Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):o3270. doi: 10.1107/S160053681104654X

2-(6-Methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-yl­idene)propane­dinitrile

M Sekar a, R Velmurugan a, A Chandramohan a, P Ramesh b, M N Ponnuswamy b,*
PMCID: PMC3238928  PMID: 22199777

Abstract

In the title compound, C16H13N3, the cyclo­hexene ring adopts a sofa conformation. An intra­molecular N—H⋯N hydrogen bond generates an S(7) ring motif. In the crystal, the mol­ecules are linked by pairs of N—H⋯N inter­actions, forming centrosymmetric dimers with an R 2 2(14) motif.

Related literature

For the biological activity of carbazole derivatives, see: Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Bergman & Pelcman (1990); Bonesi et al. (2004); Chakraborty et al. (1965); Kirtikar & Basu (1933); Chakraborty et al. (1973). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o3270-scheme1.jpg

Experimental

Crystal data

  • C16H13N3

  • M r = 247.29

  • Triclinic, Inline graphic

  • a = 7.6396 (9) Å

  • b = 8.4381 (8) Å

  • c = 10.8967 (13) Å

  • α = 88.395 (6)°

  • β = 71.392 (7)°

  • γ = 71.217 (6)°

  • V = 628.08 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.17 × 0.16 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.986, T max = 0.988

  • 12507 measured reflections

  • 3692 independent reflections

  • 2815 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.154

  • S = 1.03

  • 3692 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104654X/bt5683sup1.cif

e-67-o3270-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104654X/bt5683Isup2.hkl

e-67-o3270-Isup2.hkl (181KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104654X/bt5683Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N16 0.86 (2) 2.59 (2) 3.3099 (17) 141.4 (16)
N1—H1⋯N16i 0.86 (2) 2.49 (2) 3.2150 (17) 142.8 (16)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Solid State Unit, Indian Institute of Science, Bangalore, India, for the data collection.

supplementary crystallographic information

Comment

Carbazole alkaloids obtained from naturally occurring sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Bergman & Pelcman, 1990; Bonesi et al., 2004; Chakraborty et al., 1965; Kirtikar & Basu, 1933). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). These types of compounds possess significant antibiotic, anti-carcinogenic, antiviral and anti-inflammatory properties (Chakraborty et al., 1973). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The cyclohexane ring in the carbazole ring system adopts envelope conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.330 (1) Å, q3 = 0.262 (1) Å, φ2 = 168.7 (2)° and Δs(C2 & C5)= 8.6 (2)°. The sum of the bond angles around N1 [359.8°] is in accordance with sp2 hybridization. The bond lengths and bond angles of (C15—N16) 1.148 (2) Å, (C17—N18) 1.145 (2) Å, (C14—C15—N16) 178.8 (2)° and (C14—C17—N18) 178.6 (2)° show linear character of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing reveals that symmetry-related molecules are linked by N—H···N interactions. The intramolecular N1—H1···N16 hydrogen bond generates a S(7) ring motif. The molecules at (x, y, z) and (2 - x, -1 - y, 1 - z) are linked by N1—H1···N16 hydrogen bonds into cyclic centrosymmetric R22(14) dimer.

Experimental

A mixture of 6-methyl-1-oxo-1,2,3,4-tetrahydrocarbazole (7.5 mmol), and melanonitrile (7.5 mmol), ammonium acetate (0.57 g, 8.125 mmol) and acetic acid (1.5 ml, 24.75 mmol) in 12.5 ml of toluene was stirred at 105°C for 5 h. On cooling the precipitate that formed was filtered off, washed with hexane (20 ml) and dried at 100°C to give a crude product of 6-Methyl-2-(1,2,3,4- tetrahydro-9H-carbazol-1-ylidene)propanedinitrile.The crystals of the title compound suitable for single XRD analysis were obtained by the slow evaporation method by using dichloroethane as solvent at room temperature.

Refinement

The N-bound H atom was located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C16H13N3 Z = 2
Mr = 247.29 F(000) = 260
Triclinic, P1 Dx = 1.308 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.6396 (9) Å Cell parameters from 1675 reflections
b = 8.4381 (8) Å θ = 2.0–30.6°
c = 10.8967 (13) Å µ = 0.08 mm1
α = 88.395 (6)° T = 296 K
β = 71.392 (7)° Block, brown
γ = 71.217 (6)° 0.17 × 0.16 × 0.15 mm
V = 628.08 (12) Å3

Data collection

Bruker SMART APEX CCD detector diffractometer 3692 independent reflections
Radiation source: fine-focus sealed tube 2815 reflections with I > 2σ(I)
graphite Rint = 0.026
ω scans θmax = 30.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −10→10
Tmin = 0.986, Tmax = 0.988 k = −12→11
12507 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.0632P] where P = (Fo2 + 2Fc2)/3
3692 reflections (Δ/σ)max < 0.001
177 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.19262 (15) 1.14409 (12) 0.48492 (9) 0.0374 (2)
H1 0.140 (3) 1.251 (3) 0.4900 (18) 0.073 (5)*
C2 0.16168 (16) 1.03889 (13) 0.58442 (11) 0.0348 (2)
C3 0.02788 (16) 1.08208 (13) 0.71382 (10) 0.0352 (2)
C4 0.04245 (19) 0.94137 (16) 0.80188 (12) 0.0446 (3)
H4A −0.0838 0.9623 0.8687 0.054*
H4B 0.1358 0.9420 0.8447 0.054*
C5 0.1046 (2) 0.76799 (16) 0.73322 (13) 0.0480 (3)
H5A 0.1234 0.6840 0.7947 0.058*
H5B 0.0007 0.7603 0.7033 0.058*
C6 0.29157 (19) 0.73000 (15) 0.61842 (13) 0.0452 (3)
H6A 0.4026 0.7046 0.6494 0.054*
H6B 0.3079 0.6323 0.5656 0.054*
C7 0.28556 (17) 0.87609 (14) 0.53817 (11) 0.0370 (2)
C8 0.39448 (16) 0.88053 (13) 0.40647 (11) 0.0363 (2)
C9 0.53599 (18) 0.75647 (15) 0.30953 (12) 0.0429 (3)
H9 0.5779 0.6452 0.3286 0.051*
C10 0.61190 (18) 0.80110 (15) 0.18626 (12) 0.0430 (3)
C11 0.54686 (18) 0.97060 (16) 0.15997 (12) 0.0427 (3)
H11 0.5987 0.9992 0.0763 0.051*
C12 0.41057 (17) 1.09577 (15) 0.25181 (11) 0.0400 (3)
H12 0.3713 1.2069 0.2319 0.048*
C13 0.33323 (16) 1.04906 (14) 0.37662 (11) 0.0350 (2)
C14 −0.10538 (18) 1.23850 (15) 0.76265 (11) 0.0402 (3)
C15 −0.1323 (2) 1.38051 (16) 0.68896 (13) 0.0507 (3)
N16 −0.1573 (2) 1.49658 (16) 0.63094 (14) 0.0757 (4)
C17 −0.2293 (2) 1.26880 (16) 0.89586 (12) 0.0459 (3)
N18 −0.3258 (2) 1.29469 (17) 1.00271 (12) 0.0639 (4)
C19 0.7624 (2) 0.67329 (19) 0.07853 (15) 0.0603 (4)
H19A 0.8867 0.6900 0.0587 0.090*
H19B 0.7228 0.6862 0.0026 0.090*
H19C 0.7735 0.5623 0.1057 0.090*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0432 (5) 0.0282 (5) 0.0350 (5) −0.0081 (4) −0.0091 (4) 0.0063 (4)
C2 0.0378 (5) 0.0310 (5) 0.0351 (5) −0.0105 (4) −0.0126 (4) 0.0079 (4)
C3 0.0371 (6) 0.0354 (5) 0.0354 (6) −0.0134 (4) −0.0140 (4) 0.0074 (4)
C4 0.0483 (7) 0.0428 (6) 0.0390 (6) −0.0122 (5) −0.0131 (5) 0.0138 (5)
C5 0.0533 (7) 0.0390 (6) 0.0503 (7) −0.0155 (5) −0.0161 (6) 0.0180 (5)
C6 0.0508 (7) 0.0323 (5) 0.0477 (7) −0.0084 (5) −0.0161 (5) 0.0126 (5)
C7 0.0387 (6) 0.0325 (5) 0.0394 (6) −0.0109 (4) −0.0134 (4) 0.0084 (4)
C8 0.0372 (6) 0.0308 (5) 0.0394 (6) −0.0102 (4) −0.0119 (4) 0.0059 (4)
C9 0.0421 (6) 0.0322 (5) 0.0473 (7) −0.0083 (5) −0.0095 (5) 0.0034 (5)
C10 0.0411 (6) 0.0385 (6) 0.0435 (6) −0.0111 (5) −0.0075 (5) −0.0010 (5)
C11 0.0436 (6) 0.0428 (6) 0.0383 (6) −0.0153 (5) −0.0081 (5) 0.0044 (5)
C12 0.0436 (6) 0.0345 (5) 0.0384 (6) −0.0118 (5) −0.0104 (5) 0.0087 (4)
C13 0.0364 (5) 0.0314 (5) 0.0355 (5) −0.0104 (4) −0.0110 (4) 0.0051 (4)
C14 0.0452 (6) 0.0370 (6) 0.0361 (6) −0.0138 (5) −0.0100 (5) 0.0040 (4)
C15 0.0575 (8) 0.0348 (6) 0.0448 (7) −0.0081 (5) −0.0038 (6) 0.0020 (5)
N16 0.0935 (10) 0.0380 (6) 0.0602 (8) −0.0035 (6) 0.0026 (7) 0.0117 (5)
C17 0.0528 (7) 0.0391 (6) 0.0413 (6) −0.0140 (5) −0.0107 (5) 0.0027 (5)
N18 0.0785 (9) 0.0543 (7) 0.0450 (7) −0.0193 (6) −0.0046 (6) 0.0014 (5)
C19 0.0588 (9) 0.0472 (8) 0.0544 (8) −0.0072 (6) −0.0008 (7) −0.0068 (6)

Geometric parameters (Å, °)

N1—C13 1.3708 (15) C8—C9 1.4088 (16)
N1—C2 1.3918 (14) C8—C13 1.4106 (15)
N1—H1 0.86 (2) C9—C10 1.3775 (18)
C2—C7 1.3906 (16) C9—H9 0.9300
C2—C3 1.4265 (16) C10—C11 1.4088 (17)
C3—C14 1.3747 (16) C10—C19 1.5081 (18)
C3—C4 1.5040 (15) C11—C12 1.3738 (17)
C4—C5 1.5209 (18) C11—H11 0.9300
C4—H4A 0.9700 C12—C13 1.4004 (16)
C4—H4B 0.9700 C12—H12 0.9300
C5—C6 1.5150 (19) C14—C15 1.4198 (17)
C5—H5A 0.9700 C14—C17 1.4340 (17)
C5—H5B 0.9700 C15—N16 1.1478 (18)
C6—C7 1.4884 (15) C17—N18 1.1445 (17)
C6—H6A 0.9700 C19—H19A 0.9600
C6—H6B 0.9700 C19—H19B 0.9600
C7—C8 1.4172 (16) C19—H19C 0.9600
C13—N1—C2 108.39 (9) C9—C8—C13 119.72 (10)
C13—N1—H1 124.4 (13) C9—C8—C7 133.50 (11)
C2—N1—H1 127.0 (13) C13—C8—C7 106.76 (10)
C7—C2—N1 108.68 (10) C10—C9—C8 119.53 (11)
C7—C2—C3 123.14 (10) C10—C9—H9 120.2
N1—C2—C3 128.18 (10) C8—C9—H9 120.2
C14—C3—C2 125.69 (10) C9—C10—C11 119.15 (11)
C14—C3—C4 119.19 (10) C9—C10—C19 121.77 (12)
C2—C3—C4 115.11 (10) C11—C10—C19 119.08 (12)
C3—C4—C5 114.33 (10) C12—C11—C10 123.24 (11)
C3—C4—H4A 108.7 C12—C11—H11 118.4
C5—C4—H4A 108.7 C10—C11—H11 118.4
C3—C4—H4B 108.7 C11—C12—C13 117.21 (11)
C5—C4—H4B 108.7 C11—C12—H12 121.4
H4A—C4—H4B 107.6 C13—C12—H12 121.4
C6—C5—C4 112.68 (11) N1—C13—C12 130.09 (10)
C6—C5—H5A 109.1 N1—C13—C8 108.75 (10)
C4—C5—H5A 109.1 C12—C13—C8 121.14 (10)
C6—C5—H5B 109.1 C3—C14—C15 124.22 (11)
C4—C5—H5B 109.1 C3—C14—C17 120.91 (11)
H5A—C5—H5B 107.8 C15—C14—C17 114.87 (11)
C7—C6—C5 110.49 (10) N16—C15—C14 178.80 (16)
C7—C6—H6A 109.6 N18—C17—C14 178.61 (15)
C5—C6—H6A 109.6 C10—C19—H19A 109.5
C7—C6—H6B 109.6 C10—C19—H19B 109.5
C5—C6—H6B 109.6 H19A—C19—H19B 109.5
H6A—C6—H6B 108.1 C10—C19—H19C 109.5
C2—C7—C8 107.42 (10) H19A—C19—H19C 109.5
C2—C7—C6 123.45 (11) H19B—C19—H19C 109.5
C8—C7—C6 129.13 (11)
C13—N1—C2—C7 0.46 (13) C8—C9—C10—C11 0.34 (19)
C13—N1—C2—C3 −179.37 (11) C8—C9—C10—C19 −179.48 (12)
C7—C2—C3—C14 −176.13 (11) C9—C10—C11—C12 0.3 (2)
N1—C2—C3—C14 3.69 (19) C19—C10—C11—C12 −179.91 (13)
C7—C2—C3—C4 5.41 (16) C10—C11—C12—C13 −0.68 (19)
N1—C2—C3—C4 −174.77 (10) C2—N1—C13—C12 178.08 (11)
C14—C3—C4—C5 149.75 (12) C2—N1—C13—C8 −0.20 (13)
C2—C3—C4—C5 −31.69 (15) C11—C12—C13—N1 −177.58 (11)
C3—C4—C5—C6 52.95 (15) C11—C12—C13—C8 0.51 (18)
C4—C5—C6—C7 −45.23 (15) C9—C8—C13—N1 178.52 (10)
N1—C2—C7—C8 −0.54 (13) C7—C8—C13—N1 −0.13 (13)
C3—C2—C7—C8 179.31 (10) C9—C8—C13—C12 0.06 (17)
N1—C2—C7—C6 −179.76 (10) C7—C8—C13—C12 −178.59 (10)
C3—C2—C7—C6 0.08 (18) C2—C3—C14—C15 1.6 (2)
C5—C6—C7—C2 20.28 (17) C4—C3—C14—C15 −179.95 (12)
C5—C6—C7—C8 −158.76 (12) C2—C3—C14—C17 −178.17 (11)
C2—C7—C8—C9 −177.97 (13) C4—C3—C14—C17 0.23 (17)
C6—C7—C8—C9 1.2 (2) C3—C14—C15—N16 159 (8)
C2—C7—C8—C13 0.41 (13) C17—C14—C15—N16 −22 (9)
C6—C7—C8—C13 179.58 (11) C3—C14—C17—N18 105 (7)
C13—C8—C9—C10 −0.50 (18) C15—C14—C17—N18 −74 (7)
C7—C8—C9—C10 177.73 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N16 0.86 (2) 2.59 (2) 3.3099 (17) 141.4 (16)
N1—H1···N16i 0.86 (2) 2.49 (2) 3.2150 (17) 142.8 (16)

Symmetry codes: (i) −x, −y+3, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5683).

References

  1. Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.
  2. Bergman, J. & Pelcman, B. (1990). Pure Appl. Chem. 62, 1967–1976.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bonesi, S. M., Crevatin, L. K. & Erra-Balsells, R. (2004). Photochem. Photobiol. Sci. 3, 381–388. [DOI] [PubMed]
  5. Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconcin, USA.
  6. Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.
  7. Chakraborty, D. P., Das, K. C., Das, B. P. & Chowdhury, B. K. (1973). Trans. Bose Res. Inst 38, 1–10.
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  10. Kirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131–2133. Allahabad: Central Council for Research in Ayurveda & Siddha (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India.
  11. Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70–78.
  12. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  13. Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.
  14. Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104654X/bt5683sup1.cif

e-67-o3270-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104654X/bt5683Isup2.hkl

e-67-o3270-Isup2.hkl (181KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104654X/bt5683Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES