Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):o3291. doi: 10.1107/S1600536811047222

N,N-Bis(quinolin-8-yl)-2,2′-[(1,3,4-thia­diazole-2,5-di­yl)bis­(sulfanedi­yl)]diacetamide monohydrate

Xiao-Feng Li a, Yan An a, Qing-Hua Huang b, Yong-Hong Wen b,*
PMCID: PMC3238945  PMID: 22199794

Abstract

In the title compound, C24H18N6O2S3·H2O, the thia­diazole ring makes dihedral angles of 78.00 (13) and 77.27 (13)° with the quinoline ring systems. In the crystal, mol­ecules are linked into a two-dimensional network by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to the applications of 2,5-dimercapto-1,3,4-thia­diazole, see: Vullo et al. (2003); Gurn (2001). For related 2,5-dimercapto-1,3,4-thia­diazole structures, see: Wen et al. (2005); Zhang et al. (2005).graphic file with name e-67-o3291-scheme1.jpg

Experimental

Crystal data

  • C24H18N6O2S3·H2O

  • M r = 536.64

  • Monoclinic, Inline graphic

  • a = 10.8215 (8) Å

  • b = 10.2355 (8) Å

  • c = 21.5510 (16) Å

  • β = 90.068 (1)°

  • V = 2387.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.949, T max = 0.966

  • 12711 measured reflections

  • 4542 independent reflections

  • 3469 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.109

  • S = 1.02

  • 4542 reflections

  • 333 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047222/hg5124sup1.cif

e-67-o3291-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047222/hg5124Isup2.hkl

e-67-o3291-Isup2.hkl (222.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047222/hg5124Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.95 (7) 2.07 (7) 2.990 (3) 162 (6)
O1W—H1WB⋯O2i 0.94 (4) 1.91 (4) 2.841 (3) 175 (4)
C11—H11B⋯O1Wii 0.97 2.49 3.332 (4) 145
C23—H23⋯O1iii 0.93 2.55 3.411 (4) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the Project of the Shanghai Municipal Education Commission (09YZ245, 10YZ111, 10ZZ98), the ‘Chen Guang’ project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation (09 C G52), the State Key Laboratory of Pollution Control and the Resource Reuse Foundation (PCRRF09001) for financial support.

supplementary crystallographic information

Comment

Thiodiazole and its derivatives have attracted much attention in the development of the new kind pesticide. 2,5-Dimercapto-1,3,4-thiadiazole (DMTD) is an effective stabilizer for emulsions, and its derivatives can be absorbed by plant cells, so they can be prepared as bactericides, herbicides and insecticides, etc (Vullo et al., 2003; Gurn, 2001). In this paper, a new DMTD derivative of amide-based open-chain crown-ether, 2,5-di(quinolin-8-ylcarbamoylmethylthio)-1,3,4-thiodiazole, was synthesized and an X-ray crystal structure undertaken to elucidate its molecular conformation (Fig. 1).

The crystal structure of the title compound, consists of a C24H18N6O2S3 molecule and a crystal water molecule. All bond lengths and angles in the title compound are within normal ranges, and are comparable with the structural related compounds (Wen et al., 2005; Zhang et al., 2005). The bond lengths in thiadiazole ring show a character intermediate between single and double bond because of the π-conjugation. The thiadiazole ring and two quinoline rings are each coplanar with their attached atoms, excluding the H atoms attached to them, while the whole molecule is not planar, with dihedral angles of 78.00 (13) and 77.27 (13)° between the thiadiazole ring and the two quinoline rings, respectively. The N1 atom adopts a planar configuration with the sum of the bond angles around atom N1 being 360.00°.

In the crystal packing, the molecules are linked into network structure by O1W—H1WA···O1, O1W—H1WB···O2, C11—H11B···O1W and C23—H23A···O1 hydrogen bond interactions (Table 1, Fig. 2).

Experimental

After stirring the 40 ml acetone solution of 2,5-dimercapto-1,3,4-thiodiazole (1.50 g, 10 mmole), K2CO3 (1.52 g, 11 mmole) and NaI (0.5 g) at room temperature for 30 minutes, a 20 ml solution of 2-chloro-N-quinolin-8-ylacetamide (4.41 g, 20 mmoles) in acetone was added drop by drop, and the mixture was refluxed at 329 K for 3 h. After cooling to room temperature, the mixture was washed three times with water (3 × 5 ml) and then filtered. The filter cake was washed three times with acetone (3 × 5 ml). 2,5-di(quinolin-8-ylcarbamoylmethylthio)-1,3,4-thiodiazole was obtained after dryness of the resulting coffee powders at room temperature for 48 h. Yield 3.91 g (80.1%), mp 166.5–167.5°C. Anal. Calcd. (%) for C24H18N6O2S3: C, 55.58; H, 3.50; N, 16.20; S, 18.55. Found (%): C, 55.62; H, 3.55; N, 16.26; S, 18.53.

Brown single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation at room temperature from CH3CH2OH for 15 days.

Refinement

Water molecule bound H atoms were located in difference Fourier maps and their positional parameters refined with a distance restraint [O—H = 0.85 (10) Å] and a angle restraint. Other H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.95–0.99 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing diagram of the title compound, viewed down the c axis.

Crystal data

C24H18N6O2S3·H2O F(000) = 1112
Mr = 536.64 Dx = 1.493 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2913 reflections
a = 10.8215 (8) Å θ = 2.2–24.6°
b = 10.2355 (8) Å µ = 0.35 mm1
c = 21.5510 (16) Å T = 293 K
β = 90.068 (1)° Prism, brown
V = 2387.1 (3) Å3 0.15 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 4542 independent reflections
Radiation source: fine-focus sealed tube 3469 reflections with I > 2σ(I)
graphite Rint = 0.031
phi and ω scans θmax = 25.7°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→13
Tmin = 0.949, Tmax = 0.966 k = −12→11
12711 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.3494P] where P = (Fo2 + 2Fc2)/3
4542 reflections (Δ/σ)max < 0.001
333 parameters Δρmax = 0.28 e Å3
3 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.48854 (6) 0.33999 (6) 0.03568 (3) 0.04181 (18)
S2 0.65584 (6) 0.67713 (6) 0.23342 (3) 0.04294 (18)
S3 0.52541 (6) 0.56902 (7) 0.12152 (3) 0.0484 (2)
N2 0.93916 (17) 0.68189 (19) 0.23701 (8) 0.0376 (5)
H2 0.8860 0.7272 0.2166 0.045*
N4 0.68075 (18) 0.4337 (2) 0.18382 (9) 0.0409 (5)
N5 0.78366 (18) 0.4925 (2) −0.08496 (9) 0.0445 (5)
N6 0.98890 (17) 0.8914 (2) 0.16646 (9) 0.0422 (5)
O2 0.95579 (16) 0.5195 (2) 0.30789 (9) 0.0598 (5)
C24 1.0876 (2) 0.8188 (2) 0.18599 (10) 0.0342 (5)
C16 1.0642 (2) 0.7078 (2) 0.22398 (10) 0.0344 (5)
O1 0.76858 (17) 0.09593 (19) 0.04223 (9) 0.0592 (5)
C8 0.8872 (2) 0.4250 (2) −0.06819 (10) 0.0375 (5)
C10 0.7060 (2) 0.1861 (2) 0.02251 (10) 0.0395 (6)
C20 1.2107 (2) 0.8493 (2) 0.16943 (11) 0.0374 (5)
C15 0.8927 (2) 0.5951 (2) 0.27744 (10) 0.0383 (5)
C9 0.8725 (2) 0.3130 (2) −0.02972 (10) 0.0382 (5)
N3 0.63967 (18) 0.35305 (19) 0.13605 (8) 0.0413 (5)
N1 0.75026 (17) 0.2858 (2) −0.01150 (9) 0.0416 (5)
H1 0.6958 0.3411 −0.0240 0.050*
C13 0.62927 (19) 0.5483 (2) 0.18185 (10) 0.0353 (5)
C4 1.0072 (2) 0.4606 (3) −0.08780 (11) 0.0435 (6)
C12 0.5590 (2) 0.4104 (2) 0.10073 (10) 0.0361 (5)
C14 0.7546 (2) 0.5972 (2) 0.28903 (10) 0.0398 (6)
H14A 0.7410 0.6384 0.3290 0.080*
H14B 0.7271 0.5074 0.2927 0.080*
C11 0.5678 (2) 0.1851 (2) 0.03428 (11) 0.0416 (6)
H11A 0.5537 0.1423 0.0738 0.080*
H11B 0.5295 0.1314 0.0025 0.080*
C1 0.9732 (2) 0.2404 (3) −0.01294 (12) 0.0499 (7)
H1A 0.9633 0.1663 0.0115 0.060*
C19 1.3081 (2) 0.7714 (3) 0.19269 (12) 0.0467 (6)
H19 1.3895 0.7920 0.1831 0.056*
C21 1.2295 (2) 0.9559 (3) 0.12920 (12) 0.0461 (6)
H21 1.3089 0.9783 0.1166 0.055*
C22 1.1310 (3) 1.0255 (3) 0.10913 (12) 0.0513 (7)
H22 1.1418 1.0958 0.0824 0.062*
C6 0.9135 (3) 0.6360 (3) −0.14421 (12) 0.0560 (7)
H6 0.9186 0.7077 −0.1705 0.067*
C17 1.1607 (2) 0.6324 (2) 0.24427 (11) 0.0432 (6)
H17 1.1456 0.5584 0.2682 0.052*
C18 1.2827 (2) 0.6669 (3) 0.22894 (12) 0.0506 (7)
H18 1.3476 0.6166 0.2441 0.061*
C2 1.0919 (2) 0.2781 (3) −0.03267 (13) 0.0585 (8)
H2A 1.1599 0.2284 −0.0208 0.070*
C23 1.0124 (3) 0.9901 (3) 0.12920 (12) 0.0517 (7)
H23 0.9459 1.0397 0.1153 0.062*
C7 0.7990 (3) 0.5934 (3) −0.12173 (12) 0.0542 (7)
H7 0.7290 0.6398 −0.1337 0.065*
C3 1.1092 (2) 0.3847 (3) −0.06834 (13) 0.0552 (7)
H3 1.1887 0.4084 −0.0802 0.066*
C5 1.0168 (3) 0.5704 (3) −0.12682 (12) 0.0520 (7)
H5 1.0939 0.5980 −0.1407 0.062*
O1W 0.6164 (3) −0.1290 (2) 0.08683 (12) 0.0789 (7)
H1WA 0.679 (6) −0.071 (7) 0.073 (3) 0.27 (4)*
H1WB 0.593 (4) −0.085 (4) 0.1230 (19) 0.130 (17)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0407 (4) 0.0475 (4) 0.0372 (3) 0.0041 (3) −0.0073 (3) −0.0041 (3)
S2 0.0381 (3) 0.0438 (4) 0.0470 (4) 0.0016 (3) −0.0049 (3) −0.0076 (3)
S3 0.0509 (4) 0.0457 (4) 0.0487 (4) 0.0147 (3) −0.0176 (3) −0.0088 (3)
N2 0.0308 (10) 0.0446 (12) 0.0373 (10) 0.0012 (8) −0.0025 (8) 0.0077 (9)
N4 0.0423 (11) 0.0442 (13) 0.0363 (11) 0.0041 (9) −0.0060 (9) −0.0003 (9)
N5 0.0432 (12) 0.0470 (13) 0.0434 (12) −0.0013 (10) 0.0001 (9) 0.0033 (10)
N6 0.0392 (11) 0.0471 (13) 0.0403 (11) 0.0049 (9) 0.0019 (9) 0.0064 (10)
O2 0.0464 (11) 0.0685 (13) 0.0645 (12) 0.0073 (9) 0.0055 (9) 0.0286 (10)
C24 0.0353 (13) 0.0353 (13) 0.0319 (11) 0.0013 (10) −0.0001 (10) −0.0070 (10)
C16 0.0321 (12) 0.0392 (14) 0.0321 (12) 0.0000 (10) −0.0004 (9) −0.0036 (10)
O1 0.0534 (11) 0.0576 (13) 0.0666 (12) 0.0114 (9) 0.0089 (9) 0.0233 (10)
C8 0.0389 (13) 0.0430 (14) 0.0307 (12) −0.0013 (10) 0.0004 (10) −0.0067 (11)
C10 0.0451 (14) 0.0397 (14) 0.0337 (12) 0.0017 (11) −0.0002 (10) 0.0017 (11)
C20 0.0350 (13) 0.0375 (14) 0.0398 (13) −0.0025 (10) 0.0018 (10) −0.0083 (11)
C15 0.0380 (13) 0.0415 (14) 0.0355 (12) −0.0014 (11) −0.0010 (10) −0.0017 (11)
C9 0.0379 (13) 0.0454 (15) 0.0313 (12) 0.0014 (11) 0.0027 (10) −0.0061 (11)
N3 0.0487 (12) 0.0406 (12) 0.0345 (10) 0.0035 (9) −0.0069 (9) −0.0001 (9)
N1 0.0385 (11) 0.0450 (12) 0.0414 (11) 0.0037 (9) 0.0025 (9) 0.0054 (10)
C13 0.0276 (11) 0.0439 (14) 0.0346 (12) −0.0019 (10) 0.0010 (9) 0.0009 (11)
C4 0.0447 (15) 0.0487 (16) 0.0373 (13) −0.0034 (12) 0.0056 (11) −0.0073 (12)
C12 0.0329 (12) 0.0422 (14) 0.0331 (12) 0.0008 (10) 0.0010 (10) 0.0006 (10)
C14 0.0366 (13) 0.0502 (16) 0.0326 (12) −0.0058 (11) 0.0007 (10) −0.0035 (11)
C11 0.0453 (14) 0.0381 (14) 0.0415 (13) −0.0019 (11) 0.0010 (11) −0.0014 (11)
C1 0.0477 (16) 0.0579 (18) 0.0440 (14) 0.0072 (13) 0.0041 (12) 0.0048 (13)
C19 0.0324 (13) 0.0504 (16) 0.0574 (16) −0.0016 (11) 0.0048 (11) −0.0051 (13)
C21 0.0440 (14) 0.0458 (16) 0.0484 (15) −0.0084 (12) 0.0081 (12) −0.0052 (12)
C22 0.0588 (17) 0.0461 (16) 0.0492 (15) −0.0045 (13) 0.0042 (13) 0.0104 (13)
C6 0.067 (2) 0.0495 (17) 0.0520 (16) −0.0082 (14) 0.0080 (14) 0.0066 (13)
C17 0.0412 (14) 0.0404 (15) 0.0479 (14) 0.0023 (11) 0.0007 (11) 0.0053 (12)
C18 0.0353 (14) 0.0530 (17) 0.0634 (17) 0.0087 (12) −0.0035 (12) 0.0026 (14)
C2 0.0413 (15) 0.076 (2) 0.0586 (17) 0.0156 (14) 0.0047 (13) 0.0043 (16)
C23 0.0528 (17) 0.0515 (17) 0.0507 (16) 0.0107 (13) 0.0016 (12) 0.0124 (13)
C7 0.0529 (17) 0.0523 (18) 0.0575 (17) 0.0025 (13) 0.0021 (13) 0.0093 (14)
C3 0.0374 (15) 0.072 (2) 0.0567 (17) 0.0002 (13) 0.0064 (12) −0.0029 (15)
C5 0.0480 (16) 0.0574 (18) 0.0505 (16) −0.0131 (13) 0.0100 (12) −0.0044 (14)
O1W 0.0971 (18) 0.0642 (15) 0.0753 (16) −0.0058 (13) −0.0050 (13) −0.0143 (13)

Geometric parameters (Å, °)

S1—C12 1.750 (2) N1—H1 0.8600
S1—C11 1.803 (3) C4—C5 1.407 (4)
S2—C13 1.748 (2) C4—C3 1.414 (4)
S2—C14 1.801 (2) C14—H14A 0.9700
S3—C12 1.723 (2) C14—H14B 0.9700
S3—C13 1.731 (2) C11—H11A 0.9700
N2—C15 1.343 (3) C11—H11B 0.9700
N2—C16 1.408 (3) C1—C2 1.408 (4)
N2—H2 0.8600 C1—H1A 0.9300
N4—C13 1.299 (3) C19—C18 1.353 (4)
N4—N3 1.392 (3) C19—H19 0.9300
N5—C7 1.313 (3) C21—C22 1.352 (4)
N5—C8 1.365 (3) C21—H21 0.9300
N6—C23 1.316 (3) C22—C23 1.403 (4)
N6—C24 1.367 (3) C22—H22 0.9300
O2—C15 1.222 (3) C6—C5 1.357 (4)
C24—C20 1.414 (3) C6—C7 1.400 (4)
C24—C16 1.424 (3) C6—H6 0.9300
C16—C17 1.370 (3) C17—C18 1.406 (3)
O1—C10 1.221 (3) C17—H17 0.9300
C8—C4 1.414 (3) C18—H18 0.9300
C8—C9 1.424 (3) C2—C3 1.347 (4)
C10—N1 1.345 (3) C2—H2A 0.9300
C10—C11 1.517 (3) C23—H23 0.9300
C20—C21 1.409 (3) C7—H7 0.9300
C20—C19 1.413 (3) C3—H3 0.9300
C15—C14 1.516 (3) C5—H5 0.9300
C9—C1 1.367 (3) O1W—H1WA 0.95 (6)
C9—N1 1.408 (3) O1W—H1WB 0.93 (4)
N3—C12 1.298 (3)
C12—S1—C11 99.71 (11) C15—C14—H14B 107.6
C13—S2—C14 100.22 (11) S2—C14—H14B 107.6
C12—S3—C13 86.72 (11) H14A—C14—H14B 107.1
C15—N2—C16 127.9 (2) C10—C11—S1 117.78 (17)
C15—N2—H2 116.0 C10—C11—H11A 107.9
C16—N2—H2 116.0 S1—C11—H11A 107.9
C13—N4—N3 112.00 (18) C10—C11—H11B 107.9
C7—N5—C8 117.0 (2) S1—C11—H11B 107.9
C23—N6—C24 117.0 (2) H11A—C11—H11B 107.2
N6—C24—C20 122.5 (2) C9—C1—C2 119.9 (3)
N6—C24—C16 118.1 (2) C9—C1—H1A 120.0
C20—C24—C16 119.3 (2) C2—C1—H1A 120.0
C17—C16—N2 124.3 (2) C18—C19—C20 120.0 (2)
C17—C16—C24 119.8 (2) C18—C19—H19 120.0
N2—C16—C24 115.88 (19) C20—C19—H19 120.0
N5—C8—C4 123.0 (2) C22—C21—C20 119.3 (2)
N5—C8—C9 118.0 (2) C22—C21—H21 120.3
C4—C8—C9 119.1 (2) C20—C21—H21 120.3
O1—C10—N1 124.5 (2) C21—C22—C23 119.1 (2)
O1—C10—C11 118.9 (2) C21—C22—H22 120.4
N1—C10—C11 116.6 (2) C23—C22—H22 120.4
C21—C20—C19 123.2 (2) C5—C6—C7 118.7 (3)
C21—C20—C24 117.6 (2) C5—C6—H6 120.7
C19—C20—C24 119.2 (2) C7—C6—H6 120.7
O2—C15—N2 123.9 (2) C16—C17—C18 119.9 (2)
O2—C15—C14 118.1 (2) C16—C17—H17 120.0
N2—C15—C14 117.8 (2) C18—C17—H17 120.0
C1—C9—N1 124.6 (2) C19—C18—C17 121.7 (2)
C1—C9—C8 120.1 (2) C19—C18—H18 119.2
N1—C9—C8 115.3 (2) C17—C18—H18 119.2
C12—N3—N4 112.3 (2) C3—C2—C1 121.5 (3)
C10—N1—C9 129.6 (2) C3—C2—H2A 119.3
C10—N1—H1 115.2 C1—C2—H2A 119.3
C9—N1—H1 115.2 N6—C23—C22 124.3 (2)
N4—C13—S3 114.42 (17) N6—C23—H23 117.8
N4—C13—S2 126.16 (17) C22—C23—H23 117.8
S3—C13—S2 119.42 (14) N5—C7—C6 124.5 (3)
C5—C4—C3 123.9 (2) N5—C7—H7 117.8
C5—C4—C8 117.0 (2) C6—C7—H7 117.8
C3—C4—C8 119.1 (2) C2—C3—C4 120.3 (2)
N3—C12—S3 114.56 (17) C2—C3—H3 119.8
N3—C12—S1 125.12 (19) C4—C3—H3 119.8
S3—C12—S1 120.31 (13) C6—C5—C4 119.9 (2)
C15—C14—S2 118.78 (16) C6—C5—H5 120.1
C15—C14—H14A 107.6 C4—C5—H5 120.1
S2—C14—H14A 107.6 H1WA—O1W—H1WB 99 (4)
C23—N6—C24—C20 2.3 (3) N4—N3—C12—S3 0.5 (3)
C23—N6—C24—C16 −177.1 (2) N4—N3—C12—S1 179.22 (15)
C15—N2—C16—C17 10.7 (4) C13—S3—C12—N3 −0.37 (18)
C15—N2—C16—C24 −170.7 (2) C13—S3—C12—S1 −179.18 (15)
N6—C24—C16—C17 179.8 (2) C11—S1—C12—N3 −3.3 (2)
C20—C24—C16—C17 0.3 (3) C11—S1—C12—S3 175.39 (14)
N6—C24—C16—N2 1.1 (3) O2—C15—C14—S2 −165.45 (19)
C20—C24—C16—N2 −178.34 (19) N2—C15—C14—S2 18.5 (3)
C7—N5—C8—C4 1.0 (3) C13—S2—C14—C15 87.36 (19)
C7—N5—C8—C9 −178.3 (2) O1—C10—C11—S1 154.2 (2)
N6—C24—C20—C21 −2.6 (3) N1—C10—C11—S1 −28.2 (3)
C16—C24—C20—C21 176.8 (2) C12—S1—C11—C10 −64.46 (19)
N6—C24—C20—C19 178.5 (2) N1—C9—C1—C2 −178.6 (2)
C16—C24—C20—C19 −2.1 (3) C8—C9—C1—C2 1.3 (4)
C16—N2—C15—O2 −3.4 (4) C21—C20—C19—C18 −177.0 (2)
C16—N2—C15—C14 172.5 (2) C24—C20—C19—C18 1.8 (4)
N5—C8—C9—C1 178.4 (2) C19—C20—C21—C22 −180.0 (2)
C4—C8—C9—C1 −0.9 (3) C24—C20—C21—C22 1.2 (3)
N5—C8—C9—N1 −1.7 (3) C20—C21—C22—C23 0.4 (4)
C4—C8—C9—N1 179.0 (2) N2—C16—C17—C18 −179.7 (2)
C13—N4—N3—C12 −0.3 (3) C24—C16—C17—C18 1.8 (3)
O1—C10—N1—C9 −2.8 (4) C20—C19—C18—C17 0.3 (4)
C11—C10—N1—C9 179.8 (2) C16—C17—C18—C19 −2.1 (4)
C1—C9—N1—C10 −2.6 (4) C9—C1—C2—C3 −0.3 (4)
C8—C9—N1—C10 177.5 (2) C24—N6—C23—C22 −0.6 (4)
N3—N4—C13—S3 0.1 (2) C21—C22—C23—N6 −0.7 (4)
N3—N4—C13—S2 179.95 (15) C8—N5—C7—C6 −0.4 (4)
C12—S3—C13—N4 0.17 (18) C5—C6—C7—N5 −0.7 (4)
C12—S3—C13—S2 −179.74 (14) C1—C2—C3—C4 −1.1 (4)
C14—S2—C13—N4 −5.8 (2) C5—C4—C3—C2 −177.7 (3)
C14—S2—C13—S3 174.10 (13) C8—C4—C3—C2 1.4 (4)
N5—C8—C4—C5 −0.6 (3) C7—C6—C5—C4 1.1 (4)
C9—C8—C4—C5 178.7 (2) C3—C4—C5—C6 178.6 (3)
N5—C8—C4—C3 −179.8 (2) C8—C4—C5—C6 −0.5 (4)
C9—C8—C4—C3 −0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O1 0.95 (7) 2.07 (7) 2.990 (3) 162 (6)
O1W—H1WB···O2i 0.94 (4) 1.91 (4) 2.841 (3) 175 (4)
C11—H11B···O1Wii 0.97 2.49 3.332 (4) 145
C23—H23···O1iii 0.93 2.55 3.411 (4) 155

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y, −z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5124).

References

  1. Bruker (2001). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gurn, N. (2001). J. Sci. Ind. Res. 60, 601–605.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Vullo, D., Franchi, M., Gallori, E., Pastorek, J., Scozzafava, A., Pastorekova, S. & Supuran, C. T. (2003). Bioorg. Med. Chem. Lett. 13, 1005–1009. [DOI] [PubMed]
  6. Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347–o348.
  7. Zhang, S. S., Wen, Y.-H., Yu, B.-H., Liu, Q. & Li, X.-M. (2005). Indian J. Heterocycl. Chem. 15, 117–120.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047222/hg5124sup1.cif

e-67-o3291-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047222/hg5124Isup2.hkl

e-67-o3291-Isup2.hkl (222.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047222/hg5124Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES