Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):o3277. doi: 10.1107/S1600536811047271

3-Chloro-N-(3-methyl­phen­yl)benzamide

Vinola Z Rodrigues a, Lenka Kucková, b, B Thimme Gowda a,*, Jozef Kožíšek b
PMCID: PMC3238934  PMID: 22199783

Abstract

In the mol­ecular structure of the title compound, C14H12ClNO, the meta-Cl atom in the benzoyl ring is positioned syn to the C=O bond, while the meta-methyl group in the aniline ring is positioned anti to the N—H bond. The two aromatic rings make a dihedral angle of 77.4 (1)°. In the crystal, the molecules are linked by N—H⋯O hydrogen bonds, forming C(4) chains propagating in [010].

Related literature

For preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2008); Saeed et al. (2010), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005) and on N-chloro-amides, see: Gowda & Weiss (1994).graphic file with name e-67-o3277-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO

  • M r = 245.70

  • Orthorhombic, Inline graphic

  • a = 9.4032 (3) Å

  • b = 10.0963 (2) Å

  • c = 25.9904 (7) Å

  • V = 2467.46 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.38 × 0.24 × 0.04 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] T min = 0.921, T max = 0.988

  • 39014 measured reflections

  • 3440 independent reflections

  • 1666 reflections with I > 2σ(I)

  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.191

  • S = 1.02

  • 3440 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047271/bt5712sup1.cif

e-67-o3277-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047271/bt5712Isup2.hkl

e-67-o3277-Isup2.hkl (160.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047271/bt5712Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.10 2.938 (3) 163

Symmetry code: (i) Inline graphic.

Acknowledgments

LK and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202–10) for financial support and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2008; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylamides (Gowda & Weiss, 1994), in the present work, the crystal structure of 3-Chloro-N-(3-methylphenyl)benzamide (I) has been determined (Fig.1).

In (I), the meta-Cl atom in the benzoyl ring is positioned syn to the C=O bond, while the meta-methyl group in the anilino ring is positioned anti to the N—H bond, the N—H and C=O bonds in the C—NH—C(O)—C segment being anti to each other. Further, the two aromatic rings make the dihedral angle of 77.4 (1)°, compared to the values of 9.1 (2)° and 7.3 (3)° in the two independent molecules of 3-chloro-N-(3-chlorophenyl)benzamide (Gowda et al., 2008).

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the b-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Plate like colorless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines.

Crystal data

C14H12ClNO F(000) = 1024
Mr = 245.70 Dx = 1.323 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 6149 reflections
a = 9.4032 (3) Å θ = 2.2–29.5°
b = 10.0963 (2) Å µ = 0.29 mm1
c = 25.9904 (7) Å T = 298 K
V = 2467.46 (11) Å3 Plate, colourless
Z = 8 0.38 × 0.24 × 0.04 mm

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 3440 independent reflections
Radiation source: fine-focus sealed tube 1666 reflections with I > 2σ(I)
graphite Rint = 0.072
Detector resolution: 10.4340 pixels mm-1 θmax = 29.5°, θmin = 2.7°
ω scans h = −13→13
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] k = −14→14
Tmin = 0.921, Tmax = 0.988 l = −36→36
39014 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.6744P] where P = (Fo2 + 2Fc2)/3
3440 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2146 (3) 0.4686 (2) 0.23782 (10) 0.0575 (6)
C2 0.1595 (3) 0.5148 (2) 0.18676 (10) 0.0559 (6)
C3 0.1825 (3) 0.4345 (3) 0.14430 (10) 0.0615 (7)
H3A 0.2272 0.3530 0.1483 0.074*
C4 0.1393 (3) 0.4751 (3) 0.09637 (10) 0.0657 (7)
C5 0.0675 (3) 0.5920 (3) 0.08959 (11) 0.0743 (8)
H5A 0.0374 0.6179 0.0570 0.089*
C6 0.0407 (3) 0.6699 (3) 0.13170 (13) 0.0764 (8)
H6A −0.0099 0.7484 0.1277 0.092*
C7 0.0881 (3) 0.6333 (2) 0.18017 (11) 0.0657 (7)
H7A 0.0718 0.6884 0.2082 0.079*
C8 0.3209 (3) 0.5467 (2) 0.31904 (10) 0.0546 (6)
C9 0.2617 (3) 0.4605 (2) 0.35419 (10) 0.0588 (6)
H9A 0.1822 0.4109 0.3451 0.071*
C10 0.3201 (3) 0.4473 (2) 0.40297 (10) 0.0601 (7)
C11 0.4389 (3) 0.5208 (3) 0.41499 (11) 0.0719 (8)
H11A 0.4797 0.5128 0.4474 0.086*
C12 0.4979 (3) 0.6061 (3) 0.37956 (13) 0.0770 (8)
H12A 0.5782 0.6550 0.3883 0.092*
C13 0.4390 (3) 0.6196 (3) 0.33154 (11) 0.0665 (7)
H13A 0.4788 0.6775 0.3077 0.080*
C14 0.2552 (4) 0.3530 (3) 0.44195 (12) 0.0796 (9)
H14C 0.3088 0.3565 0.4734 0.095*
H14B 0.2572 0.2644 0.4285 0.095*
H14A 0.1586 0.3784 0.4486 0.095*
N1 0.2606 (2) 0.56520 (19) 0.26937 (8) 0.0600 (6)
H1N 0.2529 0.6453 0.2585 0.072*
O1 0.2191 (2) 0.35053 (16) 0.24849 (7) 0.0776 (6)
Cl1 0.17750 (10) 0.37730 (9) 0.04296 (3) 0.0932 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0787 (16) 0.0375 (13) 0.0563 (15) 0.0021 (11) 0.0064 (13) 0.0007 (10)
C2 0.0672 (15) 0.0420 (12) 0.0585 (15) −0.0051 (12) 0.0003 (12) 0.0033 (11)
C3 0.0768 (17) 0.0486 (14) 0.0591 (16) 0.0002 (12) −0.0029 (13) 0.0033 (12)
C4 0.0783 (17) 0.0599 (16) 0.0590 (17) −0.0098 (14) −0.0038 (13) 0.0027 (12)
C5 0.087 (2) 0.0708 (18) 0.0650 (18) −0.0045 (16) −0.0159 (15) 0.0150 (15)
C6 0.0796 (19) 0.0596 (16) 0.090 (2) 0.0089 (14) −0.0155 (17) 0.0102 (16)
C7 0.0780 (18) 0.0488 (14) 0.0702 (18) −0.0001 (13) −0.0028 (14) 0.0026 (12)
C8 0.0717 (16) 0.0376 (12) 0.0546 (15) 0.0096 (11) 0.0009 (12) 0.0013 (10)
C9 0.0708 (16) 0.0442 (13) 0.0615 (16) 0.0051 (12) 0.0008 (13) 0.0018 (11)
C10 0.0785 (18) 0.0481 (14) 0.0538 (15) 0.0142 (13) 0.0031 (13) −0.0001 (11)
C11 0.0861 (19) 0.0670 (17) 0.0626 (17) 0.0130 (16) −0.0118 (15) −0.0082 (14)
C12 0.085 (2) 0.0655 (18) 0.081 (2) −0.0042 (15) −0.0085 (16) −0.0060 (16)
C13 0.0766 (18) 0.0520 (15) 0.0708 (18) −0.0030 (13) 0.0031 (15) −0.0007 (13)
C14 0.100 (2) 0.0742 (19) 0.0640 (18) 0.0066 (16) 0.0039 (17) 0.0155 (15)
N1 0.0853 (15) 0.0348 (10) 0.0599 (13) 0.0008 (10) −0.0027 (11) 0.0053 (9)
O1 0.1386 (18) 0.0328 (9) 0.0615 (12) 0.0018 (10) −0.0036 (11) 0.0041 (8)
Cl1 0.1290 (8) 0.0918 (7) 0.0588 (5) −0.0005 (5) −0.0013 (4) −0.0071 (4)

Geometric parameters (Å, °)

C1—O1 1.225 (3) C8—C9 1.379 (3)
C1—N1 1.345 (3) C8—N1 1.422 (3)
C1—C2 1.499 (4) C9—C10 1.388 (4)
C2—C7 1.383 (3) C9—H9A 0.9300
C2—C3 1.386 (4) C10—C11 1.377 (4)
C3—C4 1.373 (4) C10—C14 1.518 (4)
C3—H3A 0.9300 C11—C12 1.377 (4)
C4—C5 1.371 (4) C11—H11A 0.9300
C4—Cl1 1.741 (3) C12—C13 1.372 (4)
C5—C6 1.371 (4) C12—H12A 0.9300
C5—H5A 0.9300 C13—H13A 0.9300
C6—C7 1.386 (4) C14—H14C 0.9600
C6—H6A 0.9300 C14—H14B 0.9600
C7—H7A 0.9300 C14—H14A 0.9600
C8—C13 1.371 (4) N1—H1N 0.8600
O1—C1—N1 123.8 (2) C8—C9—C10 120.4 (3)
O1—C1—C2 121.0 (2) C8—C9—H9A 119.8
N1—C1—C2 115.2 (2) C10—C9—H9A 119.8
C7—C2—C3 118.9 (2) C11—C10—C9 118.4 (3)
C7—C2—C1 123.1 (2) C11—C10—C14 120.8 (3)
C3—C2—C1 118.0 (2) C9—C10—C14 120.7 (3)
C4—C3—C2 120.2 (2) C10—C11—C12 120.8 (3)
C4—C3—H3A 119.9 C10—C11—H11A 119.6
C2—C3—H3A 119.9 C12—C11—H11A 119.6
C5—C4—C3 121.3 (3) C13—C12—C11 120.5 (3)
C5—C4—Cl1 119.2 (2) C13—C12—H12A 119.8
C3—C4—Cl1 119.6 (2) C11—C12—H12A 119.8
C4—C5—C6 118.8 (3) C8—C13—C12 119.3 (3)
C4—C5—H5A 120.6 C8—C13—H13A 120.4
C6—C5—H5A 120.6 C12—C13—H13A 120.4
C5—C6—C7 120.9 (3) C10—C14—H14C 109.5
C5—C6—H6A 119.6 C10—C14—H14B 109.5
C7—C6—H6A 119.6 H14C—C14—H14B 109.5
C2—C7—C6 119.9 (3) C10—C14—H14A 109.5
C2—C7—H7A 120.0 H14C—C14—H14A 109.5
C6—C7—H7A 120.0 H14B—C14—H14A 109.5
C13—C8—C9 120.6 (2) C1—N1—C8 125.9 (2)
C13—C8—N1 117.9 (2) C1—N1—H1N 117.1
C9—C8—N1 121.5 (2) C8—N1—H1N 117.1
O1—C1—C2—C7 147.5 (3) C13—C8—C9—C10 0.7 (4)
N1—C1—C2—C7 −34.1 (4) N1—C8—C9—C10 −178.0 (2)
O1—C1—C2—C3 −32.8 (4) C8—C9—C10—C11 −0.8 (4)
N1—C1—C2—C3 145.6 (2) C8—C9—C10—C14 179.8 (2)
C7—C2—C3—C4 2.4 (4) C9—C10—C11—C12 0.4 (4)
C1—C2—C3—C4 −177.3 (2) C14—C10—C11—C12 179.8 (3)
C2—C3—C4—C5 −2.9 (4) C10—C11—C12—C13 0.1 (4)
C2—C3—C4—Cl1 176.50 (19) C9—C8—C13—C12 −0.1 (4)
C3—C4—C5—C6 0.9 (4) N1—C8—C13—C12 178.6 (2)
Cl1—C4—C5—C6 −178.5 (2) C11—C12—C13—C8 −0.3 (4)
C4—C5—C6—C7 1.5 (5) O1—C1—N1—C8 0.1 (4)
C3—C2—C7—C6 0.0 (4) C2—C1—N1—C8 −178.2 (2)
C1—C2—C7—C6 179.7 (2) C13—C8—N1—C1 136.5 (3)
C5—C6—C7—C2 −2.0 (4) C9—C8—N1—C1 −44.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 2.10 2.938 (3) 163.

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5712).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.
  3. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  4. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  6. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.
  7. Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o949. [DOI] [PMC free article] [PubMed]
  8. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  9. Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.
  10. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  11. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047271/bt5712sup1.cif

e-67-o3277-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047271/bt5712Isup2.hkl

e-67-o3277-Isup2.hkl (160.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047271/bt5712Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES