Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):o3269. doi: 10.1107/S1600536811046563

6-Bromo-2-(3-phenyl­allyl­idene)-2,3,4,9-tetra­hydro-1H-carbazol-1-one

R Velmurugan a, M Sekar a, A V Vijayasankar b, P Ramesh c, M N Ponnuswamy c,*
PMCID: PMC3238927  PMID: 22199776

Abstract

Mol­ecules of the title compound, C21H16BrNO, are linked through pairs of N—H⋯O inter­molecular hydrogen bonds into centrosymmetric R 2 2(10) dimers. One of the C atoms of the cyclohex-2-enone ring is disordered with refined occupancies of 0.61 (2) and 0.39 (2).

Related literature

For the biological activity of carbazole derivatives, see: Shufen et al. (1995); Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Bergman & Pelcman (1990); Bonesi et al. (2004); Chakraborty et al. (1965); Kirtikar & Basu (1933); Chakraborty et al. (1973); Knolker & Reddy, 2002. For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o3269-scheme1.jpg

Experimental

Crystal data

  • C21H16BrNO

  • M r = 378.26

  • Monoclinic, Inline graphic

  • a = 17.3682 (7) Å

  • b = 14.9974 (8) Å

  • c = 6.6861 (3) Å

  • β = 92.226 (2)°

  • V = 1740.27 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 293 K

  • 0.20 × 0.17 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.629, T max = 0.685

  • 16684 measured reflections

  • 4319 independent reflections

  • 2158 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.137

  • S = 0.97

  • 4319 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046563/bt5677sup1.cif

e-67-o3269-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046563/bt5677Isup2.hkl

e-67-o3269-Isup2.hkl (211.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046563/bt5677Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.82 (3) 2.02 (3) 2.813 (3) 161 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Solid State Unit, Indian Institute of Science, Bangalore, India, for the data collection and Dr A. Chandramohan, Post Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, for his valuable suggestions.

supplementary crystallographic information

Comment

Carbazole alkaloids obtained from naturally occurring sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Bergman & Pelcman, 1990; Bonesi et al., 2004; Chakraborty et al., 1965; Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals and light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). These types of compounds possess significant antibiotic, anti-carcinogenic, antiviral and anti-inflammatory properties (Chakraborty et al., 1973). The chemists have been attracted towards these compounds due to their biological activities and potential applications as pharmacological agents (Knolker & Reddy, 2002). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. One of the C atoms of the cyclohexane ring is disordered with refined occupancies of 0.61 (2) and 0.39 (2). The disordered position of C10B in the cyclohexane ring in the carbazole ring system adopts envelope conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.242 (7) Å, q3 = 0.171 (6) Å, φ2 = 117.3 (13)° and Δs(C10B & C13)= 1.5 (5)°. The sum of the bond angles around N1 [358.3°] is in accordance with sp2 hybridization.

The crystal packing reveals that symmetry-related molecules are linked through N—H···O intermolecular hydrogen bonds into cyclic centrosymmetric R22(10) dimers.

Experimental

The mixed aldol condensation reaction of 6-bromo-1-oxo-1,2,3, 4-tetrahydrocarbazole reacted with cinnamaldehyde in the presence of alcoholic KOH, afforded a single product, substituted 6-Bromo-2-(3-phenyl-allylidene) -2,3,4,9-tetrahydro-carbazol-1-one. This was purified by using column chromatography over silica gel (mesh 60–80). During elution of the column with petroleum ether (60–80°C) and ethyl acetate [1:2] mixture, a yellowish solid was obtained. It was recrystallized from the solvent mixture ethyl acetate and acetone (8:2).

Refinement

The N-bound H atom was located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C21H16BrNO F(000) = 768
Mr = 378.26 Dx = 1.444 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2134 reflections
a = 17.3682 (7) Å θ = 1.2–28.3°
b = 14.9974 (8) Å µ = 2.37 mm1
c = 6.6861 (3) Å T = 293 K
β = 92.226 (2)° Block, yellow
V = 1740.27 (14) Å3 0.20 × 0.17 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX CCD detector diffractometer 4319 independent reflections
Radiation source: fine-focus sealed tube 2158 reflections with I > 2σ(I)
graphite Rint = 0.044
ω scans θmax = 28.3°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −23→23
Tmin = 0.629, Tmax = 0.685 k = −18→20
16684 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.6068P] where P = (Fo2 + 2Fc2)/3
4319 reflections (Δ/σ)max < 0.001
231 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.39020 (2) 0.32240 (3) 0.51370 (6) 0.1026 (2)
O1 −0.08065 (12) 0.45133 (15) 0.1631 (3) 0.0688 (6)
N1 0.08292 (14) 0.42507 (17) 0.1535 (3) 0.0552 (6)
H1 0.0713 (17) 0.458 (2) 0.059 (4) 0.067 (9)*
C2 0.15712 (17) 0.40282 (18) 0.2075 (4) 0.0528 (7)
C3 0.22410 (18) 0.4135 (2) 0.1039 (4) 0.0641 (8)
H3 0.2229 0.4378 −0.0242 0.077*
C4 0.29216 (19) 0.3873 (2) 0.1963 (5) 0.0675 (8)
H4 0.3381 0.3937 0.1306 0.081*
C5 0.2929 (2) 0.3509 (2) 0.3901 (5) 0.0692 (9)
C6 0.22789 (19) 0.3375 (2) 0.4921 (4) 0.0622 (8)
H6 0.2299 0.3118 0.6187 0.075*
C7 0.15750 (17) 0.36386 (18) 0.4003 (4) 0.0505 (7)
C8 0.08023 (17) 0.36309 (18) 0.4592 (3) 0.0485 (6)
C9 0.04470 (19) 0.3290 (2) 0.6440 (4) 0.0658 (8)
H9A 0.0487 0.2645 0.6453 0.079* 0.61 (2)
H9B 0.0743 0.3513 0.7595 0.079* 0.61 (2)
H9C 0.0547 0.3712 0.7519 0.079* 0.39 (2)
H9D 0.0691 0.2730 0.6823 0.079* 0.39 (2)
C11 −0.08446 (18) 0.38062 (19) 0.4825 (4) 0.0538 (7)
C12 −0.04532 (17) 0.41447 (18) 0.3044 (3) 0.0506 (7)
C13 0.03659 (16) 0.40161 (17) 0.3067 (3) 0.0477 (6)
C14 −0.15949 (18) 0.3978 (2) 0.4961 (4) 0.0586 (7)
H14 −0.1826 0.4283 0.3886 0.070*
C15 −0.20892 (18) 0.3753 (2) 0.6550 (4) 0.0631 (8)
H15 −0.1887 0.3416 0.7613 0.076*
C16 −0.28207 (19) 0.4001 (2) 0.6583 (4) 0.0676 (8)
H16 −0.3011 0.4311 0.5464 0.081*
C17 −0.33642 (18) 0.3850 (2) 0.8155 (5) 0.0658 (8)
C18 −0.3143 (2) 0.3524 (2) 1.0019 (5) 0.0780 (10)
H18 −0.2625 0.3403 1.0313 0.094*
C19 −0.3677 (3) 0.3376 (3) 1.1451 (6) 0.0984 (13)
H19 −0.3521 0.3145 1.2692 0.118*
C20 −0.4435 (3) 0.3568 (3) 1.1050 (8) 0.1123 (16)
H20 −0.4795 0.3470 1.2019 0.135*
C21 −0.4661 (2) 0.3902 (4) 0.9231 (8) 0.1155 (16)
H21 −0.5178 0.4033 0.8962 0.139*
C22 −0.4137 (2) 0.4048 (3) 0.7794 (6) 0.0882 (11)
H22 −0.4300 0.4282 0.6561 0.106*
C10A −0.0342 (11) 0.3529 (15) 0.665 (2) 0.058 (4) 0.39 (2)
H10A −0.0353 0.4016 0.7602 0.069* 0.39 (2)
H10B −0.0594 0.3026 0.7258 0.069* 0.39 (2)
C10B −0.0401 (7) 0.3148 (9) 0.6188 (17) 0.059 (2) 0.61 (2)
H10C −0.0619 0.3169 0.7501 0.071* 0.61 (2)
H10D −0.0487 0.2551 0.5663 0.071* 0.61 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0700 (3) 0.1349 (5) 0.1014 (3) −0.0016 (2) −0.0135 (2) 0.0210 (2)
O1 0.0752 (13) 0.0818 (16) 0.0491 (10) 0.0044 (11) −0.0026 (9) 0.0253 (10)
N1 0.0740 (16) 0.0542 (16) 0.0373 (11) 0.0027 (13) 0.0008 (11) 0.0120 (11)
C2 0.0742 (19) 0.0405 (16) 0.0434 (13) 0.0007 (14) −0.0004 (13) 0.0012 (12)
C3 0.082 (2) 0.060 (2) 0.0505 (15) −0.0032 (17) 0.0076 (15) 0.0044 (14)
C4 0.071 (2) 0.064 (2) 0.0688 (19) −0.0054 (17) 0.0094 (15) 0.0014 (16)
C5 0.073 (2) 0.064 (2) 0.070 (2) −0.0028 (16) −0.0075 (17) 0.0020 (16)
C6 0.074 (2) 0.062 (2) 0.0499 (15) −0.0001 (16) −0.0078 (14) 0.0063 (14)
C7 0.0710 (18) 0.0384 (16) 0.0417 (13) −0.0026 (13) −0.0026 (12) 0.0030 (11)
C8 0.0729 (18) 0.0351 (15) 0.0372 (12) −0.0008 (13) −0.0034 (12) −0.0007 (11)
C9 0.082 (2) 0.071 (2) 0.0438 (15) −0.0037 (18) −0.0009 (14) 0.0188 (14)
C11 0.0754 (19) 0.0448 (17) 0.0409 (13) 0.0034 (15) 0.0012 (12) 0.0033 (12)
C12 0.0739 (18) 0.0415 (16) 0.0363 (12) 0.0008 (14) 0.0002 (12) 0.0021 (11)
C13 0.0715 (18) 0.0374 (15) 0.0343 (12) −0.0006 (13) 0.0028 (12) 0.0011 (11)
C14 0.075 (2) 0.0493 (18) 0.0510 (15) 0.0002 (15) −0.0005 (14) 0.0049 (13)
C15 0.074 (2) 0.061 (2) 0.0544 (16) −0.0034 (16) 0.0019 (14) 0.0079 (14)
C16 0.076 (2) 0.064 (2) 0.0621 (18) −0.0054 (17) −0.0012 (15) 0.0070 (15)
C17 0.069 (2) 0.056 (2) 0.0716 (19) −0.0089 (16) 0.0036 (16) −0.0021 (16)
C18 0.086 (2) 0.075 (2) 0.074 (2) −0.0008 (19) 0.0086 (18) 0.0047 (18)
C19 0.132 (4) 0.091 (3) 0.074 (2) −0.016 (3) 0.019 (3) 0.006 (2)
C20 0.105 (4) 0.130 (4) 0.105 (3) −0.033 (3) 0.037 (3) −0.021 (3)
C21 0.070 (2) 0.158 (5) 0.119 (4) −0.018 (3) 0.014 (3) −0.026 (3)
C22 0.073 (2) 0.100 (3) 0.091 (2) −0.006 (2) −0.001 (2) −0.005 (2)
C10A 0.084 (7) 0.049 (10) 0.041 (6) 0.023 (8) 0.017 (5) 0.013 (5)
C10B 0.088 (4) 0.048 (6) 0.042 (4) 0.006 (5) 0.009 (3) 0.010 (3)

Geometric parameters (Å, °)

Br1—C5 1.900 (3) C11—C10B 1.532 (11)
O1—C12 1.237 (3) C11—C10A 1.529 (16)
N1—C2 1.366 (4) C12—C13 1.435 (4)
N1—C13 1.373 (3) C14—C15 1.432 (4)
N1—H1 0.82 (3) C14—H14 0.9300
C2—C3 1.386 (4) C15—C16 1.325 (4)
C2—C7 1.415 (4) C15—H15 0.9300
C3—C4 1.370 (4) C16—C17 1.458 (4)
C3—H3 0.9300 C16—H16 0.9300
C4—C5 1.406 (4) C17—C18 1.379 (4)
C4—H4 0.9300 C17—C22 1.387 (4)
C5—C6 1.357 (5) C18—C19 1.377 (5)
C6—C7 1.403 (4) C18—H18 0.9300
C6—H6 0.9300 C19—C20 1.363 (6)
C7—C8 1.413 (4) C19—H19 0.9300
C8—C13 1.374 (4) C20—C21 1.359 (6)
C8—C9 1.492 (4) C20—H20 0.9300
C9—C10A 1.429 (17) C21—C22 1.366 (5)
C9—C10B 1.491 (12) C21—H21 0.9300
C9—H9A 0.9700 C22—H22 0.9300
C9—H9B 0.9700 C10A—H10A 0.9700
C9—H9C 0.9700 C10A—H10B 0.9700
C9—H9D 0.9700 C10B—H10C 0.9700
C11—C14 1.335 (4) C10B—H10D 0.9700
C11—C12 1.483 (4)
C2—N1—C13 108.3 (2) C14—C11—C10A 121.7 (6)
C2—N1—H1 123 (2) C12—C11—C10A 117.9 (7)
C13—N1—H1 127 (2) C10B—C11—C10A 24.7 (5)
N1—C2—C3 129.9 (2) O1—C12—C13 122.0 (2)
N1—C2—C7 108.2 (2) O1—C12—C11 122.5 (3)
C3—C2—C7 121.9 (3) C13—C12—C11 115.5 (2)
C4—C3—C2 117.9 (3) N1—C13—C8 109.8 (2)
C4—C3—H3 121.1 N1—C13—C12 124.6 (2)
C2—C3—H3 121.1 C8—C13—C12 125.6 (2)
C3—C4—C5 120.3 (3) C11—C14—C15 128.3 (3)
C3—C4—H4 119.9 C11—C14—H14 115.8
C5—C4—H4 119.9 C15—C14—H14 115.8
C6—C5—C4 122.8 (3) C16—C15—C14 123.3 (3)
C6—C5—Br1 119.5 (2) C16—C15—H15 118.3
C4—C5—Br1 117.7 (3) C14—C15—H15 118.3
C5—C6—C7 117.9 (3) C15—C16—C17 128.1 (3)
C5—C6—H6 121.1 C15—C16—H16 116.0
C7—C6—H6 121.1 C17—C16—H16 116.0
C6—C7—C8 134.2 (2) C18—C17—C22 117.9 (3)
C6—C7—C2 119.2 (3) C18—C17—C16 122.7 (3)
C8—C7—C2 106.6 (2) C22—C17—C16 119.4 (3)
C13—C8—C7 107.0 (2) C19—C18—C17 120.9 (4)
C13—C8—C9 121.6 (3) C19—C18—H18 119.6
C7—C8—C9 131.4 (2) C17—C18—H18 119.6
C10A—C9—C8 115.1 (6) C20—C19—C18 120.1 (4)
C10A—C9—C10B 25.8 (6) C20—C19—H19 120.0
C8—C9—C10B 113.2 (4) C18—C19—H19 120.0
C10A—C9—H9A 108.5 C21—C20—C19 119.8 (4)
C8—C9—H9A 108.5 C21—C20—H20 120.1
C10B—C9—H9A 85.8 C19—C20—H20 120.1
C10A—C9—H9B 108.5 C20—C21—C22 120.7 (4)
C8—C9—H9B 108.5 C20—C21—H21 119.6
C10B—C9—H9B 129.1 C22—C21—H21 119.6
H9A—C9—H9B 107.5 C21—C22—C17 120.7 (4)
C10A—C9—H9C 84.7 C21—C22—H22 119.7
C8—C9—H9C 108.9 C17—C22—H22 119.7
C10B—C9—H9C 108.9 C9—C10A—C11 120.7 (9)
H9A—C9—H9C 129.3 C9—C10A—H10A 107.2
H9B—C9—H9C 27.1 C11—C10A—H10A 107.2
C10A—C9—H9D 127.0 C9—C10A—H10B 107.2
C8—C9—H9D 108.9 C11—C10A—H10B 107.2
C10B—C9—H9D 108.9 H10A—C10A—H10B 106.8
H9A—C9—H9D 26.4 C9—C10B—C11 116.5 (7)
H9B—C9—H9D 82.8 C9—C10B—H10C 108.2
H9C—C9—H9D 107.8 C11—C10B—H10C 108.2
C14—C11—C12 117.9 (2) C9—C10B—H10D 108.2
C14—C11—C10B 123.6 (5) C11—C10B—H10D 108.2
C12—C11—C10B 117.6 (5) H10C—C10B—H10D 107.3
C13—N1—C2—C3 −179.7 (3) C9—C8—C13—N1 −178.6 (3)
C13—N1—C2—C7 0.2 (3) C7—C8—C13—C12 −179.9 (3)
N1—C2—C3—C4 178.2 (3) C9—C8—C13—C12 0.5 (4)
C7—C2—C3—C4 −1.8 (4) O1—C12—C13—N1 −2.5 (4)
C2—C3—C4—C5 0.0 (5) C11—C12—C13—N1 177.5 (2)
C3—C4—C5—C6 1.8 (5) O1—C12—C13—C8 178.6 (3)
C3—C4—C5—Br1 −176.5 (2) C11—C12—C13—C8 −1.5 (4)
C4—C5—C6—C7 −1.8 (5) C12—C11—C14—C15 −177.5 (3)
Br1—C5—C6—C7 176.6 (2) C10B—C11—C14—C15 13.7 (8)
C5—C6—C7—C8 −178.1 (3) C10A—C11—C14—C15 −15.7 (12)
C5—C6—C7—C2 0.0 (4) C11—C14—C15—C16 176.1 (3)
N1—C2—C7—C6 −178.1 (3) C14—C15—C16—C17 −176.8 (3)
C3—C2—C7—C6 1.8 (4) C15—C16—C17—C18 10.0 (6)
N1—C2—C7—C8 0.4 (3) C15—C16—C17—C22 −170.7 (4)
C3—C2—C7—C8 −179.6 (3) C22—C17—C18—C19 1.9 (5)
C6—C7—C8—C13 177.4 (3) C16—C17—C18—C19 −178.8 (3)
C2—C7—C8—C13 −0.9 (3) C17—C18—C19—C20 −1.3 (6)
C6—C7—C8—C9 −3.1 (5) C18—C19—C20—C21 0.3 (7)
C2—C7—C8—C9 178.7 (3) C19—C20—C21—C22 0.1 (8)
C13—C8—C9—C10A −10.2 (12) C20—C21—C22—C17 0.6 (7)
C7—C8—C9—C10A 170.3 (12) C18—C17—C22—C21 −1.5 (6)
C13—C8—C9—C10B 18.1 (7) C16—C17—C22—C21 179.2 (4)
C7—C8—C9—C10B −161.4 (7) C8—C9—C10A—C11 21 (2)
C14—C11—C12—O1 −5.8 (4) C10B—C9—C10A—C11 −71 (2)
C10B—C11—C12—O1 163.7 (6) C14—C11—C10A—C9 175.7 (12)
C10A—C11—C12—O1 −168.3 (10) C12—C11—C10A—C9 −22 (2)
C14—C11—C12—C13 174.2 (3) C10B—C11—C10A—C9 73.4 (19)
C10B—C11—C12—C13 −16.3 (7) C10A—C9—C10B—C11 65.1 (18)
C10A—C11—C12—C13 11.7 (11) C8—C9—C10B—C11 −34.9 (12)
C2—N1—C13—C8 −0.8 (3) C14—C11—C10B—C9 −155.8 (6)
C2—N1—C13—C12 −179.8 (3) C12—C11—C10B—C9 35.4 (12)
C7—C8—C13—N1 1.0 (3) C10A—C11—C10B—C9 −62 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.82 (3) 2.02 (3) 2.813 (3) 161 (3)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5677).

References

  1. Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.
  2. Bergman, J. & Pelcman, B. (1990). Pure Appl. Chem. 62, 1967–1976.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bonesi, S. M., Crevatin, L. K. & Erra-Balsells, R. (2004). Photochem. Photobiol. Sci. 3, 381–388. [DOI] [PubMed]
  5. Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconcin, USA.
  6. Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.
  7. Chakraborty, D. P., Das, K. C., Das, B. P. & Chowdhury, B. K. (1973). Trans. Bose Res. Inst 38, 1–10.
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  10. Kirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131–2133. Allahabad: Central Council for Research in Ayurveda & Siddha, (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India.
  11. Knolker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427. [DOI] [PubMed]
  12. Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70–78.
  13. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  14. Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.
  15. Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Shufen, Z., Danhong, Z. & Jinzong, Y. (1995). Dyes Pigments 27, 287-296.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046563/bt5677sup1.cif

e-67-o3269-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046563/bt5677Isup2.hkl

e-67-o3269-Isup2.hkl (211.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046563/bt5677Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES