Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):o3271. doi: 10.1107/S1600536811046551

6-Bromo-2-[(E)-thio­phen-2-yl­methyl­idene]-2,3,4,9-tetra­hydro-1H-carbazol-1-one

R Velmurugan a, M Sekar a, A V Vijayasankar b, P Ramesh c, M N Ponnuswamy c,*
PMCID: PMC3238929  PMID: 22199778

Abstract

In the title compound, C17H12BrNOS, the cyclo­hexene ring deviates only slightly from planarity (r.m.s. deviation for non-H atoms = 0.047 Å). In the crystal, the mol­ecules are linked into centro­symmetric R 2 2(10) dimers via pairs of N—H⋯O hydrogen bonds. The thio­phene ring is disordered over two positions rotated by 180° and with a site-occupation factor of 0.843 (4) for the major occupied site.

Related literature

For the biological activity of carbazole derivatives, see: Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Bergman & Pelcman (1990); Bonesi et al. (2004); Chakraborty et al. (1965); Kirtikar & Basu (1933); Chakraborty et al. (1973); Savini et al. (2004). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o3271-scheme1.jpg

Experimental

Crystal data

  • C17H12BrNOS

  • M r = 358.25

  • Monoclinic, Inline graphic

  • a = 13.8655 (5) Å

  • b = 6.3081 (3) Å

  • c = 17.4583 (7) Å

  • β = 103.666 (2)°

  • V = 1483.76 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 296 K

  • 0.21 × 0.17 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.558, T max = 0.628

  • 12158 measured reflections

  • 4487 independent reflections

  • 1953 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.148

  • S = 0.85

  • 4487 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046551/bt5684sup1.cif

e-67-o3271-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046551/bt5684Isup2.hkl

e-67-o3271-Isup2.hkl (219.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046551/bt5684Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.00 2.804 (4) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Solid State Unit, Indian Institute of Science, Bangalore, India, for the data collection and and Dr A. Chandramohan, Post Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, for his valuable suggestions.

supplementary crystallographic information

Comment

Carbazole alkaloids obtained from naturally occurring sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Bergman & Pelcman, 1990; Bonesi et al., 2004; Chakraborty et al., 1965; Kirtikar & Basu, 1933). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). These types of compounds possess significant antibiotic, anti-carcinogenic, antiviral and anti-inflammatory properties (Chakraborty et al., 1973). The thiophene derivatives possess the antimicrobial activity (Savini et al., 2004). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The cyclohexene ring in the carbazole ring system adopts envelope conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.126 (5) Å, q3 = 0.050 (4) Å, φ2 = 102.0 (2)° and Δs(C10 & C13)= 4.4 (5)°. Thiophene ring in the molecule is planar conformation. The sum of the bond angles around N1 [359.3°] is in accordance with sp2 hybridization.

The molecules at (x, y, z) and (-x + 2, -y + 1, -z) are linked by N1—H1···O1 hydrogen bonds into a cyclic centrosymmetric R22(14) dimer.

Experimental

The mixed aldol condensation reaction of 6-bromo-1-oxo-1,2,3, 4-tetrahydrocarbazole reacted with thiophene-2-carbaldehyde in the presence of alcoholic KOH, afforded a single product, substituted 6-bromo-2- thiofuran-2-ylmethylene-2,3,4,9-tetrahydro-carbazol-1-one. This was purified by using column chromatography over silica gel (mesh 60–80). During elution of the column with petroleum ether (60–80°C) and ethyl acetate [1:2] mixture, a yellowish solid was obtained. The crystals of the title compound suitable for single XRD analysis were obtained by the slow evaporation method using the solvent mixture ethyl acetate and acetone (8:2) at room temperature.

Refinement

N-bound H atom was located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The thiophene ring is disordered over two positions rotated by 180 degrees and with a site occupation factor of 0.843 (4) for the major occupied site.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C17H12BrNOS F(000) = 720
Mr = 358.25 Dx = 1.604 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1432 reflections
a = 13.8655 (5) Å θ = 2.4–30.5°
b = 6.3081 (3) Å µ = 2.91 mm1
c = 17.4583 (7) Å T = 296 K
β = 103.666 (2)° Block, yellow
V = 1483.76 (11) Å3 0.21 × 0.17 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX CCD detector diffractometer 4487 independent reflections
Radiation source: fine-focus sealed tube 1953 reflections with I > 2σ(I)
graphite Rint = 0.044
ω scans θmax = 30.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −19→19
Tmin = 0.558, Tmax = 0.628 k = −4→8
12158 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.4371P] where P = (Fo2 + 2Fc2)/3
4487 reflections (Δ/σ)max = 0.002
191 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 1.44365 (3) −0.32770 (7) 0.06412 (3) 0.0742 (2)
S1 0.76193 (8) −0.1866 (2) 0.24215 (7) 0.0665 (5) 0.843 (4)
C18' 0.76193 (8) −0.1866 (2) 0.24215 (7) 0.0665 (5) 0.157 (4)
H18' 0.8144 −0.2822 0.2546 0.080* 0.157 (4)
O1 0.91041 (18) 0.3896 (4) 0.06209 (14) 0.0557 (6)
N1 1.1050 (2) 0.2754 (5) 0.04571 (15) 0.0474 (7)
H1 1.0940 0.4036 0.0258 0.057*
C2 1.1893 (2) 0.1612 (5) 0.04737 (18) 0.0419 (8)
C3 1.2698 (3) 0.2105 (6) 0.0147 (2) 0.0546 (10)
H3 1.2722 0.3377 −0.0117 0.066*
C4 1.3444 (3) 0.0657 (7) 0.0229 (2) 0.0569 (10)
H4 1.3992 0.0949 0.0026 0.068*
C5 1.3393 (2) −0.1272 (6) 0.0619 (2) 0.0523 (9)
C6 1.2619 (2) −0.1797 (6) 0.09508 (19) 0.0458 (8)
H6 1.2604 −0.3082 0.1209 0.055*
C7 1.1855 (2) −0.0306 (5) 0.08814 (16) 0.0401 (7)
C8 1.0929 (2) −0.0273 (5) 0.11198 (16) 0.0380 (7)
C9 1.0491 (3) −0.1861 (6) 0.1562 (2) 0.0556 (10)
H9A 1.0982 −0.2242 0.2037 0.067*
H9B 1.0334 −0.3129 0.1243 0.067*
C10 0.9568 (3) −0.1110 (6) 0.1789 (2) 0.0598 (10)
H10A 0.9104 −0.2286 0.1706 0.072*
H10B 0.9746 −0.0836 0.2352 0.072*
C11 0.9014 (2) 0.0798 (5) 0.14016 (17) 0.0405 (7)
C12 0.9501 (2) 0.2235 (6) 0.09254 (18) 0.0413 (8)
C13 1.0475 (2) 0.1591 (5) 0.08458 (17) 0.0412 (8)
C14 0.8096 (2) 0.1348 (6) 0.14535 (19) 0.0472 (8)
H14 0.7854 0.2568 0.1174 0.057*
C15 0.7412 (2) 0.0388 (6) 0.18652 (17) 0.0480 (9)
C16 0.6513 (3) −0.1697 (8) 0.2658 (2) 0.0711 (13)
H16 0.6297 −0.2663 0.2984 0.085*
C17 0.5980 (3) −0.0032 (9) 0.2330 (3) 0.0820 (14)
H17 0.5350 0.0233 0.2406 0.098*
S1' 0.6432 (3) 0.1340 (6) 0.1851 (2) 0.0920 (14) 0.157 (4)
C18 0.6432 (3) 0.1340 (6) 0.1851 (2) 0.0920 (14) 0.843 (4)
H18 0.6164 0.2565 0.1589 0.110* 0.843 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0607 (3) 0.0682 (3) 0.1064 (4) −0.0012 (2) 0.0451 (2) −0.0058 (2)
S1 0.0530 (7) 0.0737 (10) 0.0782 (8) −0.0023 (6) 0.0263 (6) 0.0248 (7)
C18' 0.0530 (7) 0.0737 (10) 0.0782 (8) −0.0023 (6) 0.0263 (6) 0.0248 (7)
O1 0.0592 (14) 0.0422 (14) 0.0678 (15) 0.0038 (13) 0.0193 (12) 0.0176 (13)
N1 0.0558 (17) 0.0388 (16) 0.0505 (16) −0.0049 (14) 0.0180 (13) 0.0134 (14)
C2 0.0544 (18) 0.0353 (18) 0.0381 (16) −0.0101 (17) 0.0152 (14) 0.0008 (15)
C3 0.064 (2) 0.053 (2) 0.0515 (19) −0.019 (2) 0.0240 (17) 0.0035 (18)
C4 0.058 (2) 0.064 (3) 0.057 (2) −0.017 (2) 0.0289 (17) −0.003 (2)
C5 0.0466 (18) 0.057 (2) 0.057 (2) −0.0071 (18) 0.0210 (16) −0.0063 (19)
C6 0.0471 (18) 0.044 (2) 0.0508 (18) −0.0068 (17) 0.0199 (15) 0.0014 (17)
C7 0.0489 (17) 0.0386 (19) 0.0349 (15) −0.0072 (16) 0.0141 (14) −0.0016 (15)
C8 0.0455 (16) 0.0348 (18) 0.0352 (15) −0.0046 (15) 0.0127 (13) 0.0018 (15)
C9 0.054 (2) 0.049 (2) 0.071 (2) 0.0043 (18) 0.0288 (18) 0.0206 (19)
C10 0.066 (2) 0.054 (2) 0.071 (2) 0.009 (2) 0.0374 (19) 0.023 (2)
C11 0.0510 (18) 0.0354 (18) 0.0364 (15) −0.0037 (16) 0.0129 (14) −0.0020 (15)
C12 0.0490 (18) 0.0353 (19) 0.0395 (16) −0.0046 (16) 0.0099 (14) −0.0004 (16)
C13 0.0471 (17) 0.0367 (19) 0.0408 (16) −0.0073 (16) 0.0122 (14) 0.0006 (16)
C14 0.0522 (19) 0.044 (2) 0.0455 (18) −0.0011 (17) 0.0112 (15) 0.0072 (16)
C15 0.0454 (17) 0.059 (2) 0.0402 (16) −0.0049 (18) 0.0108 (14) 0.0017 (17)
C16 0.052 (2) 0.093 (4) 0.073 (3) −0.014 (2) 0.022 (2) 0.016 (3)
C17 0.056 (2) 0.117 (4) 0.079 (3) 0.004 (3) 0.027 (2) 0.005 (3)
S1' 0.084 (2) 0.106 (3) 0.093 (2) −0.006 (2) 0.0363 (18) 0.011 (2)
C18 0.084 (2) 0.106 (3) 0.093 (2) −0.006 (2) 0.0363 (18) 0.011 (2)

Geometric parameters (Å, °)

Br1—C5 1.915 (4) C8—C9 1.480 (4)
S1—C16 1.683 (4) C9—C10 1.503 (4)
S1—C15 1.707 (4) C9—H9A 0.9700
O1—C12 1.243 (4) C9—H9B 0.9700
N1—C2 1.368 (4) C10—C11 1.500 (5)
N1—C13 1.375 (4) C10—H10A 0.9700
N1—H1 0.8789 C10—H10B 0.9700
C2—C3 1.403 (4) C11—C14 1.343 (4)
C2—C7 1.411 (4) C11—C12 1.495 (4)
C3—C4 1.361 (5) C12—C13 1.448 (4)
C3—H3 0.9300 C14—C15 1.451 (4)
C4—C5 1.403 (5) C14—H14 0.9300
C4—H4 0.9300 C15—S1' 1.480 (4)
C5—C6 1.376 (4) C16—C17 1.333 (6)
C6—C7 1.400 (4) C16—H16 0.9300
C6—H6 0.9300 C17—S1' 1.445 (6)
C7—C8 1.441 (4) C17—H17 0.9300
C8—C13 1.366 (4)
C16—S1—C15 92.6 (2) H9A—C9—H9B 107.7
C2—N1—C13 107.5 (3) C11—C10—C9 120.7 (3)
C2—N1—H1 124.1 C11—C10—H10A 107.1
C13—N1—H1 128.2 C9—C10—H10A 107.1
N1—C2—C3 129.2 (3) C11—C10—H10B 107.1
N1—C2—C7 109.2 (3) C9—C10—H10B 107.1
C3—C2—C7 121.5 (3) H10A—C10—H10B 106.8
C4—C3—C2 117.7 (3) C14—C11—C12 116.2 (3)
C4—C3—H3 121.1 C14—C11—C10 124.7 (3)
C2—C3—H3 121.1 C12—C11—C10 119.1 (3)
C3—C4—C5 120.6 (3) O1—C12—C13 121.6 (3)
C3—C4—H4 119.7 O1—C12—C11 122.5 (3)
C5—C4—H4 119.7 C13—C12—C11 115.9 (3)
C6—C5—C4 123.1 (3) C8—C13—N1 111.1 (3)
C6—C5—Br1 119.5 (3) C8—C13—C12 124.8 (3)
C4—C5—Br1 117.3 (2) N1—C13—C12 124.1 (3)
C5—C6—C7 116.8 (3) C11—C14—C15 131.8 (3)
C5—C6—H6 121.6 C11—C14—H14 114.1
C7—C6—H6 121.6 C15—C14—H14 114.1
C6—C7—C2 120.1 (3) C14—C15—S1' 121.8 (3)
C6—C7—C8 133.8 (3) C14—C15—S1 126.0 (3)
C2—C7—C8 106.0 (3) S1'—C15—S1 112.2 (2)
C13—C8—C7 106.3 (3) C17—C16—S1 112.9 (3)
C13—C8—C9 123.6 (3) C17—C16—H16 123.6
C7—C8—C9 130.1 (3) S1—C16—H16 123.6
C8—C9—C10 113.8 (3) C16—C17—S1' 116.6 (4)
C8—C9—H9A 108.8 C16—C17—H17 121.7
C10—C9—H9A 108.8 S1'—C17—H17 121.7
C8—C9—H9B 108.8 C17—S1'—C15 105.6 (3)
C10—C9—H9B 108.8
C13—N1—C2—C3 178.8 (3) C10—C11—C12—O1 −176.4 (3)
C13—N1—C2—C7 −0.2 (3) C14—C11—C12—C13 −177.7 (3)
N1—C2—C3—C4 −178.3 (3) C10—C11—C12—C13 2.9 (4)
C7—C2—C3—C4 0.6 (5) C7—C8—C13—N1 −0.6 (3)
C2—C3—C4—C5 1.0 (5) C9—C8—C13—N1 −180.0 (3)
C3—C4—C5—C6 −1.5 (6) C7—C8—C13—C12 177.2 (3)
C3—C4—C5—Br1 175.9 (3) C9—C8—C13—C12 −2.2 (5)
C4—C5—C6—C7 0.4 (5) C2—N1—C13—C8 0.5 (4)
Br1—C5—C6—C7 −176.9 (2) C2—N1—C13—C12 −177.4 (3)
C5—C6—C7—C2 1.1 (5) O1—C12—C13—C8 −175.6 (3)
C5—C6—C7—C8 177.9 (3) C11—C12—C13—C8 5.2 (4)
N1—C2—C7—C6 177.4 (3) O1—C12—C13—N1 2.0 (5)
C3—C2—C7—C6 −1.6 (5) C11—C12—C13—N1 −177.3 (3)
N1—C2—C7—C8 −0.2 (3) C12—C11—C14—C15 −178.8 (3)
C3—C2—C7—C8 −179.3 (3) C10—C11—C14—C15 0.6 (6)
C6—C7—C8—C13 −176.7 (3) C11—C14—C15—S1' 178.2 (4)
C2—C7—C8—C13 0.5 (3) C11—C14—C15—S1 −0.6 (6)
C6—C7—C8—C9 2.7 (6) C16—S1—C15—C14 178.6 (3)
C2—C7—C8—C9 179.8 (3) C16—S1—C15—S1' −0.4 (3)
C13—C8—C9—C10 −8.5 (5) C15—S1—C16—C17 0.8 (4)
C7—C8—C9—C10 172.2 (3) S1—C16—C17—S1' −1.1 (6)
C8—C9—C10—C11 16.1 (5) C16—C17—S1'—C15 0.8 (5)
C9—C10—C11—C14 166.8 (4) C14—C15—S1'—C17 −179.2 (3)
C9—C10—C11—C12 −13.8 (5) S1—C15—S1'—C17 −0.2 (4)
C14—C11—C12—O1 3.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14···O1 0.93 2.33 2.759 (4) 108.
N1—H1···O1i 0.88 2.00 2.804 (4) 151.

Symmetry codes: (i) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5684).

References

  1. Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.
  2. Bergman, J. & Pelcman, B. (1990). Pure Appl. Chem. 62, 1967–1976.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bonesi, S. M., Crevatin, L. K. & Erra-Balsells, R. (2004). Photochem. Photobiol. Sci. 3, 381–388. [DOI] [PubMed]
  5. Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconcin, USA.
  6. Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.
  7. Chakraborty, D. P., Das, K. C., Das, B. P. & Chowdhury, B. K. (1973). Trans. Bose Res. Inst 38, 1–10.
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  10. Kirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131–2133. Allahabad: Central Council for Research in Ayurveda & Siddha (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India.
  11. Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70–78.
  12. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  13. Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.
  14. Savini, L., Chiasserini, L., Travagli, V., Pellerano, C., Novellino, E., Cosentino, S. & Pisano, M. B. (2004). Eur. J. Med. Chem. 39, 113–122. [DOI] [PubMed]
  15. Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046551/bt5684sup1.cif

e-67-o3271-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046551/bt5684Isup2.hkl

e-67-o3271-Isup2.hkl (219.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046551/bt5684Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES