Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 12;67(Pt 12):o3296. doi: 10.1107/S1600536811047337

(20S*,24S*)-25-Hy­droxy-20,24-ep­oxy-A-homo-4-oxadammaran-3-one (Chrysura) isolated from the leaves of Walsura chrysogyne

Ilya Iryani Mahmod a, Huey Chong Kwong a, Mohamed Ibrahim Mohamed Tahir a, Intan Safinar Ismail a,*
PMCID: PMC3238949  PMID: 22199798

Abstract

The title dammarane triterpenoid, C30H50O4, assigned the name chrysura, was isolated from an ethyl acetate extract of Walsura chrysogyne leaves (Meliaceae). It has 20S*,24S* relative stereochemistry and an oxepanone ring with two methyl groups at position 4. The two cyclo­hexane rings adopt chair conformations. The cyclo­pentane and tetra­hydro­furan rings have envelope conformations; their mean planes make a dihedral angle of 13.1 (3)°, indicating that the rings are only slightly tilted with respect to each other. There is an intra­molecular C—H⋯O hydrogen bond in the mol­ecule, which forms S(6) and S(7) ring motifs. In the crystal, mol­ecules are linked via O—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along [001] which stack along the b-axis direction.

Related literature

For related structures, see: Pan et al. (2010). For graph-set analysis, see: Bernstein et al. (1995). For the biological activity of related compounds, see: Burkill (1966); Hegnauer (1990); Fujiwara et al. (1982).graphic file with name e-67-o3296-scheme1.jpg

Experimental

Crystal data

  • C30H50O4

  • M r = 474.70

  • Orthorhombic, Inline graphic

  • a = 6.9881 (1) Å

  • b = 11.0108 (2) Å

  • c = 34.9733 (7) Å

  • V = 2691.01 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 100 K

  • 0.40 × 0.08 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.801, T max = 0.960

  • 48305 measured reflections

  • 5058 independent reflections

  • 5040 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.092

  • wR(F 2) = 0.233

  • S = 1.21

  • 5058 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811047337/su2332sup1.cif

e-67-o3296-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047337/su2332Isup2.hkl

e-67-o3296-Isup2.hkl (247.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O32 0.96 2.44 3.082 (6) 124
O34—H34A⋯O32i 0.82 2.20 3.010 (5) 170
C26—H26A⋯O31i 0.96 2.53 3.392 (7) 150

Symmetry code: (i) Inline graphic.

Acknowledgments

This research work was supported financially by the Research University Grant Scheme (RUGS: 05–01–09–0732RU) of Universiti Putra Malaysia, Malaysia.

supplementary crystallographic information

Comment

Meliaceae or Mahogany is a plant family, in the order of Sapindales, which consists of flowering plants of mostly trees, shrubs and a few herbaceous plants (Burkill, 1966). This family is noted for the wide range of compounds of different classes of which it is compossed, for example, terpenoids (triterpenoids, monoterpenes, sesquiterpenes, limonoids), saponins, alkaloids, polyphenols, quinines, fatty and hydroxyl acids (Hegnauer, 1990). Among these groups of constituents, some are responsible for biological activities such as antiviral, anthelmintic, antitumor, anti-inflammatory and anti-rheumatic, which have been scientifically proven (Fujiwara et al., 1982). Walsura chrysogyne is a Meliaceae species which is among the least explored of higher plants.

The title dammarane triterpenoid, namely chrysura (1), has been isolated for the first time from the ethyl acetate extract of the leaves of Walsura chrysogyne (Meliaceae). Recently, the same compound was reported to have been obtained from Aglaia foveolata, but in resin form (compound 5 in reference Pan et al., 2010). They determined its relative stereochemistry by Nuclear Magnetic Resonance (NMR) spectroscopy. Herein, we describe the crystal structure of the title compound, chrysura (1), whose relative configuration was also obtained by two-dimensional NMR spectroscopy. By a close comparison of the 13C NMR signals at C-20, C-21, C-22, C-23 and C-24 reported for compound 5 (δ 86.5, 27.2, 34.8, 26.3 and 86.4; Pan et al., 2010) and those obtained for the title compound, chrysura (1) (δ 86.5, 27.2, 35.0, 26.4 and 86.5), it was shown that these two compounds are identical. This is substantiated by the 1H NMR signal at H-24 of chrysura (1), which is a doublet of doublet with J values of 10 and 5.5 Hz, comparable to the values observed for compound 5, that is 9.9 and 5.6 Hz. Hence, the relative configuration at C20 and C24 of chrysura (1), was determined by NMR to be the same as that of compound 5 [Pan et al., 2010].

The molecular structure of the title molecule, chrysura (1), is shown in Fig. 1. The two cyclohexane rings, B (C5-C10) and C (C8,C9,C11-C14), adopt chair conformations. The cyclopentane ring D (C13-C17) and the tetrahydrofuran ring E (O33,C20, C22-C24) have envelope conformations, with atoms C14 and C23 at the flap of rings D and E, respectively. The mean planes through rings D and E make a dihedral angle of 13.1 (3)°, indicating that they are only slightly twisted with respect to each other. As shown in Fig. 1, the structure of the molecule is stabilized by an intramolecular C—H···O hydrogen bond (Table 1), which forms S(6) and S(7) ring motifs (Bernstein et al., 1995).

In the crystal of chrysura (1), molecules are linked via intermolecular O—H···O and C—H···O hydrogen bonds (Table 1), forming chains propagating along [001]. These chains stack along the b-axis, as shown in Fig. 2.

Hence, in the title compound, chrysura (1), the relative configurations at C20 and C24 of the epoxy unit (ring E) have been confirmed to be S-methyl configurations.

Experimental

The air-dried ground leaves of Walsura chrysogyne (8.94 kg) collected at Pasir Raja, Terengganu, Malaysia, were macerated in methanol at room temperature (3 × 1000 ml). The crude extract (230 g) was partitioned into hexane (12.2 g), ethyl acetate (EtOAc; 16.6 g), and water (16.8 g). A portion (9.0 g) of the EtOAc extract was further fractionated by using vacuum column chromatography on silica gel normal phase (7.5 × 20 cm) eluted with CHCl3, and CHCl3—MeOH in 10% increasing amounts of MeOH. Fraction MeOH-CHCl3 [9:1] (2.0 g) was subjected to another column chromatography on Sephadex LH-20 (2 × 30 cm) with CHCl3–MeOH (9:1) to yield four fractions. The fraction obtained by hexane-EtOAc [7:3] (85.3 mg) was further purified on silica gel normal phase (1 × 20 cm) eluted with hexane-acetone (9:1) to afford the title compound (134.8 mg, 0.059%). Colourless needle-shaped crystals of the title compound, suitable for X-ray diffraction analysis, were recrystallized from ethyl aceate-acetone. The 1H- and 13C-NMR spectral data were consistent with those reported by (Pan et al., 2010).

Refinement

All the H atoms were positioned geometrically and refined using a riding model: O—H = 0.82 Å and C—H = 0.93 – 0.98 Å with Uiso~(H) = 1.5Ueq(O, Cmethyl), and = 1.2Ueq(C) for all other C-bound H atoms. A rotating-group model was applied for the methyl groups. The anomalous dispersion effects of the atoms in the molecule are not sufficient to determine the absolute structure of the molecule in the crystal [Flack parameter = 0.1 (5)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, chrysura (1), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular C-H···O hydrogen bond is shown as a dashed red line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, chrysura (1), viewed along the a axis, showing the formation of the hydrogen bonded chains (see Table 1 for details). H atoms not involved in the hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C30H50O4 F(000) = 1048
Mr = 474.70 Dx = 1.172 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 9811 reflections
a = 6.9881 (1) Å θ = 3–69°
b = 11.0108 (2) Å µ = 0.59 mm1
c = 34.9733 (7) Å T = 100 K
V = 2691.01 (8) Å3 Needle, colourless
Z = 4 0.40 × 0.08 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer 5058 independent reflections
Radiation source: fine-focus sealed tube 5040 reflections with I > 2σ(I)
graphite Rint = 0.045
φ and ω scans θmax = 69.9°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −7→8
Tmin = 0.801, Tmax = 0.960 k = −13→13
48305 measured reflections l = −41→42

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.092 w = 1/[σ2(Fo2) + (0.0677P)2 + 8.7996P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.233 (Δ/σ)max < 0.001
S = 1.21 Δρmax = 0.47 e Å3
5058 reflections Δρmin = −0.38 e Å3
316 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0021 (7)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881
Secondary atom site location: difference Fourier map Flack parameter: 0.1 (5)

Special details

Experimental. The needle-shape crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O31 0.0510 (6) 0.8536 (4) 1.00267 (11) 0.0404 (10)
O32 0.2497 (5) 0.9976 (3) 0.98533 (9) 0.0275 (8)
O33 0.3411 (5) 1.0371 (3) 0.66313 (9) 0.0277 (8)
O34 0.2551 (6) 0.9264 (3) 0.56801 (10) 0.0345 (9)
H34A 0.2593 0.9556 0.5464 0.052*
C1 0.1697 (7) 0.8667 (4) 0.90988 (13) 0.0237 (10)
H1A 0.0311 0.8708 0.9109 0.028*
H1B 0.2030 0.8116 0.8893 0.028*
C2 0.2412 (9) 0.8102 (5) 0.94789 (14) 0.0306 (12)
H2A 0.1914 0.7284 0.9505 0.037*
H2B 0.3799 0.8056 0.9477 0.037*
C3 0.1774 (8) 0.8847 (5) 0.98059 (13) 0.0287 (12)
C4 0.4229 (7) 1.0448 (5) 0.96570 (13) 0.0236 (10)
C5 0.4357 (7) 1.0211 (4) 0.92154 (13) 0.0209 (10)
H5A 0.5138 0.9478 0.9185 0.025*
C6 0.5520 (6) 1.1256 (4) 0.90319 (13) 0.0203 (10)
H6A 0.4782 1.2001 0.9046 0.024*
H6B 0.6691 1.1376 0.9176 0.024*
C7 0.6018 (7) 1.0995 (4) 0.86170 (13) 0.0204 (9)
H7A 0.6752 1.0249 0.8603 0.024*
H7B 0.6808 1.1648 0.8518 0.024*
C8 0.4216 (6) 1.0873 (4) 0.83692 (12) 0.0183 (9)
C9 0.2945 (6) 0.9860 (4) 0.85516 (12) 0.0165 (9)
H9A 0.3707 0.9117 0.8529 0.020*
C10 0.2470 (7) 0.9967 (4) 0.89916 (12) 0.0195 (9)
C11 0.1148 (6) 0.9619 (4) 0.83075 (13) 0.0190 (9)
H11A 0.0369 1.0348 0.8302 0.023*
H11B 0.0400 0.8981 0.8426 0.023*
C12 0.1632 (7) 0.9243 (4) 0.78936 (13) 0.0208 (10)
H12A 0.2262 0.8458 0.7894 0.025*
H12B 0.0463 0.9173 0.7746 0.025*
C13 0.2941 (7) 1.0189 (4) 0.77122 (12) 0.0203 (10)
H13A 0.2229 1.0956 0.7717 0.024*
C14 0.4758 (6) 1.0405 (4) 0.79509 (13) 0.0167 (9)
C15 0.5831 (7) 1.1312 (4) 0.76941 (13) 0.0235 (10)
H15A 0.7189 1.1311 0.7751 0.028*
H15B 0.5337 1.2128 0.7728 0.028*
C16 0.5460 (7) 1.0854 (5) 0.72793 (13) 0.0217 (10)
H16A 0.6548 1.0393 0.7187 0.026*
H16B 0.5246 1.1535 0.7108 0.026*
C17 0.3625 (6) 1.0024 (4) 0.72988 (13) 0.0191 (10)
H17A 0.4059 0.9182 0.7274 0.023*
C30 0.5988 (7) 0.9245 (4) 0.79638 (13) 0.0220 (10)
H30A 0.6375 0.9032 0.7709 0.033*
H30B 0.5254 0.8593 0.8072 0.033*
H30C 0.7101 0.9388 0.8118 0.033*
C19 0.0918 (7) 1.0887 (4) 0.90822 (13) 0.0226 (10)
H19A 0.0491 1.0775 0.9341 0.034*
H19B −0.0139 1.0775 0.8910 0.034*
H19C 0.1421 1.1693 0.9053 0.034*
C20 0.2217 (7) 1.0257 (4) 0.69762 (13) 0.0202 (10)
C21 0.1120 (7) 1.1431 (5) 0.70141 (14) 0.0261 (11)
H21A 0.2003 1.2093 0.7042 0.039*
H21B 0.0308 1.1393 0.7235 0.039*
H21C 0.0353 1.1554 0.6790 0.039*
C22 0.0884 (7) 0.9175 (5) 0.68812 (14) 0.0245 (10)
H22A 0.1426 0.8414 0.6970 0.029*
H22B −0.0370 0.9283 0.6995 0.029*
C23 0.0774 (8) 0.9211 (4) 0.64427 (14) 0.0255 (10)
H23A 0.0413 0.8428 0.6338 0.031*
H23B −0.0120 0.9824 0.6355 0.031*
C24 0.2804 (7) 0.9535 (4) 0.63416 (14) 0.0257 (11)
H24A 0.3588 0.8800 0.6362 0.031*
C25 0.3219 (8) 1.0139 (5) 0.59506 (15) 0.0294 (11)
C26 0.5357 (9) 1.0307 (6) 0.59086 (17) 0.0382 (14)
H26A 0.5632 1.0659 0.5664 0.057*
H26B 0.5981 0.9533 0.5929 0.057*
H26C 0.5815 1.0835 0.6107 0.057*
C27 0.2159 (9) 1.1313 (5) 0.58997 (15) 0.0351 (13)
H27A 0.2411 1.1632 0.5649 0.053*
H27B 0.2579 1.1886 0.6089 0.053*
H27C 0.0811 1.1173 0.5928 0.053*
C28 0.5949 (8) 0.9895 (6) 0.98605 (15) 0.0344 (12)
H28A 0.5901 1.0098 1.0127 0.052*
H28C 0.7106 1.0210 0.9751 0.052*
H28D 0.5923 0.9028 0.9832 0.052*
C29 0.4088 (9) 1.1798 (5) 0.97708 (14) 0.0302 (12)
H29C 0.3941 1.1862 1.0043 0.045*
H29D 0.3003 1.2159 0.9647 0.045*
H29A 0.5232 1.2213 0.9694 0.045*
C18 0.3211 (7) 1.2099 (4) 0.83435 (14) 0.0237 (10)
H18A 0.2779 1.2337 0.8593 0.036*
H18B 0.2133 1.2036 0.8174 0.036*
H18C 0.4087 1.2696 0.8247 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O31 0.043 (2) 0.049 (2) 0.029 (2) −0.013 (2) 0.0095 (18) 0.0026 (18)
O32 0.0313 (18) 0.0309 (19) 0.0202 (15) −0.0033 (17) 0.0022 (14) 0.0007 (14)
O33 0.0307 (18) 0.0328 (19) 0.0195 (16) −0.0063 (15) 0.0047 (14) 0.0008 (15)
O34 0.046 (2) 0.035 (2) 0.0225 (17) −0.0042 (19) −0.0020 (17) 0.0001 (15)
C1 0.021 (2) 0.028 (3) 0.022 (2) −0.006 (2) −0.0023 (19) 0.001 (2)
C2 0.036 (3) 0.031 (3) 0.025 (2) −0.006 (2) 0.002 (2) 0.006 (2)
C3 0.034 (3) 0.036 (3) 0.017 (2) −0.002 (2) −0.005 (2) 0.010 (2)
C4 0.025 (2) 0.027 (2) 0.020 (2) −0.001 (2) −0.003 (2) 0.0022 (19)
C5 0.019 (2) 0.022 (2) 0.021 (2) 0.0041 (19) −0.0062 (19) −0.0019 (19)
C6 0.012 (2) 0.028 (2) 0.021 (2) 0.0015 (19) −0.0016 (17) −0.0021 (19)
C7 0.016 (2) 0.023 (2) 0.022 (2) 0.0068 (19) −0.0033 (18) −0.0054 (18)
C8 0.016 (2) 0.022 (2) 0.017 (2) −0.0077 (19) 0.0012 (18) −0.0014 (18)
C9 0.011 (2) 0.023 (2) 0.0159 (19) 0.0030 (18) 0.0004 (16) −0.0053 (18)
C10 0.016 (2) 0.023 (2) 0.019 (2) −0.0015 (19) 0.0020 (17) −0.0020 (18)
C11 0.013 (2) 0.021 (2) 0.022 (2) −0.0026 (17) −0.0007 (17) 0.0058 (18)
C12 0.021 (2) 0.023 (2) 0.018 (2) −0.0068 (19) −0.0034 (18) −0.0029 (18)
C13 0.024 (2) 0.018 (2) 0.019 (2) −0.0029 (19) −0.0040 (19) 0.0013 (17)
C14 0.016 (2) 0.017 (2) 0.017 (2) −0.0048 (17) −0.0023 (17) −0.0003 (17)
C15 0.022 (2) 0.026 (2) 0.023 (2) −0.004 (2) 0.002 (2) 0.0021 (19)
C16 0.013 (2) 0.028 (2) 0.024 (2) −0.0043 (19) 0.0007 (18) 0.000 (2)
C17 0.019 (2) 0.015 (2) 0.023 (2) 0.0042 (18) −0.0006 (18) −0.0004 (18)
C30 0.016 (2) 0.026 (2) 0.024 (2) 0.0000 (19) −0.0011 (19) −0.0006 (19)
C19 0.019 (2) 0.029 (2) 0.020 (2) 0.000 (2) 0.0014 (18) −0.0009 (19)
C20 0.019 (2) 0.021 (2) 0.021 (2) 0.0000 (19) −0.0021 (18) 0.0050 (18)
C21 0.022 (2) 0.031 (3) 0.025 (2) −0.003 (2) −0.005 (2) 0.004 (2)
C22 0.023 (2) 0.027 (2) 0.023 (2) −0.001 (2) 0.000 (2) −0.0035 (19)
C23 0.028 (3) 0.023 (2) 0.026 (2) −0.007 (2) 0.000 (2) 0.002 (2)
C24 0.030 (3) 0.024 (2) 0.023 (2) −0.004 (2) 0.000 (2) 0.0011 (19)
C25 0.032 (3) 0.031 (3) 0.025 (2) −0.002 (2) 0.000 (2) 0.000 (2)
C26 0.040 (3) 0.043 (3) 0.032 (3) −0.006 (3) −0.007 (2) 0.007 (3)
C27 0.040 (3) 0.040 (3) 0.025 (2) 0.003 (3) 0.002 (2) 0.007 (2)
C28 0.033 (3) 0.045 (3) 0.025 (2) 0.000 (3) −0.013 (2) 0.000 (2)
C29 0.034 (3) 0.035 (3) 0.021 (2) −0.010 (2) 0.002 (2) −0.006 (2)
C18 0.023 (2) 0.023 (2) 0.025 (2) −0.002 (2) 0.000 (2) −0.004 (2)

Geometric parameters (Å, °)

O31—C3 1.223 (7) C15—C16 1.558 (6)
O32—C3 1.352 (7) C15—H15A 0.9700
O32—C4 1.485 (6) C15—H15B 0.9700
O33—C24 1.433 (6) C16—C17 1.576 (6)
O33—C20 1.472 (5) C16—H16A 0.9700
O34—C25 1.428 (6) C16—H16B 0.9700
O34—H34A 0.8200 C17—C20 1.519 (6)
C1—C2 1.551 (7) C17—H17A 0.9800
C1—C10 1.576 (7) C30—H30A 0.9600
C1—H1A 0.9700 C30—H30B 0.9600
C1—H1B 0.9700 C30—H30C 0.9600
C2—C3 1.477 (8) C19—H19A 0.9600
C2—H2A 0.9700 C19—H19B 0.9600
C2—H2B 0.9700 C19—H19C 0.9600
C4—C28 1.523 (7) C20—C21 1.509 (7)
C4—C29 1.542 (7) C20—C22 1.548 (7)
C4—C5 1.569 (6) C21—H21A 0.9600
C5—C6 1.548 (7) C21—H21B 0.9600
C5—C10 1.557 (6) C21—H21C 0.9600
C5—H5A 0.9800 C22—C23 1.536 (6)
C6—C7 1.520 (6) C22—H22A 0.9700
C6—H6A 0.9700 C22—H22B 0.9700
C6—H6B 0.9700 C23—C24 1.505 (7)
C7—C8 1.535 (6) C23—H23A 0.9700
C7—H7A 0.9700 C23—H23B 0.9700
C7—H7B 0.9700 C24—C25 1.548 (7)
C8—C18 1.524 (6) C24—H24A 0.9800
C8—C9 1.562 (6) C25—C27 1.500 (8)
C8—C14 1.597 (6) C25—C26 1.513 (8)
C9—C11 1.541 (6) C26—H26A 0.9600
C9—C10 1.579 (6) C26—H26B 0.9600
C9—H9A 0.9800 C26—H26C 0.9600
C10—C19 1.518 (6) C27—H27A 0.9600
C11—C12 1.543 (6) C27—H27B 0.9600
C11—H11A 0.9700 C27—H27C 0.9600
C11—H11B 0.9700 C28—H28A 0.9600
C12—C13 1.525 (6) C28—H28C 0.9600
C12—H12A 0.9700 C28—H28D 0.9600
C12—H12B 0.9700 C29—H29C 0.9600
C13—C17 1.533 (6) C29—H29D 0.9600
C13—C14 1.538 (6) C29—H29A 0.9600
C13—H13A 0.9800 C18—H18A 0.9600
C14—C15 1.538 (6) C18—H18B 0.9600
C14—C30 1.540 (6) C18—H18C 0.9600
C3—O32—C4 124.7 (4) C15—C16—C17 106.4 (4)
C24—O33—C20 110.9 (4) C15—C16—H16A 110.4
C25—O34—H34A 109.5 C17—C16—H16A 110.4
C2—C1—C10 117.2 (4) C15—C16—H16B 110.4
C2—C1—H1A 108.0 C17—C16—H16B 110.4
C10—C1—H1A 108.0 H16A—C16—H16B 108.6
C2—C1—H1B 108.0 C20—C17—C13 118.6 (4)
C10—C1—H1B 108.0 C20—C17—C16 113.4 (4)
H1A—C1—H1B 107.2 C13—C17—C16 103.0 (4)
C3—C2—C1 110.1 (4) C20—C17—H17A 107.0
C3—C2—H2A 109.6 C13—C17—H17A 107.0
C1—C2—H2A 109.6 C16—C17—H17A 107.0
C3—C2—H2B 109.6 C14—C30—H30A 109.5
C1—C2—H2B 109.6 C14—C30—H30B 109.5
H2A—C2—H2B 108.2 H30A—C30—H30B 109.5
O31—C3—O32 116.8 (5) C14—C30—H30C 109.5
O31—C3—C2 123.5 (5) H30A—C30—H30C 109.5
O32—C3—C2 119.6 (4) H30B—C30—H30C 109.5
O32—C4—C28 106.7 (4) C10—C19—H19A 109.5
O32—C4—C29 99.5 (4) C10—C19—H19B 109.5
C28—C4—C29 108.4 (4) H19A—C19—H19B 109.5
O32—C4—C5 116.3 (4) C10—C19—H19C 109.5
C28—C4—C5 110.4 (4) H19A—C19—H19C 109.5
C29—C4—C5 114.7 (4) H19B—C19—H19C 109.5
C6—C5—C10 111.4 (4) O33—C20—C21 106.7 (4)
C6—C5—C4 108.3 (4) O33—C20—C17 104.8 (4)
C10—C5—C4 118.4 (4) C21—C20—C17 114.1 (4)
C6—C5—H5A 106.0 O33—C20—C22 103.3 (4)
C10—C5—H5A 106.0 C21—C20—C22 111.9 (4)
C4—C5—H5A 106.0 C17—C20—C22 114.8 (4)
C7—C6—C5 112.1 (4) C20—C21—H21A 109.5
C7—C6—H6A 109.2 C20—C21—H21B 109.5
C5—C6—H6A 109.2 H21A—C21—H21B 109.5
C7—C6—H6B 109.2 C20—C21—H21C 109.5
C5—C6—H6B 109.2 H21A—C21—H21C 109.5
H6A—C6—H6B 107.9 H21B—C21—H21C 109.5
C6—C7—C8 111.6 (4) C23—C22—C20 103.0 (4)
C6—C7—H7A 109.3 C23—C22—H22A 111.2
C8—C7—H7A 109.3 C20—C22—H22A 111.2
C6—C7—H7B 109.3 C23—C22—H22B 111.2
C8—C7—H7B 109.3 C20—C22—H22B 111.2
H7A—C7—H7B 108.0 H22A—C22—H22B 109.1
C18—C8—C7 109.5 (4) C24—C23—C22 101.1 (4)
C18—C8—C9 113.2 (4) C24—C23—H23A 111.5
C7—C8—C9 107.4 (4) C22—C23—H23A 111.5
C18—C8—C14 109.9 (4) C24—C23—H23B 111.5
C7—C8—C14 110.5 (4) C22—C23—H23B 111.5
C9—C8—C14 106.2 (3) H23A—C23—H23B 109.4
C11—C9—C8 111.1 (4) O33—C24—C23 105.4 (4)
C11—C9—C10 112.4 (3) O33—C24—C25 107.1 (4)
C8—C9—C10 117.7 (4) C23—C24—C25 119.1 (4)
C11—C9—H9A 104.7 O33—C24—H24A 108.3
C8—C9—H9A 104.7 C23—C24—H24A 108.3
C10—C9—H9A 104.7 C25—C24—H24A 108.3
C19—C10—C5 112.6 (4) O34—C25—C27 110.0 (4)
C19—C10—C1 108.2 (4) O34—C25—C26 109.9 (5)
C5—C10—C1 109.1 (4) C27—C25—C26 111.7 (5)
C19—C10—C9 113.8 (4) O34—C25—C24 103.6 (4)
C5—C10—C9 109.0 (4) C27—C25—C24 112.5 (4)
C1—C10—C9 103.7 (4) C26—C25—C24 108.8 (4)
C9—C11—C12 112.8 (4) C25—C26—H26A 109.5
C9—C11—H11A 109.0 C25—C26—H26B 109.5
C12—C11—H11A 109.0 H26A—C26—H26B 109.5
C9—C11—H11B 109.0 C25—C26—H26C 109.5
C12—C11—H11B 109.0 H26A—C26—H26C 109.5
H11A—C11—H11B 107.8 H26B—C26—H26C 109.5
C13—C12—C11 109.8 (4) C25—C27—H27A 109.5
C13—C12—H12A 109.7 C25—C27—H27B 109.5
C11—C12—H12A 109.7 H27A—C27—H27B 109.5
C13—C12—H12B 109.7 C25—C27—H27C 109.5
C11—C12—H12B 109.7 H27A—C27—H27C 109.5
H12A—C12—H12B 108.2 H27B—C27—H27C 109.5
C12—C13—C17 119.9 (4) C4—C28—H28A 109.5
C12—C13—C14 112.1 (4) C4—C28—H28C 109.5
C17—C13—C14 105.8 (4) H28A—C28—H28C 109.5
C12—C13—H13A 106.0 C4—C28—H28D 109.5
C17—C13—H13A 106.0 H28A—C28—H28D 109.5
C14—C13—H13A 106.0 H28C—C28—H28D 109.5
C13—C14—C15 100.7 (4) C4—C29—H29C 109.5
C13—C14—C30 110.4 (4) C4—C29—H29D 109.5
C15—C14—C30 106.5 (4) H29C—C29—H29D 109.5
C13—C14—C8 110.6 (4) C4—C29—H29A 109.5
C15—C14—C8 116.2 (4) H29C—C29—H29A 109.5
C30—C14—C8 111.9 (4) H29D—C29—H29A 109.5
C14—C15—C16 104.6 (4) C8—C18—H18A 109.5
C14—C15—H15A 110.8 C8—C18—H18B 109.5
C16—C15—H15A 110.8 H18A—C18—H18B 109.5
C14—C15—H15B 110.8 C8—C18—H18C 109.5
C16—C15—H15B 110.8 H18A—C18—H18C 109.5
H15A—C15—H15B 108.9 H18B—C18—H18C 109.5
C10—C1—C2—C3 63.3 (6) C17—C13—C14—C15 44.3 (4)
C4—O32—C3—O31 169.9 (4) C12—C13—C14—C30 64.5 (5)
C4—O32—C3—C2 −15.1 (7) C17—C13—C14—C30 −67.9 (5)
C1—C2—C3—O31 107.2 (6) C12—C13—C14—C8 −59.9 (5)
C1—C2—C3—O32 −67.5 (6) C17—C13—C14—C8 167.7 (4)
C3—O32—C4—C28 −76.9 (5) C18—C8—C14—C13 −63.3 (5)
C3—O32—C4—C29 170.5 (4) C7—C8—C14—C13 175.7 (4)
C3—O32—C4—C5 46.8 (6) C9—C8—C14—C13 59.5 (5)
O32—C4—C5—C6 150.4 (4) C18—C8—C14—C15 50.6 (5)
C28—C4—C5—C6 −87.9 (5) C7—C8—C14—C15 −70.4 (5)
C29—C4—C5—C6 34.9 (6) C9—C8—C14—C15 173.5 (4)
O32—C4—C5—C10 22.4 (6) C18—C8—C14—C30 173.2 (4)
C28—C4—C5—C10 144.1 (4) C7—C8—C14—C30 52.2 (5)
C29—C4—C5—C10 −93.1 (5) C9—C8—C14—C30 −64.0 (4)
C10—C5—C6—C7 −58.1 (5) C13—C14—C15—C16 −38.9 (4)
C4—C5—C6—C7 170.0 (4) C30—C14—C15—C16 76.3 (4)
C5—C6—C7—C8 62.3 (5) C8—C14—C15—C16 −158.3 (4)
C6—C7—C8—C18 67.2 (5) C14—C15—C16—C17 20.4 (5)
C6—C7—C8—C9 −56.1 (5) C12—C13—C17—C20 74.5 (6)
C6—C7—C8—C14 −171.5 (4) C14—C13—C17—C20 −157.7 (4)
C18—C8—C9—C11 62.4 (5) C12—C13—C17—C16 −159.3 (4)
C7—C8—C9—C11 −176.6 (3) C14—C13—C17—C16 −31.5 (4)
C14—C8—C9—C11 −58.3 (4) C15—C16—C17—C20 136.0 (4)
C18—C8—C9—C10 −69.2 (5) C15—C16—C17—C13 6.5 (5)
C7—C8—C9—C10 51.7 (5) C24—O33—C20—C21 −113.7 (4)
C14—C8—C9—C10 170.0 (4) C24—O33—C20—C17 125.0 (4)
C6—C5—C10—C19 −78.2 (5) C24—O33—C20—C22 4.4 (5)
C4—C5—C10—C19 48.3 (6) C13—C17—C20—O33 164.2 (4)
C6—C5—C10—C1 161.6 (4) C16—C17—C20—O33 43.1 (5)
C4—C5—C10—C1 −71.9 (5) C13—C17—C20—C21 47.9 (6)
C6—C5—C10—C9 49.0 (5) C16—C17—C20—C21 −73.2 (5)
C4—C5—C10—C9 175.6 (4) C13—C17—C20—C22 −83.2 (5)
C2—C1—C10—C19 −102.1 (5) C16—C17—C20—C22 155.8 (4)
C2—C1—C10—C5 20.8 (6) O33—C20—C22—C23 −27.2 (5)
C2—C1—C10—C9 136.8 (4) C21—C20—C22—C23 87.2 (5)
C11—C9—C10—C19 −53.3 (5) C17—C20—C22—C23 −140.7 (4)
C8—C9—C10—C19 77.7 (5) C20—C22—C23—C24 39.0 (5)
C11—C9—C10—C5 −179.9 (4) C20—O33—C24—C23 20.8 (5)
C8—C9—C10—C5 −48.9 (5) C20—O33—C24—C25 148.5 (4)
C11—C9—C10—C1 64.0 (5) C22—C23—C24—O33 −37.0 (5)
C8—C9—C10—C1 −165.0 (4) C22—C23—C24—C25 −157.1 (4)
C8—C9—C11—C12 58.0 (5) O33—C24—C25—O34 −179.1 (4)
C10—C9—C11—C12 −167.7 (4) C23—C24—C25—O34 −59.9 (6)
C9—C11—C12—C13 −54.2 (5) O33—C24—C25—C27 −60.4 (6)
C11—C12—C13—C17 −179.8 (4) C23—C24—C25—C27 58.8 (6)
C11—C12—C13—C14 55.3 (5) O33—C24—C25—C26 64.0 (6)
C12—C13—C14—C15 176.7 (4) C23—C24—C25—C26 −176.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C19—H19A···O32 0.96 2.44 3.082 (6) 124
O34—H34A···O32i 0.82 2.20 3.010 (5) 170
C26—H26A···O31i 0.96 2.53 3.392 (7) 150

Symmetry codes: (i) −x+1/2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2332).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burkill, L. H. (1966). A Dictionary of Economics Products of The Malay Peninsula, Vols. I and II. Kuala Lumpur: Ministry of Agriculture and Cooperatives.
  4. Fujiwara, T., Takeda, T., Ogihara, Y., Shimizu, M., Nomura, T. & Tomita, Y. (1982). Chem. Pharm. Bull. 30, 4025–4030. [DOI] [PubMed]
  5. Hegnauer, R. (1990). Editor. Chemotaxonomie der Planzen, Vol. IX. Basel and Stuttgart: Birkhauser Verlag.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Pan, L., Kardono, L. B. S., Riswan, S., Chai, H., Carcache de Blanco, E. J., Pannell, C. M., Soejart, D. D., McCloud, T. G., Newman, D. J. & Kinghorn, A. D. (2010). J. Nat. Prod. 73, 1873–1878. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811047337/su2332sup1.cif

e-67-o3296-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047337/su2332Isup2.hkl

e-67-o3296-Isup2.hkl (247.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES