0.053 (4) 0.075 (4) 0.043 (3) 0.005 (3) 0.001 (3) 0.015 (3)
C23 0.024 (4) 0.056 (3) 0.075 (6) −0.007 (4) −0.003 (4) −0.002 (5)

Geometric parameters (Å, °)

S1—O1 1.454 (3) C8—C9 1.402 (6)
S1—O2 1.459 (2) C8—H8A 0.9900
S1—O3 1.459 (3) C8—H8B 0.9900
S1—C2 1.771 (5) C9—C10 1.382 (6)
N1—C1 1.321 (5) C9—H9A 0.9900
N1—H1 0.87 (4) C9—H9B 0.9900
N1—H2 0.80 (4) C10—C11 1.397 (6)
N2—C1 1.329 (4) C10—H10A 0.9900
N2—H3 0.84 (4) C10—H10B 0.9900
N2—H4 0.84 (4) C11—C12 1.385 (6)
N3—C1 1.322 (5) C11—H11A 0.9900
N3—H5 0.83 (5) C11—H11B 0.9900
N3—H6 0.82 (5) C12—C13 1.398 (6)
C2—C3 1.507 (12) C12—H12A 0.9900
C2—C23 1.580 (12) C12—H12B 0.9900
C2—H2A 1.03 (4) C13—C14 1.426 (9)
C2—H2B 0.90 (5) C13—C34 1.457 (9)
C4—O4 1.199 (9) C13—H13A 0.9900
C4—C5 1.508 (11) C13—H13B 0.9900
C4—S2 1.781 (9) C14—C15 1.452 (9)
C5—C6 1.520 (10) C14—H14A 0.9900
C5—H5A 0.9900 C14—H14B 0.9900
C5—H5B 0.9900 C34—C15 1.409 (9)
C6—C7 1.516 (11) C34—H34A 0.9900
C6—H6A 0.9900 C34—H34B 0.9900
C6—H6B 0.9900 C15—C16 1.405 (6)
C7—C8 1.405 (14) C15—H15A 0.9900
C7—H7A 0.9900 C15—H15B 0.9900
C7—H7B 0.9900 C16—C17 1.384 (7)
C24—O24 1.209 (8) C16—H16A 0.9900
C24—C25 1.507 (10) C16—H16B 0.9900
C24—S22 1.762 (9) C17—H17A 0.9800
C25—C26 1.520 (11) C17—H17B 0.9800
C25—H25A 0.9900 C17—H17C 0.9800
C25—H25B 0.9900 S2—C3 1.500 (9)
C26—C27 1.529 (11) C3—H3A 0.9900
C26—H26A 0.9900 C3—H3B 0.9900
C26—H26B 0.9900 S22—C23 1.415 (9)
C27—C8 1.440 (14) C23—H23A 0.9900
C27—H27A 0.9900 C23—H23B 0.9900
C27—H27B 0.9900
O1—S1—O2 112.64 (15) C10—C9—H9A 103.8
O1—S1—O3 112.41 (16) C8—C9—H9A 103.8
O2—S1—O3 112.79 (15) C10—C9—H9B 103.8
O1—S1—C2 106.9 (2) C8—C9—H9B 103.8
O2—S1—C2 105.5 (2) H9A—C9—H9B 105.4
O3—S1—C2 106.0 (2) C9—C10—C11 133.5 (5)
C1—N1—H1 116 (3) C9—C10—H10A 103.8
C1—N1—H2 122 (3) C11—C10—H10A 103.8
H1—N1—H2 122 (4) C9—C10—H10B 103.8
C1—N2—H3 122 (3) C11—C10—H10B 103.8
C1—N2—H4 118 (3) H10A—C10—H10B 105.4
H3—N2—H4 120 (4) C12—C11—C10 133.0 (5)
C1—N3—H5 119 (3) C12—C11—H11A 104.0
C1—N3—H6 120 (3) C10—C11—H11A 104.0
H5—N3—H6 120 (5) C12—C11—H11B 104.0
N1—C1—N3 120.6 (3) C10—C11—H11B 104.0
N1—C1—N2 120.2 (3) H11A—C11—H11B 105.4
N3—C1—N2 119.1 (3) C11—C12—C13 134.1 (5)
C3—C2—S1 125.3 (5) C11—C12—H12A 103.7
C23—C2—S1 103.3 (4) C13—C12—H12A 103.7
C3—C2—H2A 116 (2) C11—C12—H12B 103.7
C23—C2—H2A 114 (2) C13—C12—H12B 103.7
S1—C2—H2A 105 (2) H12A—C12—H12B 105.3
C3—C2—H2B 99 (3) C12—C13—C14 129.7 (6)
C23—C2—H2B 122 (3) C12—C13—C34 130.6 (6)
S1—C2—H2B 102 (3) C12—C13—H13A 104.8
H2A—C2—H2B 108 (4) C14—C13—H13A 104.8
O4—C4—C5 125.8 (8) C34—C13—H13A 122.3
O4—C4—S2 121.7 (7) C12—C13—H13B 104.8
C5—C4—S2 112.3 (6) C14—C13—H13B 104.8
C4—C5—C6 113.5 (8) C34—C13—H13B 77.4
C4—C5—H5A 108.9 H13A—C13—H13B 105.8
C6—C5—H5A 108.9 C13—C14—C15 125.9 (8)
C4—C5—H5B 108.9 C13—C14—H14A 105.8
C6—C5—H5B 108.9 C15—C14—H14A 105.8
H5A—C5—H5B 107.7 C13—C14—H14B 105.8
C5—C6—C7 111.5 (9) C15—C14—H14B 105.8
C5—C6—H6A 109.3 H14A—C14—H14B 106.2
C7—C6—H6A 109.3 C15—C34—C13 127.0 (8)
C5—C6—H6B 109.3 C15—C34—H34A 105.6
C7—C6—H6B 109.3 C13—C34—H34A 105.6
H6A—C6—H6B 108.0 C15—C34—H34B 105.6
C8—C7—C6 120.1 (9) C13—C34—H34B 105.6
C8—C7—H7A 107.3 H34A—C34—H34B 106.1
C6—C7—H7A 107.3 C34—C15—C16 129.7 (6)
C8—C7—H7B 107.3 C16—C15—C14 130.1 (6)
C6—C7—H7B 107.3 C34—C15—H15A 77.6
H7A—C7—H7B 106.9 C16—C15—H15A 104.7
O24—C24—C25 123.7 (8) C14—C15—H15A 104.7
O24—C24—S22 122.3 (7) C34—C15—H15B 123.3
C25—C24—S22 114.0 (6) C16—C15—H15B 104.7
C24—C25—C26 114.8 (8) C14—C15—H15B 104.7
C24—C25—H25A 108.6 H15A—C15—H15B 105.7
C26—C25—H25A 108.6 C17—C16—C15 133.9 (5)
C24—C25—H25B 108.6 C17—C16—H16A 103.7
C26—C25—H25B 108.6 C15—C16—H16A 103.7
H25A—C25—H25B 107.6 C17—C16—H16B 103.7
C25—C26—C27 112.8 (9) C15—C16—H16B 103.7
C25—C26—H26A 109.0 H16A—C16—H16B 105.4
C27—C26—H26A 109.0 C16—C17—H17A 109.5
C25—C26—H26B 109.0 C16—C17—H17B 109.5
C27—C26—H26B 109.0 H17A—C17—H17B 109.5
H26A—C26—H26B 107.8 C16—C17—H17C 109.5
C8—C27—C26 122.9 (10) H17A—C17—H17C 109.5
C8—C27—H27A 106.6 H17B—C17—H17C 109.5
C26—C27—H27A 106.6 C3—S2—C4 124.1 (5)
C8—C27—H27B 106.6 C2—C3—S2 130.6 (8)
C26—C27—H27B 106.6 C2—C3—H3A 104.6
H27A—C27—H27B 106.6 S2—C3—H3A 104.6
C7—C8—C9 130.0 (7) C2—C3—H3B 104.6
C7—C8—C27 26.2 (4) S2—C3—H3B 104.6
C9—C8—C27 131.6 (7) H3A—C3—H3B 105.7
C7—C8—H8A 104.8 C23—S22—C24 120.6 (5)
C9—C8—H8A 104.8 S22—C23—C2 130.1 (9)
C27—C8—H8A 80.1 S22—C23—H23A 104.7
C7—C8—H8B 104.8 C2—C23—H23A 104.7
C9—C8—H8B 104.8 S22—C23—H23B 104.7
C27—C8—H8B 120.4 C2—C23—H23B 104.7
H8A—C8—H8B 105.8 H23A—C23—H23B 105.7
C10—C9—C8 133.7 (5)
O1—S1—C2—C3 77.5 (7) C11—C12—C13—C14 160.2 (8)
O2—S1—C2—C3 −162.4 (6) C11—C12—C13—C34 −161.4 (8)
O3—S1—C2—C3 −42.6 (7) C12—C13—C14—C15 161.0 (8)
O1—S1—C2—C23 60.2 (5) C34—C13—C14—C15 56.8 (12)
O2—S1—C2—C23 −179.7 (5) C12—C13—C34—C15 −162.1 (8)
O3—S1—C2—C23 −59.9 (5) C14—C13—C34—C15 −61.0 (13)
O4—C4—C5—C6 −33.4 (15) C13—C34—C15—C16 162.0 (8)
S2—C4—C5—C6 150.1 (8) C13—C34—C15—C14 58.6 (13)
C4—C5—C6—C7 172.8 (9) C13—C14—C15—C34 −59.3 (13)
C5—C6—C7—C8 172.1 (9) C13—C14—C15—C16 −161.1 (8)
O24—C24—C25—C26 20.9 (14) C34—C15—C16—C17 157.6 (9)
S22—C24—C25—C26 −159.7 (7) C14—C15—C16—C17 −163.9 (9)
C24—C25—C26—C27 −177.2 (9) O4—C4—S2—C3 7.9 (12)
C25—C26—C27—C8 −171.4 (9) C5—C4—S2—C3 −175.6 (8)
C6—C7—C8—C9 149.4 (9) C23—C2—C3—S2 −104.3 (19)
C6—C7—C8—C27 44.5 (16) S1—C2—C3—S2 −144.0 (7)
C26—C27—C8—C7 −58.2 (18) C4—S2—C3—C2 74.8 (11)
C26—C27—C8—C9 −156.3 (9) O24—C24—S22—C23 0.7 (12)
C7—C8—C9—C10 163.9 (9) C25—C24—S22—C23 −178.6 (8)
C27—C8—C9—C10 −161.3 (8) C24—S22—C23—C2 −59.9 (11)
C8—C9—C10—C11 −179.8 (7) C3—C2—C23—S22 96.7 (16)
C9—C10—C11—C12 −179.1 (8) S1—C2—C23—S22 −115.7 (8)
C10—C11—C12—C13 −179.2 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.87 (4) 2.12 (4) 2.943 (4) 159 (4)
N1—H2···O3ii 0.80 (4) 2.11 (4) 2.900 (4) 171 (4)
N1—H2···S1ii 0.80 (4) 3.04 (4) 3.764 (4) 152 (4)
N2—H3···O2ii 0.84 (4) 2.12 (4) 2.957 (4) 171 (4)
N2—H4···O1 0.84 (4) 2.13 (4) 2.960 (4) 172 (4)
N3—H5···O2 0.83 (5) 2.06 (5) 2.892 (4) 178 (5)
N3—H6···O3i 0.82 (5) 2.14 (5) 2.942 (4) 167 (5)

Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2033).

References

  1. Adams, J. M. (1978). Acta Cryst. B34, 1218–1220.
  2. Ashiq, M. I., Hussain, I., Dixon, S., Light, M. E. & Kilburn, J. D. (2010). Acta Cryst. C66, o455–o458. [DOI] [PubMed]
  3. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dalton, J. R., Kirkpatrick, A. & Maclaren, J. A. (1981). Aust. J. Chem. 34, 759–763.
  5. Horner, M. J., Holman, K. T. & Ward, M. D. (2001). Angew. Chem. Int. Ed. 40, 4045–4048. [PubMed]
  6. Horner, M. J., Holman, K. T. & Ward, M. D. (2007). J. Am. Chem. Soc. 129, 14640–14660. [DOI] [PubMed]
  7. Russell, V. A., Etter, M. C. & Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941–1952.
  8. Russell, V. A. & Ward, M. D. (1996). Chem. Mater. 8, 1654–1666.
  9. Schramm, C. H., Lemaire, H. & Karlson, R. H. (1954). J. Am. Chem. Soc. 77, 6231–6233.
  10. Sheldrick, G. M. (2003). SADABS University of Gottingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811046472/zj2033sup1.cif

e-67-o3257-sup1.cif (36.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046472/zj2033Isup3.hkl

e-67-o3257-Isup3.hkl (278.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046472/zj2033Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES