Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):o3262. doi: 10.1107/S1600536811046812

3,5-Dibromo-4-oxo-2,2,6,6-tetra­methyl­piperidin-1-yl oxide

Guang-Zhou Zhu a, Suo-Ping Xu a,*, Cui-Yun Li b,*
PMCID: PMC3238922  PMID: 22199771

Abstract

In the title compound, C9H14Br2NO2, the substituted ring exhibits a chair conformation. A crystallographic mirror plane, passing through the N atom, the O atoms and the C atom in the 4-position, bis­ects the mol­ecule.

Related literature

For medical applications of similar compounds, see: Aubert et al. (2011); Brike (1990); Xu et al. (2009). For puckering parameters see: Cremer & Pople(1975).graphic file with name e-67-o3262-scheme1.jpg

Experimental

Crystal data

  • C9H14Br2NO2

  • M r = 328.03

  • Orthorhombic, Inline graphic

  • a = 11.6745 (9) Å

  • b = 16.0848 (14) Å

  • c = 5.9301 (4) Å

  • V = 1113.57 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.26 mm−1

  • T = 298 K

  • 0.45 × 0.42 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.139, T max = 0.355

  • 5193 measured reflections

  • 1018 independent reflections

  • 774 reflections with I > 2σ(I)

  • R int = 0.118

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.089

  • S = 1.04

  • 1018 reflections

  • 72 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046812/bx2376sup1.cif

e-67-o3262-sup1.cif (13.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046812/bx2376Isup2.hkl

e-67-o3262-Isup2.hkl (50.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

3,5-dibromo-4-oxo-2,2,6,6-tetramethylpiperidin-1-yl oxide is an important intermediate medicament. It is synthesized in a wide range of medical applications (Aubert et al. (2011); Brike (1990); Xu et al. (2009)). The complete molecule of the title compound, C9H14Br2NO2, is generated by crystallographic mirror symmetry, with two O, one C in the 3-position and one N atom lying on the mirror plane, Fig1. The substituted cyclohexyl ring adopts a chair conformation ( QT=0.562 (4)Å, θ =19.0 (4)°, φ =180.0 (12)° ), Cremer & Pople, (1975)

Experimental

The title compound was synthetized by reaction between 4-Oxo-2,2,6,6-tetramethylpiperidin-1-yl oxide (2 mmol) and bromine (2 mmol), dissolved in CH2CH2Cl2 and mixed together for 2 h. Large block crystals were precipitated, filtered ,washed with ethanol and dried in air (yield 80%).

Refinement

All H atoms were positioned geometrically(C—H = 0.96–0.98 Å,) and were refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 30% probability displacement ellipsoids.

Crystal data

C9H14Br2NO2 Dx = 1.957 Mg m3
Mr = 328.03 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 1704 reflections
a = 11.6745 (9) Å θ = 3.5–26.6°
b = 16.0848 (14) Å µ = 7.26 mm1
c = 5.9301 (4) Å T = 298 K
V = 1113.57 (15) Å3 Block, orange
Z = 4 0.45 × 0.42 × 0.18 mm
F(000) = 644

Data collection

Bruker SMART CCD area-detector diffractometer 1018 independent reflections
Radiation source: fine-focus sealed tube 774 reflections with I > 2σ(I)
graphite Rint = 0.118
phi and ω scans θmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −13→12
Tmin = 0.139, Tmax = 0.355 k = −19→18
5193 measured reflections l = −6→7

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0364P)2] where P = (Fo2 + 2Fc2)/3
1018 reflections (Δ/σ)max < 0.001
72 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.28737 (4) 0.42632 (3) 0.59566 (7) 0.0414 (2)
N1 0.4892 (4) 0.2500 0.2492 (7) 0.0268 (11)
O1 0.5770 (4) 0.2500 0.1217 (6) 0.0448 (11)
O2 0.2994 (3) 0.2500 0.7814 (7) 0.0384 (10)
C1 0.4591 (3) 0.3333 (2) 0.3498 (6) 0.0237 (9)
C2 0.3343 (3) 0.3265 (2) 0.4364 (6) 0.0263 (9)
H2 0.2844 0.3206 0.3045 0.032*
C3 0.3177 (4) 0.2500 0.5827 (10) 0.0277 (13)
C4 0.5446 (3) 0.3542 (3) 0.5367 (7) 0.0354 (10)
H4A 0.5310 0.3188 0.6643 0.053*
H4B 0.5354 0.4112 0.5808 0.053*
H4C 0.6212 0.3456 0.4824 0.053*
C5 0.4652 (4) 0.3975 (3) 0.1615 (8) 0.0418 (11)
H5A 0.5425 0.4012 0.1069 0.063*
H5B 0.4416 0.4507 0.2182 0.063*
H5C 0.4155 0.3811 0.0405 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0384 (3) 0.0281 (3) 0.0576 (4) 0.00706 (19) 0.00867 (18) −0.0047 (2)
N1 0.024 (2) 0.033 (3) 0.023 (3) 0.000 0.0032 (17) 0.000
O1 0.039 (3) 0.050 (3) 0.046 (3) 0.000 0.0234 (19) 0.000
O2 0.048 (3) 0.034 (2) 0.033 (3) 0.000 0.0153 (19) 0.000
C1 0.025 (2) 0.022 (2) 0.024 (2) −0.0017 (17) 0.0009 (14) −0.0011 (16)
C2 0.023 (2) 0.024 (2) 0.033 (2) 0.0032 (17) −0.0028 (14) −0.0031 (17)
C3 0.011 (3) 0.026 (3) 0.046 (4) 0.000 −0.001 (2) 0.000
C4 0.024 (2) 0.034 (2) 0.047 (3) −0.001 (2) −0.0046 (17) −0.007 (2)
C5 0.053 (3) 0.034 (2) 0.039 (3) −0.001 (2) 0.006 (2) 0.007 (2)

Geometric parameters (Å, °)

Br1—C2 1.942 (4) C2—H2 0.9800
N1—O1 1.274 (5) C3—C2i 1.518 (5)
N1—C1i 1.509 (4) C4—H4A 0.9600
N1—C1 1.509 (4) C4—H4B 0.9600
O2—C3 1.198 (6) C4—H4C 0.9600
C1—C5 1.523 (6) C5—H5A 0.9600
C1—C4 1.529 (5) C5—H5B 0.9600
C1—C2 1.548 (5) C5—H5C 0.9600
C2—C3 1.518 (5)
O1—N1—C1i 115.0 (2) O2—C3—C2i 125.8 (2)
O1—N1—C1 115.0 (2) O2—C3—C2 125.8 (2)
C1i—N1—C1 125.3 (4) C2i—C3—C2 108.3 (5)
N1—C1—C5 107.5 (3) C1—C4—H4A 109.5
N1—C1—C4 109.2 (3) C1—C4—H4B 109.5
C5—C1—C4 110.6 (3) H4A—C4—H4B 109.5
N1—C1—C2 106.7 (3) C1—C4—H4C 109.5
C5—C1—C2 109.6 (3) H4A—C4—H4C 109.5
C4—C1—C2 112.9 (3) H4B—C4—H4C 109.5
C3—C2—C1 111.5 (3) C1—C5—H5A 109.5
C3—C2—Br1 110.9 (3) C1—C5—H5B 109.5
C1—C2—Br1 111.6 (3) H5A—C5—H5B 109.5
C3—C2—H2 107.5 C1—C5—H5C 109.5
C1—C2—H2 107.5 H5A—C5—H5C 109.5
Br1—C2—H2 107.5 H5B—C5—H5C 109.5
O1—N1—C1—C5 46.0 (5) C4—C1—C2—C3 −69.8 (4)
C1i—N1—C1—C5 −159.6 (3) N1—C1—C2—Br1 174.9 (2)
O1—N1—C1—C4 −74.1 (4) C5—C1—C2—Br1 −69.0 (3)
C1i—N1—C1—C4 80.3 (5) C4—C1—C2—Br1 54.8 (4)
O1—N1—C1—C2 163.5 (4) C1—C2—C3—O2 111.8 (5)
C1i—N1—C1—C2 −42.1 (6) Br1—C2—C3—O2 −13.2 (6)
N1—C1—C2—C3 50.2 (4) C1—C2—C3—C2i −65.4 (5)
C5—C1—C2—C3 166.4 (3) Br1—C2—C3—C2i 169.5 (2)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2376).

References

  1. Aubert, M., Wilen, C.-E., Pfaendner, R., Kniesel, S., Hoppe, H. & Roth, M. (2011). Polymer. Degrad. Stabil. 96, 328–333.
  2. Brike, M. E. (1990). Synth. Commun 20, 597–601.
  3. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Xu, S.-P., Cheng, K. & Shi, L. (2009). Z. Kristallogr. New Cryst. Struct 224, 461-462.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046812/bx2376sup1.cif

e-67-o3262-sup1.cif (13.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046812/bx2376Isup2.hkl

e-67-o3262-Isup2.hkl (50.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES