Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):o3268. doi: 10.1107/S1600536811046575

2-(6-Chloro-2,3,4,9-tetra­hydro-1H-carbazol-1-yl­idene)propane­dinitrile

M Sekar a, R Velmurugan a, A V Vijayasankar b, P Ramesh c, M N Ponnuswamy c,*
PMCID: PMC3238926  PMID: 22199775

Abstract

The mol­ecular conformation of the title compound, C15H10ClN3, is stabilized by an intra­molecular N—H⋯N hydrogen bond with an S(7) ring motif. The crystal packing is controlled by N—H⋯N and C—H⋯N inter­molecular inter­actions. One of the methyl­ene groups of the cyclo­hexene ring is disordered over two positions with refined occupancies of 0.457 (12) and 0.543 (12).

Related literature

For the biological activity of carbazole derivatives, see: Shufen et al. (1995); Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Kirtikar & Basu (1933). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o3268-scheme1.jpg

Experimental

Crystal data

  • C15H10ClN3

  • M r = 267.71

  • Monoclinic, Inline graphic

  • a = 7.5731 (3) Å

  • b = 7.6865 (3) Å

  • c = 22.2867 (8) Å

  • β = 97.437 (2)°

  • V = 1286.41 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.20 × 0.19 × 0.17 mm

Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.945, T max = 0.953

  • 24123 measured reflections

  • 3828 independent reflections

  • 2569 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.164

  • S = 1.01

  • 3828 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046575/bt5656sup1.cif

e-67-o3268-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046575/bt5656Isup2.hkl

e-67-o3268-Isup2.hkl (187.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046575/bt5656Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N16 0.94 (3) 2.60 (3) 3.373 (2) 139.5 (19)
N1—H1⋯N16i 0.94 (3) 2.27 (3) 3.099 (3) 147 (2)
C11—H11⋯N18ii 0.93 2.48 3.352 (3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Indian Institute of Science, Bangalore, India, for the data collection.

supplementary crystallographic information

Comment

Carbazole alkaloids obtained from natural sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals, light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). Against this background and to ascertain the molecular structure and conformation, the crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. One of the C atoms of the cyclohexene ring is disordered with refined occupancies of 0.457 (12) and 0.543 (12). The sum of the bond angles around N1 [359.8°] is in accordance with sp2 hybridization. The bond lengths (C15—N16) 1.145 (3)Å & (C17—N18) 1.144 (3)Å and the bond angles, (C14—C15—N16) 176.9 (2)° & (C14—C17—N18) 178.6 (3)° show linear character of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing reveals that symmetry-related molecules are linked through a network by C—H···N, N—H···N and π···π types of intra and intermolecular interactions. The intramolecular N1—H1···N16 hydrogen bond generates a S(7) ring motif. The molecules at (x, y, z) and (-x - 1, -y - 1, -z) are linked by N1—H1···N16 hydrogen bonds into cyclic centrosymmetric R22(14) dimer. The dimers are linked via inter molecular C11—H11···N18 hydrogen bond, which forms a one dimensional chain running along diagonally in ac-disection.

Experimental

A mixture of 6-Chloro-1-oxo-1,2,3,4-tetrahydrocarbazole (7.5 mmol), and melanonitrile (7.5 mmol), ammonium acetate (0.57 g, 8.125 mmol) and acetic acid (1.5 ml, 24.75 mmol) in 12.5 ml of toluene was stirred at 105°C for 5 h. On cooling the precipitate that formed was filtered off, washed with hexane (20 ml) and dried at 100°C to give a crude product of 6-chloro-2-(1,2,3,4- tetrahydro-9H-carbazol-1-ylidene)propanedinitrile.The crystals of the title compound suitable for single XRD analysis were obtained by the slow evaporation method by using dichloroethane as solvent at room temperature.

Refinement

The N-bound H atom was located in a difference Fourier map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. One of the methylene groups of the cyclohexene ring is disordered over two positions with refined occupancies of 0.457 (12) and 0.543 (12).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C15H10ClN3 F(000) = 552
Mr = 267.71 Dx = 1.382 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4023 reflections
a = 7.5731 (3) Å θ = 2.8–30.5°
b = 7.6865 (3) Å µ = 0.29 mm1
c = 22.2867 (8) Å T = 293 K
β = 97.437 (2)° Block, brown
V = 1286.41 (9) Å3 0.20 × 0.19 × 0.17 mm
Z = 4

Data collection

Bruker SMART APEX CCD detector diffractometer 3828 independent reflections
Radiation source: fine-focus sealed tube 2569 reflections with I > 2σ(I)
graphite Rint = 0.031
ω scans θmax = 30.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −10→10
Tmin = 0.945, Tmax = 0.953 k = −10→10
24123 measured reflections l = −30→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0867P)2 + 0.2888P] where P = (Fo2 + 2Fc2)/3
3828 reflections (Δ/σ)max < 0.001
186 parameters Δρmax = 0.42 e Å3
1 restraint Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.49620 (8) 0.90952 (7) 0.60857 (3) 0.0642 (2)
N1 0.15258 (19) 0.3281 (2) 0.46981 (6) 0.0405 (3)
H1 0.102 (3) 0.225 (3) 0.4828 (11) 0.067 (7)*
C2 0.1477 (2) 0.3928 (2) 0.41129 (7) 0.0390 (4)
C3 0.0745 (2) 0.3114 (2) 0.35585 (8) 0.0439 (4)
C4 0.0935 (4) 0.4150 (3) 0.29963 (9) 0.0653 (6)
H4A −0.0054 0.3869 0.2690 0.078* 0.457 (12)
H4B 0.2021 0.3792 0.2843 0.078* 0.457 (12)
H4C 0.1690 0.3487 0.2760 0.078* 0.543 (12)
H4D −0.0232 0.4214 0.2760 0.078* 0.543 (12)
C6 0.2437 (3) 0.6641 (3) 0.35882 (8) 0.0513 (5)
H6A 0.3595 0.6447 0.3458 0.062* 0.457 (12)
H6B 0.2335 0.7866 0.3682 0.062* 0.457 (12)
H6C 0.3688 0.6823 0.3555 0.062* 0.543 (12)
H6D 0.1891 0.7769 0.3628 0.062* 0.543 (12)
C7 0.2261 (2) 0.5572 (2) 0.41368 (8) 0.0404 (4)
C8 0.2803 (2) 0.5957 (2) 0.47570 (8) 0.0391 (4)
C9 0.3633 (2) 0.7404 (2) 0.50607 (8) 0.0443 (4)
H9 0.3960 0.8370 0.4849 0.053*
C10 0.3943 (2) 0.7335 (2) 0.56802 (8) 0.0449 (4)
C11 0.3465 (2) 0.5898 (2) 0.60126 (8) 0.0454 (4)
H11 0.3699 0.5911 0.6433 0.054*
C12 0.2654 (2) 0.4470 (2) 0.57250 (8) 0.0437 (4)
H12 0.2338 0.3514 0.5943 0.052*
C13 0.2319 (2) 0.4504 (2) 0.50921 (8) 0.0381 (4)
C14 −0.0043 (3) 0.1511 (3) 0.35074 (8) 0.0476 (4)
C15 −0.0238 (3) 0.0361 (3) 0.40008 (9) 0.0498 (5)
N16 −0.0422 (3) −0.0613 (2) 0.43766 (9) 0.0659 (5)
C17 −0.0748 (4) 0.0825 (3) 0.29288 (11) 0.0693 (6)
N18 −0.1317 (4) 0.0246 (4) 0.24718 (11) 0.1157 (10)
C5A 0.0989 (7) 0.6133 (7) 0.3089 (3) 0.0420 (16) 0.457 (12)
H5A 0.1198 0.6697 0.2716 0.050* 0.457 (12)
H5B −0.0153 0.6527 0.3190 0.050* 0.457 (12)
C5B 0.159 (2) 0.5788 (15) 0.3049 (4) 0.223 (8) 0.543 (12)
H5C 0.0610 0.6539 0.2894 0.268* 0.543 (12)
H5D 0.2447 0.5860 0.2761 0.268* 0.543 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0680 (4) 0.0576 (3) 0.0639 (4) −0.0096 (2) −0.0027 (3) −0.0157 (2)
N1 0.0444 (8) 0.0407 (7) 0.0364 (7) −0.0022 (6) 0.0051 (6) 0.0000 (6)
C2 0.0390 (8) 0.0434 (9) 0.0349 (8) 0.0031 (7) 0.0055 (6) 0.0003 (7)
C3 0.0438 (9) 0.0498 (10) 0.0381 (9) 0.0080 (8) 0.0052 (7) −0.0042 (7)
C4 0.0973 (18) 0.0617 (13) 0.0363 (10) 0.0043 (12) 0.0063 (10) 0.0000 (9)
C6 0.0610 (11) 0.0502 (11) 0.0442 (10) 0.0033 (9) 0.0124 (9) 0.0077 (8)
C7 0.0411 (9) 0.0429 (9) 0.0377 (8) 0.0044 (7) 0.0072 (7) 0.0016 (7)
C8 0.0365 (8) 0.0415 (9) 0.0395 (9) 0.0038 (7) 0.0057 (7) 0.0010 (7)
C9 0.0436 (9) 0.0422 (9) 0.0470 (10) −0.0018 (7) 0.0058 (7) 0.0016 (7)
C10 0.0415 (9) 0.0449 (9) 0.0476 (10) 0.0011 (7) 0.0025 (7) −0.0079 (8)
C11 0.0431 (9) 0.0549 (10) 0.0372 (9) 0.0034 (8) 0.0020 (7) −0.0021 (8)
C12 0.0445 (9) 0.0498 (10) 0.0372 (9) 0.0004 (8) 0.0062 (7) 0.0034 (7)
C13 0.0341 (8) 0.0410 (8) 0.0392 (9) 0.0023 (6) 0.0053 (6) −0.0003 (7)
C14 0.0495 (10) 0.0526 (10) 0.0400 (9) 0.0051 (8) 0.0028 (7) −0.0096 (8)
C15 0.0501 (11) 0.0473 (10) 0.0514 (11) −0.0014 (8) 0.0040 (8) −0.0144 (9)
N16 0.0836 (14) 0.0497 (10) 0.0637 (12) −0.0114 (9) 0.0072 (10) −0.0025 (9)
C17 0.0872 (16) 0.0681 (15) 0.0516 (12) −0.0068 (12) 0.0053 (11) −0.0163 (11)
N18 0.159 (3) 0.124 (2) 0.0595 (14) −0.030 (2) −0.0041 (15) −0.0360 (15)
C5A 0.047 (3) 0.040 (3) 0.040 (3) 0.018 (2) 0.0090 (18) 0.0046 (18)
C5B 0.362 (17) 0.242 (13) 0.047 (4) −0.241 (13) −0.046 (7) 0.048 (6)

Geometric parameters (Å, °)

Cl1—C10 1.7498 (18) C6—H6D 0.9700
N1—C13 1.371 (2) C7—C8 1.421 (2)
N1—C2 1.392 (2) C8—C9 1.407 (2)
N1—H1 0.94 (3) C8—C13 1.418 (2)
C2—C7 1.395 (2) C9—C10 1.371 (3)
C2—C3 1.431 (2) C9—H9 0.9300
C3—C14 1.368 (3) C10—C11 1.404 (3)
C3—C4 1.507 (3) C11—C12 1.375 (3)
C4—C5B 1.354 (9) C11—H11 0.9300
C4—C5A 1.538 (6) C12—C13 1.401 (2)
C4—H4A 0.9700 C12—H12 0.9300
C4—H4B 0.9700 C14—C17 1.431 (3)
C4—H4C 0.9700 C14—C15 1.433 (3)
C4—H4D 0.9700 C15—N16 1.145 (3)
C6—C7 1.493 (2) C17—N18 1.144 (3)
C6—C5A 1.509 (7) C5A—H5A 0.9700
C6—C5B 1.443 (8) C5A—H5B 0.9700
C6—H6A 0.9700 C5B—H5C 0.9700
C6—H6B 0.9700 C5B—H5D 0.9700
C6—H6C 0.9700
C13—N1—C2 108.16 (14) C7—C6—H6D 109.5
C13—N1—H1 122.9 (15) C5A—C6—H6D 91.2
C2—N1—H1 128.7 (15) C5B—C6—H6D 109.5
N1—C2—C7 109.17 (15) H6A—C6—H6D 125.2
N1—C2—C3 127.82 (16) H6B—C6—H6D 20.8
C7—C2—C3 123.01 (16) H6C—C6—H6D 108.1
C14—C3—C2 125.59 (17) C2—C7—C8 107.08 (15)
C14—C3—C4 119.64 (17) C2—C7—C6 123.36 (16)
C2—C3—C4 114.75 (17) C8—C7—C6 129.57 (17)
C5B—C4—C3 119.5 (4) C9—C8—C13 119.94 (15)
C5B—C4—C5A 20.5 (8) C9—C8—C7 133.40 (16)
C3—C4—C5A 114.5 (3) C13—C8—C7 106.66 (15)
C5B—C4—H4A 120.7 C10—C9—C8 117.49 (16)
C3—C4—H4A 108.6 C10—C9—H9 121.3
C5A—C4—H4A 108.6 C8—C9—H9 121.3
C5B—C4—H4B 88.6 C9—C10—C11 122.64 (17)
C3—C4—H4B 108.6 C9—C10—Cl1 119.80 (15)
C5A—C4—H4B 108.6 C11—C10—Cl1 117.56 (14)
H4A—C4—H4B 107.6 C12—C11—C10 120.82 (17)
C5B—C4—H4C 107.4 C12—C11—H11 119.6
C3—C4—H4C 107.4 C10—C11—H11 119.6
C5A—C4—H4C 125.9 C11—C12—C13 117.80 (16)
H4A—C4—H4C 87.5 C11—C12—H12 121.1
H4B—C4—H4C 22.3 C13—C12—H12 121.1
C5B—C4—H4D 107.4 N1—C13—C12 129.75 (16)
C3—C4—H4D 107.4 N1—C13—C8 108.94 (15)
C5A—C4—H4D 91.7 C12—C13—C8 121.31 (16)
H4A—C4—H4D 20.4 C3—C14—C17 120.97 (19)
H4B—C4—H4D 125.3 C3—C14—C15 125.38 (16)
H4C—C4—H4D 107.0 C17—C14—C15 113.64 (19)
C7—C6—C5A 109.1 (3) N16—C15—C14 176.9 (2)
C7—C6—C5B 110.8 (3) N18—C17—C14 178.6 (3)
C5A—C6—C5B 21.2 (8) C6—C5A—C4 111.1 (3)
C7—C6—H6A 109.9 C6—C5A—H5A 109.4
C5A—C6—H6A 109.9 C4—C5A—H5A 109.4
C5B—C6—H6A 90.1 C6—C5A—H5B 109.4
C7—C6—H6B 109.9 C4—C5A—H5B 109.4
C5A—C6—H6B 109.9 H5A—C5A—H5B 108.0
C5B—C6—H6B 125.5 C4—C5B—C6 127.8 (6)
H6A—C6—H6B 108.3 C4—C5B—H5C 105.3
C7—C6—H6C 109.5 C6—C5B—H5C 105.3
C5A—C6—H6C 127.2 C4—C5B—H5D 105.3
C5B—C6—H6C 109.5 C6—C5B—H5D 105.3
H6A—C6—H6C 21.5 H5C—C5B—H5D 106.0
H6B—C6—H6C 89.0
C13—N1—C2—C7 0.50 (19) Cl1—C10—C11—C12 179.78 (14)
C13—N1—C2—C3 −178.87 (16) C10—C11—C12—C13 −0.2 (3)
N1—C2—C3—C14 −0.5 (3) C2—N1—C13—C12 179.17 (17)
C7—C2—C3—C14 −179.80 (17) C2—N1—C13—C8 −0.47 (18)
N1—C2—C3—C4 −178.92 (18) C11—C12—C13—N1 −179.40 (17)
C7—C2—C3—C4 1.8 (3) C11—C12—C13—C8 0.2 (2)
C14—C3—C4—C5B 175.1 (9) C9—C8—C13—N1 179.52 (14)
C2—C3—C4—C5B −6.4 (9) C7—C8—C13—N1 0.26 (18)
C14—C3—C4—C5A 152.7 (3) C9—C8—C13—C12 −0.2 (2)
C2—C3—C4—C5A −28.8 (3) C7—C8—C13—C12 −179.41 (15)
N1—C2—C7—C8 −0.33 (19) C2—C3—C14—C17 179.43 (19)
C3—C2—C7—C8 179.07 (15) C4—C3—C14—C17 −2.2 (3)
N1—C2—C7—C6 179.84 (16) C2—C3—C14—C15 −1.2 (3)
C3—C2—C7—C6 −0.8 (3) C4—C3—C14—C15 177.1 (2)
C5A—C6—C7—C2 26.1 (3) C3—C14—C15—N16 −173 (4)
C5B—C6—C7—C2 3.7 (8) C17—C14—C15—N16 6(4)
C5A—C6—C7—C8 −153.6 (2) C3—C14—C17—N18 172 (14)
C5B—C6—C7—C8 −176.1 (8) C15—C14—C17—N18 −7(14)
C2—C7—C8—C9 −179.07 (17) C7—C6—C5A—C4 −50.9 (4)
C6—C7—C8—C9 0.7 (3) C5B—C6—C5A—C4 47.5 (11)
C2—C7—C8—C13 0.05 (18) C5B—C4—C5A—C6 −53.9 (13)
C6—C7—C8—C13 179.86 (18) C3—C4—C5A—C6 55.0 (4)
C13—C8—C9—C10 0.1 (2) C3—C4—C5B—C6 11 (2)
C7—C8—C9—C10 179.11 (17) C5A—C4—C5B—C6 92 (2)
C8—C9—C10—C11 −0.1 (3) C7—C6—C5B—C4 −9.1 (19)
C8—C9—C10—Cl1 −179.71 (12) C5A—C6—C5B—C4 −99 (2)
C9—C10—C11—C12 0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N16 0.94 (3) 2.60 (3) 3.373 (2) 139.5 (19)
N1—H1···N16i 0.94 (3) 2.27 (3) 3.099 (3) 147 (2)
C11—H11···N18ii 0.93 2.48 3.352 (3) 156.

Symmetry codes: (i) −x, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5656).

References

  1. Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconcin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Kirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131–2133. Allahabad: Central Council for Research in Ayurveda & Siddha, (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India.
  6. Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70–78.
  7. Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.
  8. Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shufen, Z., Danhong, Z. & Jinzong, Y. (1995). Dyes Pigments, 27, 287-296.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046575/bt5656sup1.cif

e-67-o3268-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046575/bt5656Isup2.hkl

e-67-o3268-Isup2.hkl (187.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046575/bt5656Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES