Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):o3295. doi: 10.1107/S1600536811047490

2-(3-Oxo-2,3-dihydro-1,2-benzothia­zol-2-yl)acetic acid

Xiang-hui Wang a, Jian-Xin Yang b, Cheng-hang You b, Xue-mei Tan b, Qiang Lin c,*
PMCID: PMC3238948  PMID: 22199797

Abstract

In the title compound, C9H7NO3S, the benzoisothia­zolone ring system is essentially planar, with a maximum deviation of 0.013 (2) Å. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains along [010]. In addition, weak inter­molecular C—H⋯O hydrogen bonds are present.

Related literature

For background to the sythesis of benzisothia­zolone derivatives, see: Davis (1972); Maggiali et al. (1982, 1983), Elgazwy & Abdel-Sattar (2003). For details of their biological activity, see: Taubert et al. (2002); Mor et al. (1996). For related structures, see: Xu et al. (2006), Wang et al. (2011a ,b ,c ).graphic file with name e-67-o3295-scheme1.jpg

Experimental

Crystal data

  • C9H7NO3S

  • M r = 209.22

  • Orthorhombic, Inline graphic

  • a = 4.7774 (11) Å

  • b = 11.367 (3) Å

  • c = 16.159 (4) Å

  • V = 877.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 153 K

  • 0.29 × 0.22 × 0.20 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.907, T max = 0.934

  • 7675 measured reflections

  • 2340 independent reflections

  • 2141 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.068

  • S = 1.00

  • 2340 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983), 945 Friedel pairs

  • Flack parameter: 0.08 (7)

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047490/lh5367sup1.cif

e-67-o3295-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047490/lh5367Isup2.hkl

e-67-o3295-Isup2.hkl (115KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047490/lh5367Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1i 0.86 (3) 1.72 (3) 2.581 (2) 173 (3)
C2—H2⋯O2ii 0.95 2.60 3.310 (2) 132
C8—H8A⋯O2iii 0.99 2.34 3.246 (2) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (No.20962007) and the Creative Talents Plan of Hainan University 211 Project.

supplementary crystallographic information

Comment

2-(3-Oxobenzo[d]isothiazol-2(3H)-yl)acetic acid is an important intermediate in the synthesis of benzisothiazolone derivatives (Davis, 1972; Maggiali, et al., 1982,1983; Elgazwy & Abdel-Sattar, 2003). The corresponding esters and amides have been reported to possess high antibacterial and antifungal activity (Mor et al., 1996; Taubert et al., 2002). In view of the importance of 1,2-benzisothiazol-3(2H)-ones, the title compound, (I), was synthesized and its crystal structure is presented herein.

The molecular structure of the title compound (I) is shown in Fig. 1. Examples of related structures appear in the literature (Xu, et al., 2006; Wang, et al., 2011a,b,c). In (I) the benzoisothiazolone ring system is essentially planar, with a maximum deviation of 0.013 (2) Å. In the crystal, molecules are linked via O—H···O hydrogen bonds to form one-dimensional chains along [010]. In addition weak intermolecular C—H···O hydrogen bonds are present.

Experimental

Chloroactic acid (0.95 g, 0.01 mol) was added dropwise to a solution of sodium hydroxide (0.80 g, 0.02 mol) and benzo[d]isothiazol-3(2H)-one (1.50 g, 0.01 mol)in water (20 ml) under stirring on an ice-water bath. The reaction mixture was stirred at room temperature for 4.5 h and adjusted pH to 1~2, to afford the title compound (1.05 g, yield 50.0%). Single crystals suitable for X-ray measurements were obtained by recrystallization of the title compound from the mixed solution of dimethyl formamide and water at room temperature.

Refinement

Atom H3O was located from the difference Fourier map and was refined freely [O–H = 0.86 (3) Å]. The remaining H atoms bonded to C atoms were fixed geometrically and allowed to ride on their attached atoms, with the carrier atom-H distances = 0.95 Å for aryl, 0.99 for methylene, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds drawn as dashed lines.

Crystal data

C9H7NO3S F(000) = 432
Mr = 209.22 Dx = 1.584 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3259 reflections
a = 4.7774 (11) Å θ = 3.1–29.1°
b = 11.367 (3) Å µ = 0.35 mm1
c = 16.159 (4) Å T = 153 K
V = 877.6 (4) Å3 Block, colorless
Z = 4 0.29 × 0.22 × 0.20 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer 2340 independent reflections
Radiation source: Rotating Anode 2141 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 28.5714 pixels mm-1 θmax = 29.1°, θmin = 3.1°
φ and ω scans h = −6→6
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −15→15
Tmin = 0.907, Tmax = 0.934 l = −22→16
7675 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.136P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2340 reflections Δρmax = 0.27 e Å3
131 parameters Δρmin = −0.22 e Å3
0 restraints Absolute structure: Flack (1983), 945 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.08 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.79701 (8) 0.63585 (3) 0.49404 (2) 0.01821 (10)
O1 0.4484 (3) 0.48499 (11) 0.67636 (7) 0.0275 (3)
O2 0.4545 (3) 0.79003 (11) 0.67052 (8) 0.0253 (3)
O3 0.7852 (3) 0.79542 (12) 0.76921 (7) 0.0266 (3)
N1 0.7188 (3) 0.60058 (12) 0.59414 (8) 0.0196 (3)
C1 0.5586 (3) 0.53095 (14) 0.45995 (10) 0.0170 (3)
C2 0.4940 (4) 0.50367 (15) 0.37799 (10) 0.0208 (4)
H2 0.5850 0.5422 0.3333 0.025*
C3 0.2934 (4) 0.41885 (16) 0.36417 (11) 0.0251 (4)
H3 0.2443 0.3992 0.3089 0.030*
C4 0.1598 (4) 0.36082 (17) 0.42984 (11) 0.0251 (4)
H4 0.0224 0.3027 0.4184 0.030*
C5 0.2255 (3) 0.38708 (13) 0.51040 (11) 0.0216 (3)
H5 0.1357 0.3475 0.5548 0.026*
C6 0.4278 (4) 0.47343 (14) 0.52566 (10) 0.0176 (3)
C7 0.5239 (4) 0.51590 (14) 0.60561 (10) 0.0191 (4)
C8 0.8509 (4) 0.65927 (15) 0.66335 (10) 0.0212 (4)
H8A 1.0303 0.6939 0.6447 0.025*
H8B 0.8936 0.6005 0.7067 0.025*
C9 0.6707 (4) 0.75520 (14) 0.70016 (10) 0.0193 (3)
H3O 0.695 (5) 0.855 (3) 0.7888 (16) 0.070 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01808 (17) 0.01776 (17) 0.01879 (19) −0.00127 (16) 0.00143 (16) −0.00022 (16)
O1 0.0388 (8) 0.0262 (7) 0.0175 (6) −0.0044 (6) 0.0032 (5) 0.0031 (5)
O2 0.0208 (6) 0.0279 (7) 0.0271 (7) 0.0030 (6) −0.0043 (5) −0.0024 (6)
O3 0.0313 (7) 0.0287 (7) 0.0198 (6) 0.0057 (6) −0.0071 (6) −0.0065 (5)
N1 0.0228 (7) 0.0204 (7) 0.0157 (6) −0.0026 (6) 0.0014 (6) −0.0006 (5)
C1 0.0147 (8) 0.0162 (8) 0.0202 (8) 0.0017 (7) −0.0005 (6) −0.0009 (6)
C2 0.0217 (10) 0.0227 (9) 0.0179 (8) 0.0021 (7) 0.0002 (7) 0.0004 (7)
C3 0.0262 (9) 0.0293 (9) 0.0199 (8) 0.0010 (8) −0.0050 (8) −0.0042 (7)
C4 0.0220 (9) 0.0220 (8) 0.0311 (10) −0.0046 (8) −0.0031 (7) −0.0033 (7)
C5 0.0208 (8) 0.0186 (8) 0.0253 (9) −0.0002 (6) 0.0011 (7) 0.0026 (6)
C6 0.0184 (8) 0.0153 (7) 0.0191 (8) 0.0034 (7) 0.0006 (6) 0.0002 (6)
C7 0.0217 (9) 0.0159 (8) 0.0195 (9) −0.0003 (7) −0.0002 (7) 0.0017 (6)
C8 0.0229 (9) 0.0216 (8) 0.0190 (8) 0.0008 (7) −0.0037 (7) −0.0034 (6)
C9 0.0206 (9) 0.0201 (8) 0.0173 (8) −0.0038 (7) −0.0001 (7) 0.0029 (6)

Geometric parameters (Å, °)

S1—N1 1.7079 (15) C2—H2 0.9500
S1—C1 1.7385 (17) C3—C4 1.403 (3)
O1—C7 1.249 (2) C3—H3 0.9500
O2—C9 1.206 (2) C4—C5 1.372 (2)
O3—C9 1.324 (2) C4—H4 0.9500
O3—H3O 0.87 (3) C5—C6 1.399 (2)
N1—C7 1.352 (2) C5—H5 0.9500
N1—C8 1.447 (2) C6—C7 1.454 (2)
C1—C6 1.395 (2) C8—C9 1.511 (2)
C1—C2 1.395 (2) C8—H8A 0.9900
C2—C3 1.378 (2) C8—H8B 0.9900
N1—S1—C1 89.76 (8) C4—C5—H5 120.7
C9—O3—H3O 112.0 (17) C6—C5—H5 120.7
C7—N1—C8 121.51 (14) C1—C6—C5 120.26 (15)
C7—N1—S1 116.59 (11) C1—C6—C7 112.31 (15)
C8—N1—S1 121.90 (11) C5—C6—C7 127.43 (15)
C6—C1—C2 121.30 (15) O1—C7—N1 121.64 (15)
C6—C1—S1 111.95 (12) O1—C7—C6 128.96 (17)
C2—C1—S1 126.75 (13) N1—C7—C6 109.40 (14)
C3—C2—C1 117.61 (15) N1—C8—C9 112.86 (14)
C3—C2—H2 121.2 N1—C8—H8A 109.0
C1—C2—H2 121.2 C9—C8—H8A 109.0
C2—C3—C4 121.52 (16) N1—C8—H8B 109.0
C2—C3—H3 119.2 C9—C8—H8B 109.0
C4—C3—H3 119.2 H8A—C8—H8B 107.8
C5—C4—C3 120.75 (17) O2—C9—O3 125.12 (17)
C5—C4—H4 119.6 O2—C9—C8 124.66 (16)
C3—C4—H4 119.6 O3—C9—C8 110.22 (15)
C4—C5—C6 118.55 (15)
C1—S1—N1—C7 −0.51 (14) C4—C5—C6—C7 178.74 (17)
C1—S1—N1—C8 −179.65 (14) C8—N1—C7—O1 0.3 (3)
N1—S1—C1—C6 0.23 (13) S1—N1—C7—O1 −178.81 (14)
N1—S1—C1—C2 179.76 (16) C8—N1—C7—C6 179.77 (14)
C6—C1—C2—C3 0.8 (2) S1—N1—C7—C6 0.63 (18)
S1—C1—C2—C3 −178.65 (14) C1—C6—C7—O1 178.96 (17)
C1—C2—C3—C4 −0.6 (3) C5—C6—C7—O1 0.1 (3)
C2—C3—C4—C5 0.0 (3) C1—C6—C7—N1 −0.4 (2)
C3—C4—C5—C6 0.3 (3) C5—C6—C7—N1 −179.27 (15)
C2—C1—C6—C5 −0.5 (2) C7—N1—C8—C9 −80.1 (2)
S1—C1—C6—C5 179.01 (12) S1—N1—C8—C9 99.03 (15)
C2—C1—C6—C7 −179.49 (15) N1—C8—C9—O2 −8.2 (2)
S1—C1—C6—C7 0.06 (18) N1—C8—C9—O3 172.04 (14)
C4—C5—C6—C1 0.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O1i 0.86 (3) 1.72 (3) 2.581 (2) 173 (3)
C2—H2···O2ii 0.95 2.60 3.310 (2) 132
C8—H8A···O2iii 0.99 2.34 3.246 (2) 152

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1/2, −y+3/2, −z+1; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5367).

References

  1. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Davis, M. (1972). Adv. Heterocycl. Chem 14, 43–98.
  3. Elgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445–7463.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Maggiali, C. A., Mingiardi, M. R. & Branca, C. (1983). Farmaco, 38, 935–939. [PubMed]
  7. Maggiali, C. A., Mingiardi, M. R., Mangia, M. T. L., Mossini, F. & Branca, C. (1982). Farmaco, 37, 319–327.
  8. Mor, M., Zani, F., Mazza, P., Silva, C., Bordi, F., Morini, G. & Plazzi, P. V. (1996). Farmaco, 51, 493–502. [PubMed]
  9. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Taubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79–81.
  12. Wang, X., Lin, Q. & Yang, J. (2011c). Acta Cryst. E67, o2477. [DOI] [PMC free article] [PubMed]
  13. Wang, X., Yang, J., You, C. & Lin, Q. (2011a). Acta Cryst. E67, o2237. [DOI] [PMC free article] [PubMed]
  14. Wang, X., Yang, J., You, C. & Lin, Q. (2011b). Acta Cryst. E67, o2238. [DOI] [PMC free article] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Xu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496–o497.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047490/lh5367sup1.cif

e-67-o3295-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047490/lh5367Isup2.hkl

e-67-o3295-Isup2.hkl (115KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047490/lh5367Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES