Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):o3311. doi: 10.1107/S1600536811047362

(E)-5-[(2-Hy­droxy-5-meth­oxy­benzyl­idene)amino]-1,3,4-thia­diazole-2(3H)-thione

Hadi Kargar a,*, Reza Kia b,c, Muhammad Nawaz Tahir d,*
PMCID: PMC3238963  PMID: 22199812

Abstract

In the title thione–Schiff base compound, C10H9N3O2S2, the dihedral angle between the benzene ring and the five-membered ring is 6.69 (8)°. An intra­molecular O—H⋯N hydrogen bond forms an S 2 2(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯S inter­actions occur, generating R 2 2(8) ring motifs. The crystal structure features a S⋯S contact [3.3776 (7) Å], which is significantly shorter than the sum of the van der Waals radii (3.7 Å). The crystal structure also features C—H⋯O and π–π inter­actions [centroid–centroid distances = 3.4636 (9)–3.808 (1) Å].

Related literature

For standard values of bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological versatility of thione ligands see, for example: Kumar et al. (1988); Yadav et al. (1989). For a related structure, see: Zhang (2003). For van der Waals radii, see: Bondi, (1964).graphic file with name e-67-o3311-scheme1.jpg

Experimental

Crystal data

  • C10H9N3O2S2

  • M r = 267.32

  • Triclinic, Inline graphic

  • a = 6.2266 (2) Å

  • b = 8.0680 (2) Å

  • c = 11.9695 (3) Å

  • α = 83.027 (2)°

  • β = 77.993 (1)°

  • γ = 87.898 (1)°

  • V = 583.76 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 291 K

  • 0.11 × 0.08 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.952, T max = 0.978

  • 10303 measured reflections

  • 2894 independent reflections

  • 1990 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.102

  • S = 1.02

  • 2894 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811047362/ff2041sup1.cif

e-67-o3311-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047362/ff2041Isup2.hkl

e-67-o3311-Isup2.hkl (142KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047362/ff2041Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 1.84 2.616 (2) 151
N3—H3⋯S2i 0.80 2.53 3.3163 (15) 169
C2—H2A⋯O1ii 0.93 2.57 3.481 (2) 167
C3—H3A⋯O2iii 0.93 2.52 3.442 (3) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HK thanks PNU for financial support. RK thanks the Islamic Azad University. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

supplementary crystallographic information

Comment

Compounds incorporating a thiadiazole ring have attracted much attention due to their biological activity (Kumar et al., 1988; Yadav et al., 1989). Here we report the crystal structure of a new Schiff base compound containing a thiadiazol ring system.

The asymmetric unit of the title compound, Fig. 1, comprises a thione-Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Zhang, 2003).

The dihedral angle between the benzene ring and the five-membered ring is 6.69 (8)°. An intramolecular O—H···N hydrogen bond makes S22(6) ring motif. Intermolecular N—H···S interactions link neighboring molecules into individual dimers with R22(8) ring motifs (Bernstein et al.,1995). The interesting feature of the crystal structure is a short S(1)···S(1)i [3.3776 (7)Å; (i) 1 - x,1 - y,1 - z ] contact which is significantly shorter than the sum of the Van der Waals radius of S atoms (Bondi, 1964). The crystal structure is stabilized by the intermolecular C—H···O, and π-π interactions [Cg1···Cg1iv = 3.4636 (9)Å, (iv) -1 - x, -y, 1 -z; Cg1···Cg2v = 3.5242 (10)Å, (v) 1 + x, y, z; Cg2···Cg2vi = 3.808 (1)Å, (vi) -x, 1 - y, -z Cg1 and Cg2 are centroids of S(1)/C(8)/N(2)/N(3)/C(9) and C1–C6 rings, respectively.

Experimental

The title compound was synthesized by adding 5-methoxy-salicylaldehyde (1 mmol) to a solution of 5-aminothiophene-2-thiol (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.96 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

ORTEP plot of the title compound, showing 40% probability displacement ellipsoids. The intramolecular hydrogen bond is drawn as dashed line.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the a-axis. Hydrogen bonds and S···S contacts are drawn as dashed lines.

Crystal data

C10H9N3O2S2 Z = 2
Mr = 267.32 F(000) = 276
Triclinic, P1 Dx = 1.521 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.2266 (2) Å Cell parameters from 2525 reflections
b = 8.0680 (2) Å θ = 2.5–27.4°
c = 11.9695 (3) Å µ = 0.45 mm1
α = 83.027 (2)° T = 291 K
β = 77.993 (1)° Block, yellow
γ = 87.898 (1)° 0.11 × 0.08 × 0.05 mm
V = 583.76 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2894 independent reflections
Radiation source: fine-focus sealed tube 1990 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→5
Tmin = 0.952, Tmax = 0.978 k = −10→10
10303 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0525P)2] where P = (Fo2 + 2Fc2)/3
2894 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.51725 (8) 0.31804 (6) 0.44207 (4) 0.04448 (16)
S2 0.89337 (8) 0.25182 (7) 0.56684 (5) 0.05370 (18)
O1 0.1438 (3) 0.05675 (17) 0.13460 (13) 0.0639 (4)
H1 0.2279 0.0646 0.1813 0.096*
O2 −0.3796 (3) 0.62067 (18) 0.12072 (13) 0.0651 (4)
N1 0.3359 (2) 0.18322 (18) 0.27908 (12) 0.0401 (4)
N2 0.6290 (2) 0.05119 (18) 0.34526 (12) 0.0409 (4)
N3 0.7659 (2) 0.07198 (18) 0.41793 (12) 0.0402 (4)
H3 0.8576 0.0018 0.4258 0.048*
C1 0.0238 (3) 0.2001 (2) 0.13354 (15) 0.0421 (4)
C2 −0.1342 (3) 0.2186 (2) 0.06674 (16) 0.0457 (5)
H2A −0.1529 0.1347 0.0229 0.055*
C3 −0.2630 (3) 0.3596 (2) 0.06470 (15) 0.0449 (5)
H3A −0.3691 0.3701 0.0198 0.054*
C4 −0.2373 (3) 0.4871 (2) 0.12883 (15) 0.0418 (4)
C5 −0.0803 (3) 0.4727 (2) 0.19435 (14) 0.0404 (4)
H5 −0.0620 0.5587 0.2366 0.049*
C6 0.0536 (3) 0.3286 (2) 0.19832 (14) 0.0352 (4)
C7 0.2144 (3) 0.3154 (2) 0.26892 (14) 0.0385 (4)
H7A 0.2320 0.4045 0.3086 0.046*
C8 0.4892 (3) 0.1745 (2) 0.34711 (14) 0.0364 (4)
C9 0.7411 (3) 0.2037 (2) 0.47685 (15) 0.0391 (4)
C10 −0.3578 (4) 0.7562 (3) 0.1826 (2) 0.0667 (6)
H10A −0.3879 0.7189 0.2635 0.100*
H10B −0.4599 0.8434 0.1666 0.100*
H10C −0.2109 0.7979 0.1596 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0469 (3) 0.0408 (3) 0.0532 (3) 0.0106 (2) −0.0243 (2) −0.0142 (2)
S2 0.0522 (3) 0.0568 (3) 0.0638 (3) 0.0094 (2) −0.0324 (3) −0.0208 (3)
O1 0.0781 (10) 0.0504 (9) 0.0822 (10) 0.0294 (8) −0.0512 (8) −0.0319 (8)
O2 0.0684 (10) 0.0569 (9) 0.0849 (11) 0.0316 (7) −0.0458 (8) −0.0255 (8)
N1 0.0404 (8) 0.0411 (9) 0.0433 (8) 0.0049 (7) −0.0180 (7) −0.0081 (7)
N2 0.0412 (8) 0.0420 (9) 0.0451 (8) 0.0065 (7) −0.0191 (7) −0.0108 (7)
N3 0.0392 (8) 0.0391 (8) 0.0469 (8) 0.0090 (6) −0.0198 (7) −0.0073 (7)
C1 0.0491 (11) 0.0382 (10) 0.0424 (10) 0.0097 (8) −0.0166 (8) −0.0085 (8)
C2 0.0554 (12) 0.0430 (11) 0.0461 (10) 0.0054 (9) −0.0239 (9) −0.0134 (9)
C3 0.0453 (10) 0.0530 (12) 0.0418 (10) 0.0037 (9) −0.0218 (8) −0.0057 (9)
C4 0.0440 (10) 0.0409 (10) 0.0422 (10) 0.0109 (8) −0.0139 (8) −0.0062 (8)
C5 0.0442 (10) 0.0392 (10) 0.0406 (9) 0.0063 (8) −0.0137 (8) −0.0091 (8)
C6 0.0361 (9) 0.0372 (9) 0.0342 (8) 0.0036 (7) −0.0119 (7) −0.0049 (7)
C7 0.0395 (10) 0.0398 (10) 0.0385 (9) 0.0012 (8) −0.0125 (8) −0.0068 (8)
C8 0.0361 (9) 0.0357 (9) 0.0397 (9) 0.0022 (8) −0.0135 (8) −0.0039 (8)
C9 0.0367 (9) 0.0401 (10) 0.0415 (9) 0.0011 (8) −0.0119 (8) −0.0028 (8)
C10 0.0740 (15) 0.0496 (13) 0.0833 (16) 0.0266 (11) −0.0277 (13) −0.0228 (12)

Geometric parameters (Å, °)

S1—C9 1.7383 (18) C1—C6 1.407 (2)
S1—C8 1.7550 (17) C2—C3 1.368 (3)
S2—C9 1.6624 (19) C2—H2A 0.9300
O1—C1 1.354 (2) C3—C4 1.389 (3)
O1—H1 0.8513 C3—H3A 0.9300
O2—C4 1.377 (2) C4—C5 1.368 (2)
O2—C10 1.418 (3) C5—C6 1.408 (2)
N1—C7 1.293 (2) C5—H5 0.9300
N1—C8 1.373 (2) C6—C7 1.432 (2)
N2—C8 1.297 (2) C7—H7A 0.9300
N2—N3 1.366 (2) C10—H10A 0.9600
N3—C9 1.332 (2) C10—H10B 0.9600
N3—H3 0.8004 C10—H10C 0.9600
C1—C2 1.385 (3)
C9—S1—C8 89.57 (8) C4—C5—H5 119.8
C1—O1—H1 105.8 C6—C5—H5 119.8
C4—O2—C10 117.48 (15) C1—C6—C5 118.89 (16)
C7—N1—C8 120.57 (15) C1—C6—C7 121.70 (16)
C8—N2—N3 109.05 (15) C5—C6—C7 119.40 (16)
C9—N3—N2 120.21 (15) N1—C7—C6 121.91 (17)
C9—N3—H3 121.3 N1—C7—H7A 119.0
N2—N3—H3 118.5 C6—C7—H7A 119.0
O1—C1—C2 118.24 (16) N2—C8—N1 120.02 (16)
O1—C1—C6 122.23 (17) N2—C8—S1 114.13 (13)
C2—C1—C6 119.53 (17) N1—C8—S1 125.85 (13)
C3—C2—C1 120.48 (17) N3—C9—S2 127.15 (14)
C3—C2—H2A 119.8 N3—C9—S1 107.00 (13)
C1—C2—H2A 119.8 S2—C9—S1 125.86 (11)
C2—C3—C4 120.82 (17) O2—C10—H10A 109.5
C2—C3—H3A 119.6 O2—C10—H10B 109.5
C4—C3—H3A 119.6 H10A—C10—H10B 109.5
C5—C4—O2 125.16 (16) O2—C10—H10C 109.5
C5—C4—C3 119.82 (17) H10A—C10—H10C 109.5
O2—C4—C3 115.02 (16) H10B—C10—H10C 109.5
C4—C5—C6 120.46 (17)
C8—N2—N3—C9 0.3 (2) C4—C5—C6—C7 −179.03 (16)
O1—C1—C2—C3 178.58 (18) C8—N1—C7—C6 179.75 (15)
C6—C1—C2—C3 −0.9 (3) C1—C6—C7—N1 −1.9 (3)
C1—C2—C3—C4 0.4 (3) C5—C6—C7—N1 177.34 (16)
C10—O2—C4—C5 1.9 (3) N3—N2—C8—N1 178.84 (14)
C10—O2—C4—C3 −178.74 (19) N3—N2—C8—S1 −1.70 (19)
C2—C3—C4—C5 0.5 (3) C7—N1—C8—N2 −171.14 (17)
C2—C3—C4—O2 −178.95 (18) C7—N1—C8—S1 9.5 (2)
O2—C4—C5—C6 178.60 (17) C9—S1—C8—N2 2.05 (14)
C3—C4—C5—C6 −0.8 (3) C9—S1—C8—N1 −178.53 (16)
O1—C1—C6—C5 −178.85 (17) N2—N3—C9—S2 −178.78 (13)
C2—C1—C6—C5 0.6 (3) N2—N3—C9—S1 1.2 (2)
O1—C1—C6—C7 0.4 (3) C8—S1—C9—N3 −1.69 (13)
C2—C1—C6—C7 179.87 (17) C8—S1—C9—S2 178.29 (13)
C4—C5—C6—C1 0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.85 1.84 2.616 (2) 151
N3—H3···S2i 0.80 2.53 3.3163 (15) 169
C2—H2A···O1ii 0.93 2.57 3.481 (2) 167
C3—H3A···O2iii 0.93 2.52 3.442 (3) 172

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x, −y, −z; (iii) −x−1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2041).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Kumar, R., Giri S. & Nizamuddin (1988). J. Indian Chem. Soc. 65, 572–573.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Yadav, L. D. S., Shukla, K. N. & Singh, H. (1989). Indian J. Chem. Sect. B, 28, 78–80.
  9. Zhang, Y.-X. (2003). Acta Cryst. E59, o581–o582.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811047362/ff2041sup1.cif

e-67-o3311-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047362/ff2041Isup2.hkl

e-67-o3311-Isup2.hkl (142KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047362/ff2041Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES